Hunting for fully-heavy tetraquark states

Wei Chen

Sun Yat-Sen University

Based on: PLB773 (2017), 247-251; Sci.Bull. 65 (2020), 1994-2000; arXiv:2103.09739 In collaboration with Qi-Nan Wang, Zi-Heng Yang, Hua-Xing Chen, Xiang Liu, T. G. Steele, and Shi-Lin Zhu

The 2nd Joint Workshop on Theoretical and Experimental Heavy Flavor Physics 25-29 March 2021, Lanzhou University, Lanzhou, China

1 Background of the exotic hadron states

2 Moment sum rules for $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ tetraquarks

3 Decay properties of the $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$ tetraquarks

(4) Moment sum rules for $bc\bar{b}\bar{c}$ and $cc\bar{b}\bar{b}$ tetraquarks

- Quark model is established to classify hadrons: mesons $(q\bar{q})$ and baryons (qqq).
- Hadrons with exotic quantum numbers are exotic hadron states.
- QCD allows for hadrons outside the naive quark model. Hadron structures are more complicated in QCD: $N_{quarks} \neq 2, 3$.
- $SU(3)_c$ gauge symmetry: $(N_q N_{\bar{q}})$ is divisible by 3, plus any number N_g of valence gluons can form a color singlet.

Searching for exotica

Light hadron sector:

- Dibaryon candidates: Deuteron, H states, d*(2380).
- Hybrid candidates: $\pi_1(1400)$, $\pi_1(1600)$ and $\pi_1(2015)$ (dispute).
- Glueball candidates: $a_0(980)$ and $f_0(980)$, a C-odd gluonic compound.
- Tetraquark candidates: light scalar mesons.
- **Pentaquark** candidate: $\Theta^+(1540)$ (S = 1, long story of appeared and disappeared)

Heavy hadron sector: breakthough in multiquarks!

- P_c(4380), P_c(4312), P_c(4440), P_c(4457), P_{cs}(4459): hidden-charm pentaquark states.
- Plenty of XYZ states: candidates of molecules, tetraquarks, hybrids...

Experiments: Belle, BaBar, BESIII, CDF, CLEO, D0, LHCb...

Prog.Part.Nucl.Phys.107 (2019) 237-320.

arXiv:1812.10947

- Many charmonium-like states were discovered above the open-charm thresholds.
- Their masses and decay modes are different from the pure $c\bar{c}$ charmonium states.
- Some charged Z_c states were observed, which are evidences for four-quark states (ccud).
- They are good candidates for exotic hadron states: molecule, tetraquark, hybrid

Theoretical Models

- Lots of "near-threshold" exotic resonances!
- Inside structure: tetraquark, molecule

arXiv:1812.10947

Fully-heavy tetraquarks: $QQ\bar{Q}\bar{Q}$

$QQ\bar{Q}\bar{Q}$ Tetraquarks:

- They are far away from the mass range of the $q\bar{q}$ and $Qq\bar{Q}\bar{q}$ hadrons, can be clearly distinguished experimentally from the spectroscopy.
- The light mesons $(\pi, \rho, \omega, \sigma...)$ can not be exchanged between two charmonia/bottomonia.
- The binding force comes from the short-range gluon exchange.
- A molecule configuration is not favored and thus the $QQ\bar{Q}\bar{Q}$ is a good candidate for compact tetraquark.

X(6900): resonance structure in J/ψ -pair mass spectrum

LHCb observed several structures in the J/ψ -pair mass spectrum (Sci. Bull., 2020, 2020, 65):

- The mass and width of X(6900) are:(1) M = 6905 ± 11 ± 7 MeV, Γ = 80 ± 19 ± 33 MeV based on no-interference fit; (2) M = 6886 ± 11 ± 11 MeV, Γ = 168 ± 33 ± 69 MeV based on the simple model with interference.
- A broad structure next to threshold ranging from 6.2 to 6.8 GeV;
- Hint for another structure around 7.2 GeV with low significance.

• Study two-point correlation function of current J(x) with the same quantum numbers with hadron state:

$$\Pi(q^2) = i \int d^4 x e^{iq \cdot x} \langle \Omega | T[J(x)J^{\dagger}(0)] | \Omega \rangle$$

- Classify states |X
 angle by coupling to current $\langle \Omega|J(x)|X
 angle
 eq 0$
- Currents are probes of spectrum and might not overlap with state

Pauli principle operate for diquark structure:

Interpolating currents with $J^{PC} = 0^{-+}$ and 0^{--} :

$$\begin{split} J_1^{\pm} &= Q_a^{T} C Q_b \bar{Q}_a \gamma_5 C \bar{Q}_b^{T} \pm Q_a^{T} C \gamma_5 Q_b \bar{Q}_a C \bar{Q}_b^{T} ,\\ J_2^{+} &= Q_a^{T} C \sigma_{\mu\nu} Q_b \bar{Q}_a \sigma^{\mu\nu} \gamma_5 C \bar{Q}_b^{T} , \end{split}$$

• Hadron level: described by the dispersion relation

$$\Pi(q^2) = \frac{(q^2)^N}{\pi} \int \frac{\mathrm{Im}\Pi(s)}{s^N(s-q^2-i\epsilon)} ds + \sum_{n=0}^{N-1} b_n(q^2)^n,$$

$$\rho(s) = \frac{1}{\pi} \mathrm{Im}\Pi(s) = \sum_n \delta(s-m_n^2) \langle 0|J|n \rangle \langle n|J^{\dagger}|0 \rangle$$

$$= f_X^2 \delta(s-m_X^2) + \text{continuum},$$

• Quark-gluon level: evaluated via operator product expansion(OPE)

$$\Pi(s) = \Pi^{pert}(s) + \Pi^{\langle GG \rangle}(s) + ...,$$

 $QQ\bar{Q}\bar{Q}$ states

• Define moments in Euclidean region $Q^2 = -q^2 > 0$:

$$\begin{split} M_n(Q_0^2) &= \frac{1}{n!} \left(-\frac{d}{dQ^2} \right)^n \Pi(Q^2)|_{Q^2 = Q_0^2} \\ &= \int_{m_H^2}^\infty \frac{\rho(s)}{(s+Q_0^2)^{n+1}} ds = \frac{f_X^2}{(m_X^2 + Q_0^2)^{n+1}} \left[1 + \delta_n(Q_0^2) \right], \end{split}$$

where $\delta_n(Q_0^2)$ contains the higher states and continuum.

Ratio of the moments

$$r(n, Q_0^2) \equiv \frac{M_n(Q_0^2)}{M_{n+1}(Q_0^2)} = (m_X^2 + Q_0^2) \frac{1 + \delta_n(Q_0^2)}{1 + \delta_{n+1}(Q_0^2)}.$$

Predict hadron mass

$$m_X = \sqrt{r(n,Q_0^2) - Q_0^2}$$

for sufficiently large *n* when $\delta_n(Q_0^2) \cong \delta_{n+1}(Q_0^2)$ for convergence.

Limitations for (n, ξ) parameter space:

$$\xi = Q_0^2/16m_c^2$$
, for $ccar{c}ar{c}$ system;
 $\xi = Q_0^2/m_b^2$, for $bbar{b}ar{b}$ system.

- Small ξ: higher dimensional condensates give large contributions to M_n(Q₀²), leading to bad OPE convergence.
- Large ξ : slower convergence of $\delta_n(Q_0^2)$. This can be compensated by taking higher derivative *n* for the lowest lying resonance to dominate.
- Large *n*: moving further away from the asymptotically free region. The OPE convergence would also become bad.
- Requiring Π^(GG)(s) ≤ Π^{pert}(s) to obtain an upper limit n_{max}, which will increase with respect to ξ.
- Good (n, ξ) region: the lowest lying resonance dominates the moments while the OPE series has good convergence.

Hölder's inequality:

The boundary gives $(n, \xi) = (48, 0.2), (49, 0.4), (49, 0.6), (50, 0.8).$

Mass for $cc\bar{c}\bar{c}$ tetraquark with $J^{PC} = 0^{-+}$: mass curves have plateaus at $(n,\xi) = (28,2), (36,3), (45,4), (53,5)$

$$m_{\mathcal{T}_{cc\bar{c}\bar{c}}} = (6.84 \pm 0.18) \, {
m GeV}.$$

Good predictions for LHCb's observations:

PLB773(2017), 247-251

JPC	Currents	$m_{X_c}(\text{GeV})$	$m_{X_b}(\text{GeV})$
0++	J_1	$\textbf{6.44} \pm \textbf{0.15}$	18.45 ± 0.15
	J_2	$\textbf{6.59} \pm \textbf{0.17}$	18.59 ± 0.17
	J_3	$\textbf{6.47} \pm \textbf{0.16}$	18.49 ± 0.16
	J_4	$\textbf{6.46} \pm \textbf{0.16}$	18.46 ± 0.14
	J_5	$\textbf{6.82} \pm \textbf{0.18}$	19.64 ± 0.14
1^{++}	$J^+_{1\mu}$	$\textbf{6.40} \pm \textbf{0.19}$	18.33 ± 0.17
	$J_{2\mu}^+$	$\textbf{6.34} \pm \textbf{0.19}$	18.32 ± 0.18
1^{+-}	$J_{1\mu}^{-}$	$\textbf{6.37} \pm \textbf{0.18}$	18.32 ± 0.17
	$J_{2\mu}^{\mp}$	6.51 ± 0.15	18.54 ± 0.15
2++	$J_{1\mu\nu}$	6.51 ± 0.15	18.53 ± 0.15
	$J_{2\mu\nu}$	$\textbf{6.37} \pm \textbf{0.19}$	18.32 ± 0.17
0-+	<i>I</i> +	6.84 ± 0.18	18.77 ± 0.18
0	J_{1}^{+}	0.84 ± 0.18 6.85 ± 0.18	18.79 ± 0.18
0	J_1^-	$\textbf{6.84} \pm \textbf{0.18}$	18.77 ± 0.18
1^{-+}	$J_{1\mu}^{+}$	$\textbf{6.84} \pm \textbf{0.18}$	18.80 ± 0.18
	$J_{2\mu}^{+\mu}$	$\textbf{6.88} \pm \textbf{0.18}$	18.83 ± 0.18
1	$J^{1\mu}$	$\textbf{6.84} \pm \textbf{0.18}$	18.77 ± 0.18
	$J_{2\mu}^{-}$	$\textbf{6.83} \pm \textbf{0.18}$	18.77 ± 0.16

Our previous calculations in 2017 are consistent very good with the LHCb's observation:

- > The masses of $cc\overline{c}\overline{c}$ tetraquarks with $J^{PC} = 0^{++}$, 2^{++} are agree with the broad structure around 6.2-6.8 GeV;
- > The masses of $cc\overline{c}\overline{c}$ tetraquarks with $J^{PC} = 0^{-+}$, 1^{-+} are consistent with the mass of X(6900).

Decay behavior: cccc tetraquarks

- $cc\bar{c}\bar{c} \rightarrow (ccq) + (\bar{c}\bar{c}\bar{q})$: kinematically forbidden.
- $cc\bar{c}\bar{c} \rightarrow (cqq) + (\bar{c}\bar{q}\bar{q})$: suppressed by two light quark pair creation.
- ccc̄c̄ → (cc̄) + (cc̄): charm quark pair rearrangement or annihilation (suppressed). Phase space is small.
- $cc\bar{c}\bar{c} \rightarrow (q\bar{c}) + (c\bar{q})$: possible via a heavy quark pair annihilation and a light quark pair creation, with large phase space.
- $cc\bar{c}\bar{c}(L=1) \rightarrow cc\bar{c}\bar{c}(L=0) + (q\bar{q})_{I=0}$: OZI forbidden.

Strong decays into di-charmonia

PLB773(2017), 247-251; Sci.Bull.65,2020, 1994-2000

JPC	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), \ J/\psi J/\psi$	$\eta_{c}(1S)\chi_{c1}(1P), J/\psi h_{c}(1P)$
0-+	$\eta_c(1S)\chi_{c0}(1P), J/\psi h_c(1P)$	${\sf J}/\psi{\sf J}/\psi$
0	$J/\psi\chi_{c1}(1P)$	$J/\psi\eta_c(1S)$
1++	_	$J/\psi h_{c}(1P), \eta_{c}(1S)\chi_{c1}(1P), \\ \eta_{c}(1S)\chi_{c0}(1P)$
1+-	$J/\psi\eta_{c}(1S)$	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_{c}(1S)h_{c}(1P)$
1^{-+}	$J/\psi h_c(1P)$, $\eta_c(1S)\chi_{c1}(1P)$	$J/\psi J/\psi$
1	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_{c}(1S)h_{c}(1P)$	$J/\psi\eta_c(1S)$

Strong decays into di-charmonia

We calculate	their	relative	branching	ratios	through	the	Fierz	rearrangemen	it:

		Decay channels								
J ^{PC}	Configuration	$J/\psi J/\psi$	$\eta_c \eta_c$	$J/\psi h_c$	$\eta_c \chi_{c0}$	$\eta_c \chi_{c1}$	$J/\psi \eta_c$	$J/\psi\chi_{c0}$	$J/\psi\chi_{c1}$	$\eta_c h_c$
0++	$X_1 = 0_{cc}^+, 0_{c\bar{c}}^+\rangle_0$	1	0.45	-	-	2.1×10^{-5}	-	-	-	-
	$X_2 = 1_{cc}^+, 1_{cc}^+\rangle_0$	1	4.1	-	-	8.6×10^{-5}	-	-	-	-
1+-	$X_3 = 1_{cc}^+, 1_{cc}^+\rangle_1$	-	-	-	-	-	1	-	-	-
2++	$X_4 = 1_{cc}^+, 1_{cc}^+\rangle_2$	1	0.036	-	-	6.0×10^{-4}	-	-	-	-
0-+	$X_5 = 0^{cc}, 0^+_{c\bar{c}}\rangle^a_0$	1	-	0.21	0.69	-	-	-	-	-
	$X_6 = 1_{cc}^{\pm}, 1_{cc}^{\mp}\rangle_0$	1	-	0.21	6.2	-	-	-	-	-
0	$X_7 = 0_{cc}^-, 0_{c\bar{c}}^+)_0^b$	-	-	-	-	-	1	-	1.4	-
1-+	$X_8 = 1^{cc}, 0^+_{c\bar{c}}\rangle^a_1$	1	0.11	0.30	-	0.36	-	-	-	-
	$X_9 = 1_{cc}^-, 1_{cc}^+\rangle_1^a$	1	1.0	0.30	-	3.2	-	-	-	-
1	$X_{10} = 1_{cc}^{-}, 0_{cc}^{+}\rangle_{1}^{b}$	-	-	-	-	-	1	0.79	1.5	0.43
	$X_{11} = 1^{cc}, 1^+_{cc}\rangle^b_1$	-	-	-	-	-	1	7.1	1.5	0.43

- > We suggest the broad structure around 6.2-6.8 GeV to be a S-wave $cc\overline{c}\overline{c}$ tetraquark with $J^{PC} = 0^{++}$ or 2^{++} , while the narrow structure around 6.9 Gev to be a P-wave $cc\overline{c}\overline{c}$ tetraquark with $J^{PC} = 0^{-+}$ or 1^{-+} .
- > We propose to confirm them in the **di**- $\eta_{cr} J/\psi h_{cr} \eta_{c} \chi_{c0r} \eta_{c} \chi_{c1}$ channels. These channels are helpful to determine their quantum numbers.

The $bb\bar{b}\bar{b}$ tetraquarks lie below two bottomonium thresholds:

- $bb\bar{b}\bar{b} \rightarrow (b\bar{b}) + (b\bar{b})$: kinematically forbidden.
- $bb\bar{b}\bar{b}
 ightarrow (bbq) + (\bar{b}\bar{b}\bar{q})$: kinematically forbidden.
- $bb\bar{b}\bar{b} \rightarrow (q\bar{b}) + (b\bar{q})$: possible via a heavy quark pair annihilation and a light quark pair creation.
- $bb\bar{b}\bar{b} \rightarrow (b\bar{b}) + \gamma$: electromagnetic decay via $b\gamma_{\mu}\bar{b} \rightarrow \gamma$ photon production process.
- These $bb\bar{b}\bar{b}$ states are expected to be very narrow. They are good candidates for compact tetraquarks, if they do exist.

Doubly hidden-flavor $bc\bar{b}\bar{c}$ and doubly open-flavor $cc\bar{b}\bar{b}/bb\bar{c}\bar{c}$ tetraquark systems

- Pauli exclusion principle does not operate for $bc\bar{b}\bar{c}$ systems.
- Bound bcbc tetraquarks may be more favorable than cccc and bbbb systems, based on the CMI model and string-inspired Chromoelectric model.
- All *ccccc*, *bbbb* and *bcbc* tetraquarks can strongly decay by annihilating at least a pair of heavy quarks with the same flavor.
- The $cc\bar{b}\bar{b}$ tetraquarks have no annihilating decay channel! They are expected to be stable and narrow if they lie below the $2B_c$ threshold.

Mass spectra for the $bc\bar{b}\bar{c}$ tetraquarks

arXiv:2102.10605

J^{PC}	Current	Mass[GeV]	Current	Mass[GeV]
	$[\mathbf{\bar{3}}\otimes3]_{c}$		$[6\otimes \mathbf{\bar{6}}]_c$	
0++	J_1	$12.28\substack{+0.15\\-0.14}$	j_1	$12.37^{+0.15}_{-0.14}$
	J_2	$12.46^{+0.17}_{-0.15}$	j_2	$12.29^{+0.15}_{-0.12}$
	$J_{5\mu\nu}(S)$	$12.35_{-0.12}^{+0.14}$	$j_{5\mu\nu}(S)$	$12.32\substack{+0.15\\-0.12}$
	$J_{5\mu\nu}(T)$	$12.45_{-0.15}^{+0.17}$	$j_{5\mu\nu}(T)$	$12.29^{+0.14}_{-0.12}$
0^{-+}	$J_{3\mu}$	$12.99_{-0.18}^{+0.22}$	$j_{3\mu}$	$13.16^{+0.23}_{-0.20}$
0	$J_{4\mu}$	$12.98\substack{+0.22\\-0.18}$	$j_{4\mu}$	$13.17\substack{+0.23\\-0.19}$
1++	$J_{3\mu}$	$12.30_{-0.14}^{+0.15}$	$j_{3\mu}$	$12.36^{+0.16}_{-0.14}$
1+-	$J_{4\mu}$	$12.32_{-0.13}^{+0.15}$	$j_{4\mu}$	$12.34_{-0.14}^{+0.15}$
	$J_{6\mu u}$	$12.38^{+0.13}_{-0.12}$	$\dot{J}_{6\mu u}$	$12.30\substack{+0.14\\-0.12}$
1-+	$J_{5\mu u}$	$13.23^{+0.24}_{-0.20}$	$j_{5\mu\nu}$	$13.17\substack{+0.23\\-0.20}$
1	$J_{6\mu u}$	$12.91_{-0.16}^{+0.19}$	$j_{6\mu u}$	$13.13_{-0.19}^{+0.22}$
2++	$J_{5\mu u}$	$12.30\substack{+0.15\\-0.14}$	$j_{5\mu u}$	$12.35_{-0.14}^{+0.15}$

141		0	
VVe	21	C	her

Mass spectra for the $bc\bar{b}\bar{c}$ tetraquarks

- Two thresholds for $bc\bar{b}\bar{c}$ tetraquarks: $c\bar{c} + b\bar{b}$ and $b\bar{c} + c\bar{b}$.
- The S-wave positive parity $bc\bar{b}\bar{c}$ tetraquarks lie below the two-meson thresholds, they can decay into $b\bar{b}/c\bar{c}$ + light meson final states.
- The P-wave negative parity $bc\bar{b}\bar{c}$ tetraquarks can decay into the $c\bar{c} + b\bar{b}$ and $b\bar{c} + c\bar{b}$ final states.

Decay properties of the $bc\bar{b}\bar{c}$ tetraquarks

arXiv:2102.10605

J^{PC}	S-wave	<i>P</i> -wave
0++	$\eta_c\eta_b$	_
0^{-+}	$\eta_c \chi_{b0}(1P), \chi_{c0}(1P)\eta_b,$	$J/\psi\Upsilon$
	$h_c(1P)\Upsilon, J/\psi h_b(1P)$	
0	$\chi_{c1}(1P)\Upsilon, J/\psi\chi_{b1}(1P)$	$\eta_c\Upsilon, J/\psi\eta_b$
1++	-	-
1+-	_	_
1-+	$\eta_c \chi_{b1}(1P), \chi_{c1}(1P)\eta_b,$	$J/\psi\Upsilon$
	$h_c(1P)\Upsilon, J/\psi h_b(1P)$	
1	$\chi_{c0}(1P)\Upsilon, J/\psi\chi_{b0}(1P),$	$\eta_c\Upsilon, J/\psi\eta_b,$
	$\chi_{c1}(1P)\Upsilon, J/\psi\chi_{b1}(1P)$	$B_c^- B_c^+$
	$\eta_c h_b(1P), h_c(1P)\eta_b$	
2++	_	_

Mass spectra for the $cc\bar{b}\bar{b}$ tetraquarks

Current	J^P	Mass(GeV)	Current	J^P	Mass(GeV)
η_1^+	0^+		η_1^-	0^{-}	$12.90\substack{+0.23\\-0.19}$
η_2^+	0^+	$12.37\substack{+0.18\\-0.15}$	η_2^-	0^{-}	$13.00\substack{+0.22\\-0.19}$
η_3^+	0^+	$12.32\substack{+0.18\\-0.16}$	η_3^-	0^{-}	$13.16\substack{+0.29\\-0.24}$
η_4^+	0^+	$12.63\substack{+0.21\\-0.18}$			
η_5^+	0^+	$12.36\substack{+0.19\\-0.16}$			
					1 10 25
$\eta^{+}_{1\mu}$	1+	$14.03^{+0.31}_{-0.26}$	$\eta^{1\mu}$	1-	$13.08^{+0.23}_{-0.21}$
$\eta^+_{2\mu}$	1^{+}	$14.13\substack{+0.31 \\ -0.27}$	$\eta^{2\mu}$	1^{-}	$13.06\substack{+0.25 \\ -0.21}$
$\eta^+_{3\mu}$	1^+	$12.39\substack{+0.21\\-0.18}$	$\eta_{3\mu}^-$	1^{-}	$13.08\substack{+0.25\\-0.21}$
$\eta^+_{4\mu}$	1^+	$12.39\substack{+0.19\\-0.16}$	$\eta^{4\mu}$	1^{-}	$13.10\substack{+0.25\\-0.21}$
$\eta^+_{2\mu u}$	2^+	$12.39\substack{+0.19 \\ -0.16}$			

- One thresholds for $cc\bar{b}\bar{b}$ tetraquarks: $B_c^{(*)}B_c^{(*)}$.
- Except for two 1⁺ states, the S-wave positive parity $cc\overline{b}\overline{b}$ tetraquarks lie below the $B_c^{(*)}B_c^{(*)}$ threshold, they are stable against the strong interaction.
- Negative parity $cc\bar{b}\bar{b}$ tetraquarks $0^-/1^- \rightarrow B_c B_c^*, B_c^* B_c^*$ in P-wave.

Wei Chen

- We have calculated the mass spectra for the ccccc, bbbb, bcbc and ccbb tetraquark states, and have studied their decay properties.
- Our results suggest that the broad structure around 6.2–6.8 GeV can be interpreted as an S-wave $cc\bar{c}\bar{c}$ tetraquark state with $J^{PC} = 0^{++}$ or 2^{++} , while the narrow structure X(6900) to be a P-wave one with $J^{PC} = 0^{-+}$ or 1^{-+} .
- We propose to confirm them in the di- η_c , $J/\psi h_c$, $\eta_c \chi_{c0}$ and $\eta_c \chi_{c1}$ channels. These channels are helpful to determine their quantum numbers.
- The S-wave positive parity $bc\bar{b}\bar{c}$ tetraquarks lie below the two-meson thresholds, they can decay into $b\bar{b}/c\bar{c}$ + light meson final states.
- The S-wave positive parity $cc\overline{b}\overline{b}$ tetraquarks lie below the $B_c^{(*)}B_c^{(*)}$ threshold, they are expected to be very stable and narrow.

Thank you for your attention!