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• heavy-light quark systems 

‣ light quark 

‣ chiral interactions with Goldstone bosons 

‣ SU(3) Chiral perturbation theory 

‣ heavy quark symmetry

‣ the mass splitting between heavy-quark spin partners 

‣ the energy difference from light-quark content in  and  

‣ heavy-quark effective theory

‣ combining different features of low-energy QCD

Φ (π, K, η)

∼ O(1/mQ)

B D
∼ O(1/mQ)
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• heavy-light meson spectrum 

‣ discovery of  excitation  [BaBar 2003]

‣  MeV lower than quark model [Godfrey,Isgur 1985]

‣ its heavy-quark spin partner  (  MeV) than QM

‣ they are right below  thresholds

‣ molecular states due to chiral dynamics ?

‣ dynamically generated from LO SU(3) chiral Lagrangian [Lutz et 
al 2003, Guo et al 2006]

‣ lattice scatterings involving  interpolators

‣ [Mohler et al 2013, Lang et al 2014]

‣ [HSC 2020]

0+ D*s0(2317)

∼ 150

Ds1(2460) −70

D(*)K

D(*)K
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• the light-flavor anti-triplet partner of ?

‣  broad resonance  [Belle 2004]?

• lattice results on  scattering [HSC 2016, 2021]

‣ at  MeV, a bound state  GeV

‣ at  MeV, a resonance  GeV

‣ physical pion mass?

D*s0(2317)

(I, S) = (1/2,0) D*0 (2400)

πD

mπ ∼ 390 ∼ 2.28

mπ ∼ 220 ∼ 2.2
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Figure 8. A comparison between the finite-volume spectrum in the [000]A+
1 irrep (black points)

and the spectrum coming from the parametrisation in eq. (3.4) (orange points). The red, green
and blue curves show the location of non-interacting Dπ, Dη and DsK̄ energies respectively, while
the grey dotted line shows the threshold for the lowest channel for which we have not included
operators in the variational procedure, namely D⋆ππ.
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Figure 9. The upper (lower) left panel shows the S-wave phase shifts (inelasticities) for the Dπ
(red), Dη (green) and DsK̄ (blue) channels, determined from the parametrisation in eq. (3.4). The
upper (lower) right panel shows the same phase shifts (inelasticities) where the size of the bands
incorporates all parametrisations shown in table 11 with χ2/Ndof < 1.9. The black points between
the upper and lower panels show the location of the finite-volume energy levels used to constrain
the parametrisations.

The upper (lower) left panel of figure 10 shows ρiρj |tij |2 for i = j (i ̸= j) determined

from the parametrisation in eq. (3.4); this quantity is proportional to the cross section for

scattering of channel i→ i (i→ j). We see that just above Dπ threshold, as in the elastic

case, the unitarity bound is almost saturated for Dπ → Dπ.
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Figure 6. As Fig. 5, but for the moving frame A1 irreps.
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Figure 7. Phase shift of the S-wave (red) and P -wave (blue) D⇡ amplitudes. The inner line
corresponds to the reference parameterisation. The inner dark error band represents the statistical
error from the �

2-minimisation while the outer light error band additionally includes uncertainties
from varying the input hadron masses and anisotropy within 1�.

We plot this amplitude as atk cot � as a function of a2tk
2 compared to the reference ampli-

tude Eq. 4.9 in Fig. 8. This shows the subthreshold constraint from [000]A+

1
, [100]A1 and

– 17 –

 MeVmπ ∼ 390  MeVmπ ∼ 220

[HSC 2016] [HSC 2021]
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Figure 10. The left panel shows the reference scattering amplitude at m⇡ = 239 MeV (red)
and 391 MeV (blue) plotted as ⇢

2
|t|

2 with the energies that were used to constrain them shown
below. The bold square points are from [000]A+

1 , the other points are from moving frame irreps.
The inner bands show the statistical uncertainty from the �

2 minimisation. The outer band for
m⇡ = 239 MeV includes variation over mass, anisotropy and parameterisations. The outer band
for m⇡ = 391 MeV includes variation over only mass and anisotropy; Ref. [26] found only a small
e↵ect from varying the parameterisation for this elastic system with a near-threshold bound state.
The upper right panel shows the pole positions including the additional uncertainty found from the
variation over parameterisation, which is significant for m⇡ = 239 MeV. The pole at the lower pion
mass is a resonance found on the unphysical sheet, and at the higher pion mass is a bound state
found on the physical sheet. The lower right panel shows the magnitudes of pole couplings to the
D⇡ channel.

We also compare with studies of DK scattering at the same pion masses in the context of

SU(3) flavour symmetry.

6.1 Light quark mass dependence

In Ref. [26], D⇡ scattering was studied on three volumes with a light quark mass corre-

sponding to m⇡ = 391 MeV. A near-threshold bound state was found in S-wave with a

strong coupling to the D⇡ channel, that influenced a broad energy region. The reference

amplitude from that work6, updated with an improved estimate of the D-meson mass from

Ref. [29], results in

6Eq. 3.3 of Ref. [26].
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•  coupled-channel dynamics with chiral interaction 

‣ two poles from LO chiral interaction between D-ground states ( ,) 
and Goldstone bosons [Lutz et al 2003]

‣ at  GeV [anti-triplet] (broad) and  GeV [sextet] (narrow)

‣ the experimental data can be accommodated into the two-pole 
description [Du et al 2017]

‣ how about the effects of higher-order chiral interaction?

(I, S) = (1/2,0)

JP = 0−, 1−

ℒkin = ∂μH∂μH̄−(M̄ −
3
4

Δ)
2

H H̄ −∂μHμα∂νH̄να+
1
2 (M̄ +

1
4

Δ)
2
Hμα H̄μα

+
1

8f 2 (∂μH[Φ, ∂μΦ]H̄−∂μHμα[Φ, ∂νΦ]H̄να+h . c . )
∼ 2.12 ∼ 2.43

5



• chiral Lagrangian at NLO

‣ chiral symmetry breaking 

 

            with 

‣ 4 LECs 

‣ chiral symmetry preserving 

‣ 8 more LECs                                                       4 LECs

• fit to lattice  scattering lengths at unphysical  [Liu et al 2012, 
Geng et al 2014]

∼ mu,d,s

ℒχ = −(4 c0 − 2 c1) H H̄ trχ+ − 2 c1 H χ+ H̄ + (2 c̃0 − c̃1) Hμν H̄μν trχ+ + c̃1 Hμν χ+ H̄μν

χ+ = diag(m, m, ms) + O(Φ)

∼ ∂2Φ

D − Φ mπ

6

heavy-quark spin symmetry
Fit to lattice data L. Liu, Orginos, FKG, Hanhart, Meißner, PRD86(2013)014508

• Fit to lattice data on scattering lengths in 5 simple channels:
DK̄(I = 1, I = 0), DsK, D⇡(I = 3/2), Ds⇡: no disconnected contribution
5 parameters: h2, h3, h4, h5 and a(µ)
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• Prediction: pole in the (S, I) = (1, 0) ch.: 2315+18
�28 MeV. DK dominant (' 70%)

Exp.: MD
⇤
s0(2317)

= (2317.7± 0.6) MeV PDG2017

Feng-Kun Guo (ITP) Positive-parity heavy mesons 13.03.2018 9 / 18

[Liu et al 2012]



• the universality of LECs

             

‣ Fit to lattice data of -meson masses and scattering observables     
— simultaneously

‣ D-ground state masses at various unphysical quark masses

‣ 64 data points on ensembles from 5 lattice collaborations

D

7

NLO 
Lagrangian

D(*)
(s)

π, K, η

[XYG, Heo, Lutz 2018]



• scattering informations 

‣ s-channel unitarity guaranteed by resummation

• scattering lengths from Liu et al. on unphysical pion masses

• ,  phase shifts from HSC on  MeVπD ηD mπ ∼ 390

8

• higher order chiral interaction involved in the D-
meson mass chiral extrapolations


• S-wave scattering (JP=0+)


• the s-channel unitarity of the T-matrix is 
implemented according to

Coupled-channel scattering between D and Goldstone bosons

‣   

‣      bubble-loop: involves a subtraction scale  

‣      matching scale: is set such that at the unitarized T-matrix matches the 
ChPT result at the scale such that the crossing symmetry is satisfied 

‣       is chosen between s- and u-channel cuts 

‣

The chiral Lagrangian for charmed mesons

Chiral Lagrangian at next-to-leading order

Previous estimates for NLO low-energy constants:
– from large Nc and ⇡D invariant mass distribution from Belle

[NPA813(2008)14]

– based on elastic scattering lengths from lattice [PRD87(2013)014508]

Fit to D-meson masses and scattering
observables from lattice

Xiao-Yu Guo Lattice 18, East Lansing July 27, 2018 4 / 15

[Lutz,Kolomeitsev: NPA700(2002)193]

TJP= 0+
s−wave = ∫ dcos θ

2 T(s, t) P0(cos θ)

T = (1 − V J)−1V

= +T TVV J

J μ

μ

E.E. Kolomeitsev, M.F.M. Lutz / Physics Letters B 582 (2004) 39–48 41

Table 1
The definition of coupled-channel states with (I, S)
( 1
2 ,+2) (0,+1) (1,+1) ( 1

2 ,0
)

(DsK)

(

( 1√
2
Dt iσ2K

)

(Dsη)

) (

(Dsπ)
( 1√

2
Dt iσ2σK

)

)

⎛

⎜

⎝

( 1√
3
π · σD

)

(ηD)

(Dsiσ2K̄
t )

⎞

⎟

⎠

( 3
2 ,0

)

(0,−1) (1,−1)
(π · T D)

( 1√
2
K̄D

) ( 1√
2
K̄σD

)

ness (S) quantum numbers,

(I, S) =
((

1
2
,+2

)

, (0,+1), (1,+1),
(

1
2
,0
)

,

(3)
(

3
2
,0
)

, (0,−1), (1,−1)
)

.

In Table 1 the channels that contribute in a given sec-
tor (I, S) are listed. Heavy–light meson resonances
with quantum numbers JP = 0+ and JP = 1+ man-
ifest themselves as poles in the s-wave scattering am-
plitudes,M(I,S)

J P (
√

s ), which in the χ -BS(3) approach
[1,19] take the simple form

M
(I,S)

J P (
√

s )

(4)= [

1−V (I,S)(
√

s )J
(I,S)

J P (
√

s )
]−1

V (I,S)(
√

s ).

The effective interaction kernel V (I,S)(
√

s ) in (4)
is determined by the leading order chiral SU(3)
Lagrangian (1),

V (I,S)(
√

s ) = C(I,S)

8f 2

(

3s −M2 −M̄2 −m2 − m̄2

(5)

− M2 −m2

s

(

M̄2 − m̄2)
)

,

where (m,M) and (m̄, M̄) are the masses of initial
and final mesons. We use capital M for the masses of
heavy–light mesons and small m for the masses of the
Goldstone bosons. The matrix of coefficients C(I,S)

that characterize the interaction strength in a given
channel is given in Table 2. The s-wave interaction
kernels are identical for the two scattering problems
considered here.
In contrast the loop functions, diagonal in the

coupled-channel space, depend on whether to scatter

Goldstone bosons off pseudo-scalar or vector heavy–
light mesons,

J0+(
√

s ) = I (
√

s ) − I
(

µ
(I,S)
0+

)

,

J1+(
√

s ) =
(

1+ p2cm
3M2

)

(

I (
√

s ) − I
(

µ
(I,S)
1+

))

,

(6)

I (
√

s ) = 1
16π2

(

pcm√
s

(

ln
(

1− s −2pcm
√

s

m2 + M2

)

− ln
(

1− s + 2pcm
√

s

m2 + M2

))

+
(

1
2

m2 + M2

m2 −M2 − m2 −M2

2s

)

× ln
(

m2

M2

)

+ 1
)

+ I (0),

where
√

s =
√

M2 + p2cm +
√

m2 + p2cm. Note how-
ever that the two loop functions in (6) differ by a term
suppressed with 1/M2 only. A crucial ingredient of
the χ -BS(3) scheme is its approximate crossing sym-
metry guaranteed by a proper choice of the subtrac-
tion scale µ

(I,S)

J P . Referring to the detailed discussions
in [1,19–21] we obtain

µ
(I,0)
0+ = MD(1867), µ

(I,±1)
0+ = MDs(1969),

µ
(I,2)
0+ = MD(1867),

µ
(I,0)
1+ = MD(2008), µ

(I,±1)
1+ = MDs(2110),

(7)µ
(I,2)
1+ = MD(2008).

With (4)–(7) the brief exposition of the χ -BS(3)
approach as applied to heavy–light meson resonances
is completed.
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μ

[Kolomeitsev,Lutz: PLB582(2004)39]

ℑ[TJP= 0+
s−wave]−1

ii
= − pcm

8π s

!21

[XYG, Heo, Lutz 2018]



• the effects of NLO chiral interactions: 

‣ confirm the two poles in the  scattering channel

‣ w/o  phase shift information on lattice ( MeV)

 (anti-triplet),  (sextet) [GeV]

‣ w/  phase shift information on lattice ( MeV)

 (anti-triplet),  (sextet) [GeV]

πD

ηD mπ ∼ 390

spole = 2.12(1) − 0.16(3)i 2.46(1) − 0.10(6)i

ηD mπ ∼ 390

spole = 2.08(1) − 0.20(4)i 2.46(5) − 0.10(1)i

9

‣ predicted  phase shift at 
 MeV,  

amazingly agree with recent 
HSC result [HSC 2021]

πD
mπ ≃ 220 lattice 2021

XYG et al 2018

[XYG, Heo, Lutz 2018]

 thr.  
( MeV)

ηD
mπ ≃ 220



• the open-beauty partner ?

‣ where is the open-beauty partner of  ?

‣ LO chiral interaction:  GeV [Lutz et al 2003, Guo et al 
2003]

‣ NLO estimations:  GeV [Geng et al 2014, Du et al 
2018]

‣ lattice out of  scattering:  GeV [Lang et al 2015]

‣ no experimental evidence yet

‣ where is its anti-triplet partner in  scattering channel?

‣ could there be resonance at    channel   
X(5568) (?)

• what can we learn from our comprehensive chiral NLO study in the 
open-charm sector ?

D*s0(2317)

M ∼ (5.64 − 5.73)

M ∼ (5.72 − 5.73)

BK M ∼ 5.71

πB

πBs (I, S) = (1,1) →

10
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3

⇧(2),0
H

⇧(2),1
H

Hu/d 2B0(2m+ms) 2B0m

Hs 2B0(2m+ms) 2B0ms

TABLE I: The chiral structure of the NLO chira-correction
to the B-meson masses (5).

nations of light quark masses. Their explicit expressions
are listed in Tab.I. The LECs ci and c̃i depend on the
heavy-quark mass mQ.

We perform heavy-quark expansion to connect the pa-
rameters ci and c̃i in the bottom sector with the charm
sector. It is well known that those parameters scale as
proportional to the heavy-quark mass mQ ⇠ M̄ in the
heavy quark limit. We factor out the heavy-quark inde-
pendent part of them, called Ci. Higher order corrections
account for the heavy-quark symmetry breaking e↵ects.
At order 1/M̄ , the heavy-quark symmetry breaking ef-
fects enter. They consist of an overall shift to Ci and
a hyperfine splitting between the ci and c̃i [30, 31]. We
introduce free parameters i and �i responsible for these
two kinds of e↵ects, and arrive at a heavy-quark decom-
posed form of c0,1 and c̃0,1

ci(mQ) = M̄(mQ)

 
Ci +

i

M̄(mQ)
� 3

4

�i(mQ)

M̄(mQ)

!
,

c̃i(mQ) = M̄(mQ)

 
Ci +

i

M̄(mQ)
+

1

4

�i(mQ)

M̄(mQ)

!
,

with i = 0, 1 . (6)

The LECs �i depend on mQ, and there scaling behavior
can be determined by matching to HQET. We will dis-
cuss about the matching in the next section. The rest
4 expansion parameters Ci, i should in principle also
depend on mQ, but they indeed do not, as we will see
by matching to HQET. The LECs in the charm sector

c(c)
i

and c̃(c)
i

are fitted in four sets in Ref.[11]. By citing
those values, Ci can be determined up to an unknown
i-dependence

Ci =
1

4M̄ (c)

⇣
c(c)
i

+ 3 c̃(c)
i

� 4i

⌘
. (7)

Here we used an abbreviation for parameter X as a func-
tion ofmQ: X(Q) ⌘ X(mQ). The value of �i atmQ = mc

can be easily derived as

�(c)
i

=
�
c̃(c)
i

� c(c)
i

�
(8)

At one loop level, the higher order chiral corrections
are composed of bubble and tadpole contributions and
their corresponding counter-terms

⇧HO
H

= ⇧bubble
H

+⇧tadpole
H

+⇧CT
H

(9)

They involve more LECs as referred to our previous
works [11, 12]. Those parameters also depend on heavy-
quark masses. In this work, we only keep the leading
order dependence, which implies the following relations,

g(b)
P

= g̃(b)
P

= g(c)
P

c(b)
i

=
M̄ (b)

M̄ (c)
c(c)
i

, c̃i =
M̄ (b)

M̄ (c)
c(c)
i

, i = 2, . . . 5 ,

g(b)
i

= g̃(b)
i

=
M̄ (b)

M̄ (c)
g(c)
i

, i = 1, 2, 3 . (10)

Among them, the 8 parameters from NLO chiral-
symmetry preserving interactions, c2�5 and c̃2�5, con-
tribute to tadpole corrections to B and B⇤ masses. The
gP and g̃P are from three-point interactions, which con-
tribute to the bubble-loop corrections to the B and B⇤

meson masses. The gi’s and g̃i’s are from the O(Q3)
interactions exclusively contributing to B and B⇤ scat-
terings o↵ Goldstone bosons. We should notice that the
definitions of gi, g̃i are slightly di↵erent between the two
previous works [11, 12]. The above scaling behavior fol-
lows the definition in Ref. [12]. The values of these pa-
rameters in the charm sector have been well determined
from the four fits in Ref.[11] by fitting to the lattice data.

III. MATCHING THE CHIRAL LAGRANGIAN
WITH HQET AT O(1/mQ)

Now we try to determine the LECs involved in the
heavy-quark expansion of c0,1 and c̃0,1 (6) by matching
to HQET. According to HQET, the heavy-meson mass
can be written as [32]

MH(mQ) =

8
>>><

>>>:

mQ + ⇤̄(H) +
µ2
⇡(H)

2mQ

�
µ2
G(H)

2mQ

, H 2 {B,Bs}.

mQ + ⇤̄(H) +
µ2
⇡(H)

2mQ

+
µ2
G(H)

6mQ

, H 2 {B⇤, B⇤
s
}.

(11)

The quantities ⇤̄ and µ2
⇡
, µ2

G
originate from low-energy

e↵ects of QCD and therefore depend on light-quark
masses. We hence explicitly indicated the flavor index

• projection of LECs in b-sector from c-sector   heavy quark scaling behavior

‣ the same Lagrangian describes D and B meson chiral interaction

‣  NLO chiral correction to heavy-light meson ground-state masses

‣

‣ LO scaling

‣
    

‣ heavy-quark symmetry violation leads to

‣

‣ from high-energy physics  matching to heavy-quark effective theory

→

ℒχ = −(4 c0−2 c1) H H̄ trχ+ − 2 c1 H χ+ H̄ + (2 c̃0 − c̃1) Hμν H̄μν trχ++c̃1 Hμν χ+ H̄μν

→

M2
H = {

(M̄ −
3
4

Δ)
2

+ (4 c0−2 c1) Π(2),0
H + 2 c1Π(2),1

H + loops, H ∈ [JP = 0−]

(M̄ +
1
4

Δ)
2

+ (4 c̃0−2 c̃1) Π(2),0
H + 2 c̃1Π(2),1

H + loops, H ∈ [JP = 1−]

ci(mQ) ∼ c̃i(mQ) ∼ M̄(Q) {
M̄(c) =

1
4 (MD + 3MD*)χ−limit

M̄(b) =
1
4 (MB + 3MB*)χ−limit

ci(mQ) = M̄(Q)(Ci +
ζi

M̄(Q)
−

3
4

η(Q)
i

M̄(Q) ),

c̃i(mQ) = M̄(Q)(Ci +
ζi

M̄(Q)
+

1
4

η(Q)
i

M̄(Q) )
→
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high energy μ ∼ mQ

low energy μ ≪ mQ

factorizability

Renormalization- 
group Equation

RG invairant Wilson coef.

Wilson coefficient 

Ccm(mQ, mQ)

matching
HQET

Loop corrections to 
chromomagnetic 
moment 

ChPT

pQCD

 dependence of  

LECs 

mQ
Δ, η0,1

Γcm

matching

Ccm(mQ, μ) = Ĉcm(mQ)K(μ)
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high energy μ ∼ mQ

low energy μ ≪ mQ

Renormalization- 
group Equation

RG invairant Wilson coef.

Wilson coefficient 

Ccm(mQ, mQ)

matching
HQET

Loop corrections to 
chromomagnetic 
moment 

pQCD

Γcm

Ccm(mQ, μ) = Ĉcm(mQ)K(μ)

• mass from HQET0−,1−

MH(mQ) = {
mQ + Λ̄(H) +

μ2
π(H)

2 mQ
−

μ2
G(H)

2 mQ
H ∈ [0−]

mQ + Λ̄(H) +
μ2

π(H)

2 mQ
+

μ2
G(H)

6 mQ
H ∈ [1−]

‣ light dof. energy 

‣ h.q. kinetic-energy moment 

Λ̄

μ2
π

-independentmQ

‣ chromomagnetic moment   depends 
on 

‣ assume factorizability 
 

‣ matching to perturbative QCD 

‣ at (1~2)-loop [Falk et al 1990, Neubert et 
al 1997, Grozin et al 1997]

‣ 3-loop [Grozin et al 2007]

‣ RG evolution 

μ2
G

mQ

μ2
G(mQ, mq) = Ĉcm(mQ) ̂μG(mq)

→
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A
m0u-i-k mQv+k-p

Fig. 3.3. Diagrams for the calculation of the heavy-quark—gluon vertex function in QCD. The background field is denoted
by A.

°mag = Z~~gO~= Z,~Zh(g/4rnQ)hvoa$G~hv. (3.71)

The aim is to calculate the short-distance coefficient which multiplies the renormalized operator in

= Lho(iD)2hv+Cmag(/L)hvoapG~hv, (3.72)
2rn0 4m0

which replaces the tree level expression in (2.27). C~5(~) can be obtained from a calculation of the
Green function of two heavy quarks and a background gluon field, to one-loop order in the full and
in the effective theory. The diagrams in QCD are shown in Fig. 3.3. The momentum assignments are
such that p is the outgoing momentum of the background field, and k and (k — p) are the residual
momenta of the heavy quarks. To order 1/rn0, it is sufficient to keep terms linear in k or p. The
external quarks can be taken on-shell, in which case v k = v p = 0. A subtlety which has to be taken
into account is that, according to (2.19), the QCD spinor UQ (PQ, s) is related to the spinor Uh (v, s)
of the effective theory by

uQ(PQ,s)=(l+~/2rnQ+...)uh(v,s), PQ=rnQv+k. (3.73)

In the matching calculation one has to use the same spinors in both theories. We thus define a vertex
function r’~by writing the amplitude as i/.~gA~,.a(p) UhI’~TaUh,so that at tree level in QCD

r~0=(i+ ~ )7~(1+—~--)+...=v~+ (2k—p)~+ ~ +~•~ (3.74)2m0 2m0 4rn0

Here the ellipses represent terms of higher order in k or p. and we have used that between the
heavy-quark spinors y’~can be replaced by v’

t’.
The, contributions to the vertex function arising at one-loop order are shown in Fig. 3.3. The

last diagram involves the nonabelian three—gluon vertex. Its infrared divergence cannot be regulated
by the introduction of a gluon mass. Following Eichten and Hill, we present the calculation using
dimensonal regularization for both the ultraviolet and the infrared singularities [32]. One finds that
in the MS scheme the one-loop contribution to the QCD vertex function is

[ p~]3a
= — ~‘ -~—~[ln(rn

0/~)— ~] + (3.75)

[Neubert 1994]

R =
Ĉcm(mb)
Ĉcm(mc)

≃ 0.80(4)
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3

⇧(2),0
H

⇧(2),1
H

Hu/d 2B0(2m+ms) 2B0m

Hs 2B0(2m+ms) 2B0ms

TABLE I: The chiral structure of the NLO chira-correction
to the B-meson masses (5).

nations of light quark masses. Their explicit expressions
are listed in Tab.I. The LECs ci and c̃i depend on the
heavy-quark mass mQ.

We perform heavy-quark expansion to connect the pa-
rameters ci and c̃i in the bottom sector with the charm
sector. It is well known that those parameters scale as
proportional to the heavy-quark mass mQ ⇠ M̄ in the
heavy quark limit. We factor out the heavy-quark inde-
pendent part of them, called Ci. Higher order corrections
account for the heavy-quark symmetry breaking e↵ects.
At order 1/M̄ , the heavy-quark symmetry breaking ef-
fects enter. They consist of an overall shift to Ci and
a hyperfine splitting between the ci and c̃i [30, 31]. We
introduce free parameters i and �i responsible for these
two kinds of e↵ects, and arrive at a heavy-quark decom-
posed form of c0,1 and c̃0,1

ci(mQ) = M̄(mQ)

 
Ci +

i

M̄(mQ)
� 3

4

�i(mQ)

M̄(mQ)

!
,

c̃i(mQ) = M̄(mQ)

 
Ci +

i

M̄(mQ)
+

1

4

�i(mQ)

M̄(mQ)

!
,

with i = 0, 1 . (6)

The LECs �i depend on mQ, and there scaling behavior
can be determined by matching to HQET. We will dis-
cuss about the matching in the next section. The rest
4 expansion parameters Ci, i should in principle also
depend on mQ, but they indeed do not, as we will see
by matching to HQET. The LECs in the charm sector

c(c)
i

and c̃(c)
i

are fitted in four sets in Ref.[11]. By citing
those values, Ci can be determined up to an unknown
i-dependence

Ci =
1

4M̄ (c)

⇣
c(c)
i

+ 3 c̃(c)
i

� 4i

⌘
. (7)

Here we used an abbreviation for parameter X as a func-
tion ofmQ: X(Q) ⌘ X(mQ). The value of �i atmQ = mc

can be easily derived as

�(c)
i

=
�
c̃(c)
i

� c(c)
i

�
(8)

At one loop level, the higher order chiral corrections
are composed of bubble and tadpole contributions and
their corresponding counter-terms

⇧HO
H

= ⇧bubble
H

+⇧tadpole
H

+⇧CT
H

(9)

They involve more LECs as referred to our previous
works [11, 12]. Those parameters also depend on heavy-
quark masses. In this work, we only keep the leading
order dependence, which implies the following relations,

g(b)
P

= g̃(b)
P

= g(c)
P

c(b)
i

=
M̄ (b)

M̄ (c)
c(c)
i

, c̃i =
M̄ (b)

M̄ (c)
c(c)
i

, i = 2, . . . 5 ,

g(b)
i

= g̃(b)
i

=
M̄ (b)

M̄ (c)
g(c)
i

, i = 1, 2, 3 . (10)

Among them, the 8 parameters from NLO chiral-
symmetry preserving interactions, c2�5 and c̃2�5, con-
tribute to tadpole corrections to B and B⇤ masses. The
gP and g̃P are from three-point interactions, which con-
tribute to the bubble-loop corrections to the B and B⇤

meson masses. The gi’s and g̃i’s are from the O(Q3)
interactions exclusively contributing to B and B⇤ scat-
terings o↵ Goldstone bosons. We should notice that the
definitions of gi, g̃i are slightly di↵erent between the two
previous works [11, 12]. The above scaling behavior fol-
lows the definition in Ref. [12]. The values of these pa-
rameters in the charm sector have been well determined
from the four fits in Ref.[11] by fitting to the lattice data.

III. MATCHING THE CHIRAL LAGRANGIAN
WITH HQET AT O(1/mQ)

Now we try to determine the LECs involved in the
heavy-quark expansion of c0,1 and c̃0,1 (6) by matching
to HQET. According to HQET, the heavy-meson mass
can be written as [32]

MH(mQ) =

8
>>><

>>>:

mQ + ⇤̄(H) +
µ2
⇡(H)

2mQ

�
µ2
G(H)

2mQ

, H 2 {B,Bs}.

mQ + ⇤̄(H) +
µ2
⇡(H)

2mQ

+
µ2
G(H)

6mQ

, H 2 {B⇤, B⇤
s
}.

(11)

The quantities ⇤̄ and µ2
⇡
, µ2

G
originate from low-energy

e↵ects of QCD and therefore depend on light-quark
masses. We hence explicitly indicated the flavor index

[XYG, Lutz, 2103.11323]

determined in charm sector

‣matching the ChPT with HQET  self-energy

‣ LO relation
 [Wise et al 1992, Brambilla et al 2017] 

           

‣ the chiral decomposition of heavy-quark expansion moments

‣   -independent;   

‣       

0−, 1−

M̄(Q) = (mQ + Λ̄ +
μ2

π

2mQ )
χ-limit

, Δ(Q) =
2 μ2

G

3M̄(Q)
χ-limit

Λ̄(H) = Λ̄
χ-limit

+ (2 C0 − C1) Π(2),0
H + C1 Π(2),1

H + …

μ2
π(H) = μ2

π
χ-limit

+ (4 ζ0 − 2 ζ1) Π(2),0
H + 2 ζ1 Π(2),1

H + …

̂μ2
G(H) = ̂μ2

G χ-limit
+

6η(Q)
0 − 3η(Q)

1

2 Ĉcm
Π(2),0

H +
3η(Q)

1

2 Ĉcm
Π(2),1

H + …

C0,1, ζ0,1 mQ Ci =
1

4M̄(c) (c(c)
i + 3 c̃(c)

i − 4 ζi),

M̄(b)Δ(b)

M̄(c)Δ(c)
=

η(b)
0,1

η(c)
0,1

=
Ĉcm(mb)
Ĉcm(mc)

≃ 0.80(4) η(c)
i = (c̃(c)

i − c(c)
i )



• the LECs determined in the charm sector are translated to the 
beauty sector

‣ 3 free parameters  fitted to 4 B-meson ground state 
masses 

‣ other parameters determined by the heavy-quark scaling behavior 
and the LECs in the charm sector

M̄(b), ζ0,1

4

masses. In turn such terms receive the explicit index (H),
that resolves the specifics of the light-quark content. The
⇤̄ is the contribution from light degrees of freedom, and
therefore mQ-independent[34]. The µ2

⇡
term accounts for

the kinetic energy of the heavy quark in the meson’s rest
frame. It is heavy-quark mass independent due to repa-
rameterization invariance [35]. Finally, the µ2

G
is a chro-

momagnetic moment which leads to a hyperfine splitting
between the 0� and 1� B-mesons. It depends on the
heavy-quark mass. We assume that µ2

G
can be factorized

as a product of the high-energy and low-energy contribu-
tions,

µ2
G
(mQ,mq) = Ĉcm(mQ) µ̂

2
G
(mq) , (14)

where the factor µ̂G(mq) accounts for low-energy contri-
butions. The light-quark mass is mq with q 2 {u, d, s}.
The high-energy contributions are incorporated in the
renormalization-group (RG) invariant Wilson coe�cient
Ĉcm(mQ)[36]. The RG evolution starts at a scale close
to the heavy-quark mass µ ⇠ mQ, where the value of the
Wilson coe�cient is determined by matching the chro-
momagnetic moment from HQET to the multi-loop cal-
culations from the QCD Lagrangian. For our purposes it
su�ces to know the ratio Ĉcm(mb)/Ĉcm(mc). This ratio
has been derived at the one-loop and two-loop level in
[37] and [38, 39] respectively. The averaged result is

R ⌘ Ĉcm(mb)

Ĉcm(mc)
' 0.80(4) , (15)

where the uncertainty is estimated by the di↵erence of
the one-loop and the two-loop results. In the latest cal-
culation, a poor convergence pattern has been claimed at
the three-loop level [40]. Therefore we refrain from using
the two-loop result here.

We can expand the components ⇤̄, µ2
⇡
and µ̂2

G
in pow-

ers of the light-quark masses around their chiral limit,
where the leading corrections linearly depend on the light
quark masses. By matching the mass formula (13) with
the chiral result (4), we can recover the relations between
the M̄,� and the heavy-quark moments [29, 32]. It is
emphasized, that the chiral structure of (4) restricts the
structure of the O(mq) corrections to the heavy-quark
expansion moments. From the matching we obtain that,
Ci and ⇣i are involved in the O(mq) corrections of ⇤̄ and
µ2
⇡
respectively. And they are indeed heavy-quark mass

independent. In addition ⌘i contributes to the O(mq)
corrections of µ2

G
, and its scaling behavior is proportional

to Ĉcm. We summarize,

M̄ (b)�(b)

M̄ (c)�(c)
=

⌘(b)
i

⌘(c)
i

= R . (16)

Using (16) with R ' 0.80 together with (9) we are left
with 3 unknown parameters M̄ (b) and ⇣0,1. The mQ in-
dependent parameters Ci follow from (8). All remaining
LEC in the beauty sector are implied with (11) and (12)

Fit 1 Fit 2 Fit 3 Fit 4

M̄ (b)[GeV] 5.3743 4.8540 5.3303 5.3666

⇣0 0.0921 �1.5072 �0.0839 0.0523

⇣1 0.1689 0.1233 0.1585 0.1678

C0[GeV�1] 0.0602 0.8777 0.1774 0.1145

C1[GeV�1] 0.2376 0.3916 0.3382 0.3445

⌘(b)
0 �0.0145 �0.0302 �0.0176 �0.0170

⌘(b)
1 �0.0238 0.0318 �0.0276 �0.0238

�(b)[GeV] 0.0562 0.0643 0.0563 0.0568

c(b)0 0.4262 2.7757 0.8750 0.6797

c̃(b)0 0.4117 2.7455 0.8574 0.6628

c(b)1 1.4637 2.0002 1.9820 2.0345

c̃(b)1 1.4399 2.0320 1.9544 2.0107

�2/N 0.94 0.10 0.89 0.92

TABLE I: The low-energy parameters in (7), corresponding
to Fits 1-4 in the charm sector [12]. The �2/N is the chi-
square per data point, with the number of data points N = 4
and an ad hoc systematic error estimate of 5 MeV.

in terms of their corresponding values in the charm sector
as listed in [12].
The three unknown parameters M̄ (b) and ⇣0,1 are de-

termined by a fit with our chiral mass formula to the em-
pirical values of the four B-meson ground-state masses.
Here we admit a residual systematic uncertainty of 5
MeV in the heavy-meson masses. Such a value was used
in our previous open-charm system studies [12]. It re-
flects the accuarcy level at which we expect our one-loop
chiral formula to hold. The results of M̄ (c), ⇣0,1 are shown
in Tab. I. In this table, we also show the parameters in-
volved in the expansion (7) together with the associated
LECs.
We briefly discuss our fit results. Consider first the sce-

narios of Fit 1, 3, 4. The masses of the B-meson ground
states can be reproduced within the systematic error of
5MeV. All of the 3 fits give modest heavy-quark correc-
tions to the leading order expectations of c0,1 and c̃0,1.
At leading order, c0,1 and c̃0,1 are about 2.5 times larger
at mQ = mb as compared to their values at mQ = mc.
For convenience we recall the ranges c0 ⇠ c̃0 ⇠ (0.2�0.3)
and c1 ⇠ c̃1 ⇠ (0.6� 0.9) at mQ = mc from [12].
Scenarios 3 and 4 show quite similar values for the

LEC. This is not the case for scenario 1. Here we re-
call a decisive distinction. Both Fit 1 and Fit 2 did
not consider QCD lattice data on the ⇡D s-wave scat-
tering process [41]. While Fit 1, nevertheless, appears
reasonably consistent with the ⇡D phase shift and in-
elasticity parameters as given in [41], this is not the case
for Fit 2. The key feature of Fit 3 and also Fit 4 is
their compatibilty with the lattice data on the ⌘D phase
shift. Such data play a crucial role in the determination
of the LEC. Based on this observation we would disfa-
vor scenarios 1 and 2. In this context it is amusing to
observe that Fit 2 should be rejected also based on an

15[XYG, Lutz, 2103.11323]



• poles in unphysical Riemann sheets in open-beauty coupled-
channel scattering amplitudes

‣ the open-beauty partners of , 

‣ poles in the  (coupled-channel) scatterings 

‣  scatterings 

‣ sextet component with a pole far from the physical region 
 GeV

‣ cannot be X(5568)

D*s0(2317) Ds1(2460)

πB(*) (I, S) = (1/2,0)

πBs, BK̄ (I, S) = (1,1)

∼ 5.80(3) − 0.14(8) i

16[XYG, Lutz, 2103.11323]

3

wo latt. �⌘D info. w/ latt. �⌘D info.

0+ 5.63(4) GeV 5.57(6) GeV

1+ 5.68(4) GeV 5.62(6) GeV

TABLE IV: Complex pole masses (in GeV) of the flavor anti-triplet states with J
P = 0+ and 1+. The results from Fits 1, 3, 4

as given by Tab.III are compared with the results from the Weinberg-Tomozawa interaction. The relevant Riemann sheets are
(�,+,+) and (+,+) for (I, S) = (1/2, 0) and (0, 1).

wo latt. �⌘D info. w/ latt. �⌘D info. wo latt. �⌘D info. w/ latt. �⌘D info.

0+ (GeV) 5.52(3)� 0.10(3)i 5.51(2)� 0.12(5)i 5.81(1)� 0.01(0)i 5.75(3)� 0.05(2)i

1+ (GeV) 5.57(2)� 0.10(3)i 5.56(2)� 0.12(5)i 5.86(1)� 0.02(0)i 5.80(3)� 0.06(2)i

TABLE V: Complex pole masses (in GeV) of the flavor anti-triplet states with J
P = 0+ and 1+. The results from Fits 1, 3, 4

as given by Tab.III are compared with the results from the Weinberg-Tomozawa interaction. The relevant Riemann sheets are
(�,+,+) and (+,+) for (I, S) = (1/2, 0) and (0, 1).
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anti-triplet sextet

previous works  
5.64~5.72 GeV

5.69~5.78 GeV
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• Summary

‣ the LECs of NLO open-charm SU(3) chiral Lagrangian are determined, 

‣ by fitting to the lattice data on D-meson ground state masses and scatterings between D-
Goldstone boson at various unphysical pion masses

‣ anti-triplet and sextet resonances in  open-charm scatterings

‣ rightly predicted the s-wave  phase shifts on  MeV, recently confirmed by lattice 
calculation

‣ project the LECs in the open-beauty sector

‣ by matching the NLO chiral formula to HQET for  heavy-light meson masses, the heavy-
quark scaling behavior of LECs determined by RG-invariant Wilson coefficient at 2-loop level

‣ the  correction to the heavy-quark expansion moments are determined by the 
corresponding Wilson coefficient and the lattice data in open-charm sector

‣ NLO effects of chiral interactions to open-beauty coupled-channel scatterings

‣ refined prediction to open-beauty partners of , : 5.59(8), 5.64(8) GeV

‣ anti-triplet and sextet resonances in s-wave  open-beauty scatterings 

‣ X(5568) cannot be explained as chiral excitation

0+, 1+

πD mπ ∼ 220

0−, 1−

O(mq)

D*s0(2317) Ds1(2460) M =

(I, S) = (1/2,0)
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