

Chiral effective Lagrangian for doubly charmed baryons and its application

Peng-Cheng Qiu

Hunan University

2nd Joint Theory/Experiment Workshop on Hadron and Heave Flavor Physics Lanzhou University March 25-28, 2021

Based on [P.-C. Qiu and De-Liang Yao, PRD103(2021)034006] [P.-C Qiu and De-Liang Yao, in progress]

< ∃ >

E

- 1 Introduction
- 2 Construction of chiral effective Lagrangian for doubly charmed baryons up to $O(p^4)$
- 3 One-loop analysis of the interactions between doubly charmed baryons and Goldstone bosons
- 4 Summary and Outlook

I. Introduction

Chiral effective Lagrangian for doubly charmed baryons and its application

Background

HNU

- In 2002, the SELEX Collaboration firstly reported that the \(\equiv_{cc}^+\) state was observed with measured mass 3519 \(\pm 2\) MeV [M. Mattson, PRL89(2002)112001].
- Other experimental groups: FOCUS [S. Ratti, Nucl.Phys.B, Proc.Suppl.115(2003)33], BABAR [B. Aubert, PRD74(2006)011103], Belle [R. Chistov, PRL97(2006)162001], LHCb [R. Aaij, JHEP12(2013)090].
- In 2017, the LHCb Collaboration announced the observation of the Ξ_{cc}^{++} , via the decay mode $\Lambda_c^+ K^- \pi^+ \pi^+$ [R. Aaij, PRL119(2017)112001].

• Reported value of mass(Ξ_{cc}^{++}): 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 MeV

Inspired by a theoretical work

[F.S.Yu, H.Y.Jiang, R.H.Li, C.D.Lü, W.Wang, and Z.X.Zhao, CPC42(2018)]

→ < Ξ >

イロト イポト イヨト イヨト

- Various theoretical studies on the properties of doubly charmed (DC) baryons:
 - Heavy quark effective theory, e.g. [J. Korner, M. Kramer, and D. Pirjol, Prog.Part.Nucl.Phys.33(1994)787]
 - Quark model, e.g. [D. Ebert, R. Faustov, V. Galkin, and A. Martynenko, PRD66(2002)014008][L.Y. Xiao, K.L. Wang, Q.F. Lu, X.H. Zhong, and S.L. Zhu, PRD96(2017)094005]
 - Effective potential method, e.g. [M. Karliner and J. L. Rosner, PRD90(2014)094007]
 - Lattice QCD, e.g. [L. Liu, et al, PRD81(2010)094505] [Z. S. Brown, et al, PRD90(2014)094507]
 - Light-front approach, e.g. [W. Wang, Z.-P. Xing, and J. Xu, EPJC77(2017)800][W. Wang, F.-S. Yu, and Z.-X. Zhao, EPJC77(2017)781]
 - Chiral effective field theory
 - etc.

Theoretical studies

柳南大 HUNAN UNIVERSI

HNU

- Chiral effective field theory (or Chiral perturbation theory)
 - Heavy baryon approach
 - Axial charge, etc. [H.S. Li, L. Meng, Z. W. Liu, and S. L. Zhu, PLB 777(2018)] [L.Y. Xiao, K.L. Wang, Q.f. Lu, X. H. Zhong, and S. L. Zhu, PRD 96(2017)]
 - Covariant formalism with EOMS scheme
 - Masses [Z.F. Sun and M.J. Vicente Vacas, PRD93(2016)]
 [D. L. Yao, PRD97(2018)]
 - Electromagnetic form factors, etc. [Hiller Blin, Z. F. Sun, and Vicente Vacas, PRD98(2018)] [R.X. Shi, Y. Xiao and L.S. Geng, PRD100(2019)]
 - The spectroscopy of the DC baryons [tree level and unitarization]
 [Z. H. Guo, PRD96(2017)074004] [M. J. Yan, et al, PRD98 (2018)]
- Our work:
 - Complete and minimal chiral effective Lagrangian up to O(p⁴)
 [P. C. Qiu and D. L. Yao, PRD103(2021)034006]
 - Scattering lengths at one-loop level → DC baryon spectrum [P. C. Qiu and D. L. Yao, work in progress]

II. Construction of the effective Lagrangian

Chiral effective Lagrangian for doubly charmed baryons and its application

< 注→ 注

- b- -

Steps for the construction of Lagrangian:

- Expansion in terms of GB masses and external momenta
- Symmetry requirements: Lorentz, P, C, h.c., Chiral symmetry
- Properties of building blocks and Clifford algebra
- Linear relations for elimination

The underlying Lagrangian:

$$\mathscr{L} = \mathscr{L}_{\mathrm{QCD}}^{\mathsf{0}} + ar{q}\gamma^{\mu}(v_{\mu} + \gamma_{5}a_{\mu})q - ar{q}(s - i\gamma_{5}p)q$$

which is invariant under local $SU(3)_L \times SU(3)_R$ transformations. Meson field U:

$$U = u^2 = e^{\frac{i\Phi}{F_0}}$$

where

$$\Phi = \sum_{a=1}^{8} \Phi_{a} \lambda_{a} \equiv \begin{pmatrix} \pi^{0} + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^{0} \\ \sqrt{2}K^{-} & \sqrt{2}\overline{K}^{0} & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

which transforms as under chiral transformation

$$U \rightarrow V_R U V_L^+ \qquad V_R, V_L \in SU(3)$$

Baryon field ψ :

$$\psi = \begin{pmatrix} \Xi_{cc}^{++} \\ \Xi_{cc}^{+} \\ \Omega_{cc}^{+} \end{pmatrix}$$

It transforms as

$$\psi \rightarrow h(V_R, V_L, U)\psi$$

where the compensator $h(V_R, V_L, U)$ is defined by

$$h(V_R, V_L, U) = (\sqrt{V_R U V_L^{\dagger}})^{\dagger} V_R u$$

Ingredients:

$$u_{\mu} = i \{ u^{\dagger} (\partial_{\mu} - ir_{\mu}) u - u (\partial_{\mu} - il_{\mu}) u^{\dagger} \}$$

$$f_{\mu\nu}^{\pm} = u F_{\mu\nu}^{L} u^{\dagger} \pm u^{\dagger} F_{\mu\nu}^{R} u$$

$$\chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u$$

where

$$\chi = 2B_0(s + ip), \quad B_0 = -\langle 0|\bar{q}q|0\rangle / 3F^2$$
$$F_{\mu\nu}^R = \partial_\mu r_\nu - \partial_\nu r_\mu - i[r_\nu, r_\mu], \quad r_\mu = \upsilon_\mu + a_\mu$$
$$F_{\mu\nu}^L = \partial_\mu l_\nu - \partial_\nu l_\mu - i[l_\nu, l_\mu], \quad l_\mu = \upsilon_\mu - a_\mu$$

which transforms as

$$X \rightarrow h(V_R, V_L, U)Xh^{\dagger}(V_R, V_L, U)$$

under chiral transformation

• Covariant derivative D^{μ} :

$$egin{aligned} D_\mu &= \partial_\mu + \Gamma_\mu, \ \Gamma_\mu &= rac{1}{2} \{ u^\dagger (\partial_\mu - \textit{i} r_\mu) u + u (\partial_\mu - \textit{i} l_\mu) u^\dagger \} \end{aligned}$$

Any building block *X*:

$$[D_{\mu}, X]
ightarrow h[D_{\mu}, X] h^{\dagger}$$

The baryon field ψ :

$$D_{\mu}\psi \rightarrow hD_{\mu}\psi$$

Chiral effective Lagrangian for doubly charmed baryons and its application

문 문 문

< A > <

Transformation properties of building blocks

HNU

	Р	С	H.c.	р	с	h	Cdim
u_{μ}	$-u^{\mu}$	u_{μ}^{T}	u_{μ}	1	0	0	1
\overrightarrow{D}_{μ}	\overrightarrow{D}^{μ}	$\overleftarrow{D}_{\mu}^{T}$	\overleftarrow{D}_{μ}	0	0	0	1
χ_+	χ_+	χ^{T}_{+}	χ_+	0	0	0	2
χ_{-}	$-\chi_{-}$	χ_{-}^{T}	$-\chi_{-}$	1	0	1	2
$f_+^{\mu u}$	$f_{+\mu u}$	$-(f_+^{\mu u})^T$	$f_+^{\mu u}$	0	1	0	2
$f_{-}^{\mu u}$	$-f_{-\mu\nu}$	$(f_{-}^{\mu u})^T$	$f_{-}^{\mu u}$	1	0	0	2
$h^{\mu u}$	$-h_{\mu u}$	$(h^{\mu u})^T$	$h^{\mu u}$	1	0	0	2

The definition of *p*, *c* and *h*:

$$(\bar{\psi}X\psi)^{P} = (-1)^{P}(\bar{\psi}X\psi)$$
$$(\bar{\psi}X\psi)^{C} = (-1)^{c}(\bar{\psi}X\psi)$$
$$(\bar{\psi}X\psi)^{\dagger} = (-1)^{h}(\bar{\psi}X\psi)$$

=

Transformation properties of Clifford algebra ...

HNU

	р	с	h	Cdim
i	0	0	1	0
1	0	0	0	0
γ_5	1	0	1	1
γ_{μ}	0	1	0	0
$\gamma_5 \gamma_\mu$	1	0	0	0
$\sigma_{\mu u}$	0	1	0	0
$g_{\mu\nu}$	0	0	0	0
$\epsilon_{\mu u ho au}$	1	0	0	0
$\overrightarrow{D}_{\mu}\psi$	0	1	1	0

Chiral effective Lagrangian for doubly charmed baryons and its application

문 문 문

- Þ-

- Property of traces
- Schouten identity

$$\epsilon^{\mu\nu\lambda\tau}A^{\rho} + \epsilon^{\nu\lambda\tau\rho}A^{\mu} + \epsilon^{\lambda\tau\rho\mu}A^{\nu} + \epsilon^{\tau\rho\mu\nu}A^{\lambda} + \epsilon^{\rho\mu\nu\lambda}A^{\tau} = 0$$

Covariant derivatives and Bianchi identity

$$[D_{\mu}, [D_{\nu}, D_{\lambda}]] + [D_{\nu}, [D_{\lambda}, D_{\mu}]] + [D_{\lambda}, [D_{\mu}, D_{\nu}]] = 0$$

- Cayley-Hamilton relation
- Equations of motion

$$(i\not\!D-M_0+\frac{g_A}{2}\not\!\!/\gamma_5)\psi=0,\quad \bar\psi(i\overleftarrow{\not\!D}+M_0-\frac{g_A}{2}\not\!\!/\gamma_5)=0$$

• The relativistic Lagrangian we obtained:

$$\mathscr{L}_{M\psi} = \mathscr{L}_{M\psi}^{(1)} + \mathscr{L}_{M\psi}^{(2)} + \mathscr{L}_{M\psi}^{(3)} + \mathscr{L}_{M\psi}^{(4)} + \cdots$$

where

$$\begin{aligned} \mathscr{L}_{M\psi}^{(1)} &= \bar{\psi}(i\not{D} - M_{0})\psi + \frac{g_{A}}{2}\bar{\psi}\dot{\psi}\gamma_{5}\psi \\ \mathscr{L}_{M\psi}^{(2)} &= b_{1}\bar{\psi}\psi\langle\chi_{+}\rangle + b_{2}\bar{\psi}\tilde{\chi}_{+}\psi + b_{3}\bar{\psi}u^{2}\psi + b_{4}\bar{\psi}\psi\langle u^{2}\rangle \\ &+ b_{5}(\bar{\psi}\{u^{\mu}, u^{\nu}\}\{D_{\mu}, D_{\nu}\}\psi + H.c.) \\ &+ b_{6}(\bar{\psi}\{D_{\mu}, D_{\nu}\}\psi\langle u^{\mu}u^{\nu}\rangle + H.c.) \\ &+ ib_{7}\bar{\psi}[u^{\mu}, u^{\nu}]\sigma_{\mu\nu}\psi + b_{8}\bar{\psi}f_{+}^{\mu\nu}\sigma_{\mu\nu}\psi \\ \mathscr{L}_{M\psi}^{(3)} &= \sum_{i=1}^{32}c_{i}\bar{\psi}O_{i}^{(3)}\psi \qquad \mathscr{L}_{M\psi}^{(4)} = \sum_{i=1}^{218}d_{i}\bar{\psi}O_{i}^{(4)}\psi \end{aligned}$$

Chiral effective Lagrangian for doubly charmed baryons and its application

E

∃ ⊳

• The non-relativistic Lagrangian we obtained:

$$\mathscr{L}_{M\psi}=\mathscr{L}_{M\psi}^{(1)}+\mathscr{L}_{M\psi}^{(2)}+\mathscr{L}_{M\psi}^{(3)}+\mathscr{L}_{M\psi}^{(4)}+\cdots$$

where

$$\begin{split} \mathscr{L}_{M\psi}^{(1)} &= \bar{H}(iv \cdot D + g_A S \cdot u) H \\ \mathscr{L}_{M\psi}^{(2)} &= \bar{H}\{\mathcal{A}^{(2)} + \gamma_0 \mathcal{B}^{(1)\dagger} \gamma_0 \mathcal{C}^{(0)-1} \mathcal{B}^{(1)}\} H \\ \mathscr{L}_{M\psi}^{(3)} &= \bar{H}\{\mathcal{A}^{(3)} + \gamma_0 \mathcal{B}^{(1)\dagger} \gamma_0 \mathcal{C}^{(0)-1} \mathcal{B}^{(2)} + \gamma_0 \mathcal{B}^{(1)\dagger} \gamma_0 \mathcal{C}^{(1)-1} \mathcal{B}^{(1)} \\ &+ \gamma_0 \mathcal{B}^{(2)\dagger} \gamma_0 \mathcal{C}^{(0)-1} \mathcal{B}^{(1)}\} H \\ \mathscr{L}_{M\psi}^{(4)} &= \bar{H}\{\mathcal{A}^{(4)} + \gamma_0 \mathcal{B}^{(1)\dagger} \gamma_0 \mathcal{C}^{(0)-1} \mathcal{B}^{(3)} + \gamma_0 \mathcal{B}^{(1)\dagger} \gamma_0 \mathcal{C}^{(1)-1} \mathcal{B}^{(2)} \\ &+ \gamma_0 \mathcal{B}^{(1)\dagger} \gamma_0 \mathcal{C}^{(2)-1} \mathcal{B}^{(1)} + \gamma_0 \mathcal{B}^{(2)\dagger} \gamma_0 \mathcal{C}^{(0)-1} \mathcal{B}^{(2)} \\ &+ \gamma_0 \mathcal{B}^{(2)\dagger} \gamma_0 \mathcal{C}^{(1)-1} \mathcal{B}^{(1)} + \gamma_0 \mathcal{B}^{(3)\dagger} \gamma_0 \mathcal{C}^{(0)-1} \mathcal{B}^{(1)}\} H \end{split}$$

E

∃ ⊳

TABLE V. Terms in the $O(a^4)$ relativistic and nonrelativistic Lagrangians

HUNAN UNIVERSITY

HNU

Some explicit operators in our $O(p^3)$ and $O(p^4)$ Lagrangians

TABLE IV. Terms in the $O(q^3)$ relativistic and nonrelativistic Lagrangians

1	0 ⁽³⁾	$\hat{O}_{i}^{(3)}$	/	$O_i^{(4)}$	$\hat{O}_{i}^{(4)}$
1	$\{u_{\mu}, \{u^{\mu}, u^{\nu}\}\}\gamma_{5}\gamma_{\nu}$	$-2\{u_{\mu}, \{u^{\mu}, S \cdot u\}\}$	1	$\{u^{\mu}, \{\{u_{\mu}, u^{\nu}\}, u_{\nu}\}\}$	$\{u^{\mu}, \{\{u_{\mu}, u^{\nu}\}, u_{\nu}\}\}$
2	$[u_{\alpha}, [u^{\mu}, u^{\rho}]]\gamma_5\gamma_{\nu}$	$-2[u_{\mu}, [u^{\mu}, S \cdot u]]$	2	$\{u^{\mu}, [[u_{\mu}, u^{\nu}], u_{\nu}]\}$	$\{u^{\mu}, [[u_{\mu}, u^{*}], u_{\nu}]\}$
3	$u^{*}\gamma_{*}\gamma_{*}\langle u^{2}\rangle$	$-2S \cdot u(u^2)$	3	$[u^{\mu}, \{[u_{\mu}, u^{\mu}], u_{\mu}\}]$	$[H^{\mu}, \{[H_{\mu}, H^{\nu}], H_{\nu}\}]$
4	$u_{\mu}\gamma_{\eta}\gamma_{\mu}(u^{\mu}u^{\mu})$	$-2u_{\alpha}\langle u^{\mu}S \cdot u \rangle$	4	$(\{u^{\mu}, \{u_{\mu}, u^{\mu}\}\}u_{\nu})$ $([u^{\mu}, [u_{\mu}, u^{\mu}]]u_{\nu})$	$(\{u^{\mu}, \{M_{\mu}, u^{\mu}\}\} u_{\nu})$ $([u^{\mu}, [u^{\mu}, u^{\mu}]] u^{\mu})$
5	$\{u^{\mu}, \{u^{\mu}, u^{\mu}\}\}_{Y_{0}Y_{-}D_{-}} + H.c.$	$16m^2 \{S : \mu \ (p : \mu)^2\}\}$	6	$([m, [m_{\mu}, m]]m_{\nu})$	$([n^{\mu}, [n_{\mu}, n]] [n_{\nu})$
6	$u^{\mu}v_{ev} (u^{\nu}u^{\rho})D \rightarrow H c$	$8m^2S$, $u((n, u)^2)$	7	$\mu^{\mu}\mu, \langle \mu^2 \rangle$	$\mu^{2}(\mu^{2})$
7	$ir = \int [u^{\mu} u^{\mu}] u^{\mu} b^{\mu} d\mu$	in fint of whet	8	$u^{\mu}u^{\nu}\langle u, u, \rangle$	$u^{\mu}u^{\nu}(u, u)$
	in affait attain	is of (lat at lat)	9	$i\{u^{\mu}, \{u_{\mu}, [u^{\nu}, u^{2}]\}\}\sigma_{\mu i}$	$2\{u^{\mu}, \{u_{\mu}, [u^{\mu}, u^{l}]\}\}[S_{\mu}, S_{l}]$
8	re _{paper} (w. w. w.)	te _{ppr} o (ir , a jr)	10	$i[u^{\mu}, [u_{\mu}, [u^{\nu}, u^{2}]]]\sigma_{\nu\lambda}$	$2[u^{\mu}, [u_{\mu}, [u^{\nu}, u^{l}]]][S_{\mu}, S_{\lambda}]$
9	$le_{\mu\nu\delta\tau}$ { u^{μ} , { u^{μ} , { u^{μ} }} $\sigma^{\mu}D_{\rho}$ + H.c.	$=4ime_{\mu\nu\lambda\tau}\{u^{\mu}, \{u^{\nu}, v \cdot u\}\}[5^{\nu}, 5^{\nu}]$	11	$i[u^{\mu}, \{u_{\mu}, \{u^{\mu}, u^{i}\}\}]\sigma_{\mu i}$	$2[u^{\nu}, \{u_{\mu}, \{u^{\mu}, u^{i}\}\}][S_{\mu}, S_{\lambda}]$
10	$ie_{\mu\nu ix}u^{\mu}\sigma^{ix}(u^{\nu}u^{\rho})D_{\rho} + H.c.$	$-4ime_{\mu\nu\lambda\tau}u^{\mu}\langle u^{\nu}v \cdot u\rangle[S^{i}, S^{r}]$	12	$i[u^{\nu}, [u_{\mu}, [u^{\mu}, u^{i}]]]\sigma_{\nu i}$	$2[u^{\mu}, [u_{\mu}, [u^{\mu}, u^{i}]]][S_{\mu}, S_{\lambda}]$
11	$i[u_{\mu}, h^{\mu\nu}]\gamma_{\nu}$	$i[u_{\mu}, h^{\mu\nu}]v_{\nu}$	13	$i([u_{\mu}, u_{\nu}]u^2)\sigma^{\mu\nu}$	$2 S^{\mu}, S^{\nu}]\langle u_{\mu}, u_{\nu} u^{2}\rangle$
12	$i[u^{\mu}, h^{\mu\nu}]\gamma_{\mu}D_{a\mu} + H.c.$	$-4im^2[v \cdot u, h^{*\rho}]v_{\rho}v_{\rho}$	14	$i([u_{\mu}, \{u^{1}, u_{x}\}]u_{\lambda})\sigma^{\mu\nu}$	$2[S^{\mu}, S^{\nu}]\langle [u_{\mu}, \{u^{\lambda}, u_{\nu}\}]u_{\lambda}\rangle$
13	$i{u^{\mu}, h^{sp}}\sigma_{\mu\nu}D_{\rho} + H.c.$	$-4im\{u^{\mu}, h^{\mu\nu}\}[S_{\mu}, S_{\nu}]v_{\mu}$	15	$iu^{\mu}\langle u_{\mu}[u_{\nu}, u_{\lambda}]\rangle\sigma^{\nu\lambda}$	$2[S^{\nu}, S^{\lambda}]u^{\mu}\langle u_{\mu}[u_{\nu}, u_{\lambda}]\rangle$
14	$i\sigma_{av} \langle u^{\mu} h^{\mu\nu} \rangle D_{\rho} + H.c.$	$-4im[S_{\mu}, S_{\mu}]\langle u^{\mu}h^{\mu\nu}\rangle v_{\mu}$	16	$i[u^{\mu}, u^{\nu}]\langle u^{2} \rangle \sigma_{\mu\nu}$	$2[u^{\mu}, u^{\nu}][S_{\mu}, S_{\mu}]\langle u^{2}\rangle$
15	$\{\mu^{\mu}, \bar{\chi}_{\pm}\}\gamma_{5}\gamma_{\mu}$	$-2\{S \cdot \mu, \tilde{r}_{\perp}\}$	17	$i[u^{\mu}, u^{\epsilon}](u^{\epsilon}u_{\lambda})\sigma_{\mu\nu}$	$2[u^{\mu}, u^{\epsilon}][S_{\mu}, S_{\nu}]\langle u^{\mu}u_{\lambda}\rangle$
16	$\mu^{\mu}\gamma_{\mu}\gamma_{\nu}(\gamma_{\nu})$	$-2S \cdot \mu(\gamma, \gamma)$	18	$\{u^{\mu}, \{u_{\mu}, \{u^{\nu}, u^{\epsilon}\}\}\}D_{\mu\lambda} + H.c.$	$-8m^{c}\{u^{\mu}, \{u_{\mu}, (v \cdot u)^{c}\}\}$
17	y, y (µ ^µ ž.)	$-2(S \cdot u\tilde{x}_{-})$	19	$[u^{\mu}, [u_{\mu}, \{u^{\nu}, u^{\nu}\}]]D_{\nu\lambda} + H.c.$	$-8m^{-}[u^{\mu}, [u_{\mu}, (v \cdot u)^{+}]]$
18	135 µ (~ x+)	-2i[S, D &]	20	$\{u^{\mu}, \{u_{\mu}, \{u^{\mu}, u^{\mu}\}\}\}D_{\nu\lambda} + H.c.$	$-4m^{-}\{b \cdot u, \{u_{\mu}, \{u^{\mu}, b \cdot u\}\}\}$
10	(157 g)2+ (X = 1 (m m / [D8 m])	24/15 D = 1	22	$\{W, [W_{\mu}, [W', W]]\}D_{kk} + \Pi.c.$	$=-4m^{-}\{v \cdot u, [u_{\mu}, [u^{\mu}, v \cdot u]]\}$ $=4m^{2}((v - v, [v_{\mu}^{\mu}, v - v])v)$
20	$TST_{H} \setminus [D^{-1}, Z_{-1}]$	-21([5 · D,Z-])	23	$\langle [u_{\mu}, \{u, u_{\mu}\}] \mu_{\mu} \rangle D^{\mu} + H.c.$	$-4m (\{v, u, \{u, v, u\}\} \ u_{1})$ $-8m^{2}/(v, u)^{2}u^{2}$
20	$ Z - M^{2} T\mu$	$[\chi_{-}, v \cdot u]$	24	$u^{\mu}/u^{-\mu}D^{-\mu} + Hc$	$-4m^2n \cdot u(n \cdot un^2)$
21	$t[u_{\mu}, f_{\pm}]\gamma_5\gamma_{\nu}$	$-2t[u_{\mu}, f_{\pm}]S_{\mu}$	25	$u^{\lambda}(\{u, u, 3u\})D^{\mu\nu} + H.c.$	$-8m^2u^k((p \cdot u)^2u)$
22	$e_{\mu\nu\rho\tau} \{u^{\mu}, f^{\prime \rho \prime}_{+}\} \gamma^{\tau}$	$e_{\mu \nu \mu \tau} \{ u^{\mu}, f^{\nu r}_{+} \} v^{\tau}$	26	$u^2(u, u_1)D^{a1} + H.c.$	$-4m^2u^2((p \cdot u)^2)$
23	$e_{\mu\mu\rho\sigma}\gamma^{z} \langle u^{\mu}f^{e\rho}_{+} \rangle$	$e_{\mu\nu\rho\sigma}v^{\tau}\langle u^{\mu}f^{e\rho}_{+}\rangle$	27	$\{u^{\mu}, u^{\mu}\}\langle u^{2}\rangle D_{\mu\nu} + H.c.$	$-8m^{2}(v \cdot u)^{2}(u^{2})$
24	$\epsilon_{xydx}[u^{\mu}, f^{b\mu}_{+}]\sigma^{dx}D_{\mu} + H.c.$	$-4m\epsilon_{sple}[v \cdot u, f^{spl}_+][S^l, S^t]$	28	$\{u^{\mu}, u^{\mu}\}(u_{\mu}u_{\lambda})D_{\mu}^{\lambda} + H.c.$	$-4m^2 \{v \cdot u, u^e\} \langle u, v \cdot u \rangle$
25	$i[D_{\mu}, f_{+}^{\mu\nu}]D_{\nu} + H.c.$	$2m[D_{\mu}, f_{+}^{\mu\nu}]v_{\nu}$	29	$i\{u^{i}, \{u^{\mu}, [u^{\mu}, u^{\mu}]\}\}\hat{\sigma}_{\mu\nu}D_{i\rho} + H.c.$	$-8m^{2}\{v \cdot u, \{v \cdot u, [u^{\mu}, u^{\nu}]\}\}[S_{\mu}, S_{\nu}]$
26	$i[u_{\mu}, f_{-}^{\mu\nu}]\gamma_{\nu}$	$i[u_a, f^{pp}]v_b$	30	$i[u^{\lambda}, [u^{\rho}, [u^{\sigma}, u^{\rho}]]]\sigma_{\mu\nu}D_{\lambda\rho} + H.c.$	$-8m^2[v \cdot u, [v \cdot u, [u^{\mu}, u^{\nu}]]][S_{\mu}, S_{\nu}]$
27	$c_{max}\{u^{\mu}, f^{\mu\rho}_{-}\}\gamma_{3}\gamma^{3}$	$-2c_{mer}\{u^{\mu}, f_{-}^{\mu}\}S^{r}$	31	$i[u^{\mu}, \{u^{i}, \{u^{\rho}, u^{\rho}\}\}]\sigma_{\mu\nu}D_{i\rho} + H.c.$	$-8m^{2}[u^{\mu}, \{v \cdot u, \{v \cdot u, u^{\nu}\}\}][S_{\mu}, S_{\nu}]$
28	$e_{\mu\nu\sigma}\gamma_{e}\gamma^{e}(\mu^{\mu}f^{a\rho})$	$-2e_{aaa}S^{\dagger}(\mu^{\mu}f^{a\mu})$	32	$i[u^{\mu}, [u^{i}, [u^{o}, u^{o}]]]\sigma_{\mu\nu}D_{j\rho} + H.c.$	$-8m^2[u^{\mu}, [v \cdot u, [v \cdot u, u^{\nu}]]][S_{\mu}, S_{\nu}]$
29	$i\{u^{\mu}, D^{\mu}\}\sigma$, D , $+$ H c.	$-4im\{u^{\mu}, t^{\mu\rho}\}[S, S]n$	33	$i\langle \{[u_{\mu}, u_{i}], u_{i}\}u_{\mu}\rangle\sigma^{\mu\nu}D^{\prime\rho} + H.c.$	$-8m^2 \langle \{[u_\mu, u_\nu], v \cdot u\}v \cdot u \rangle [S^i, S^v]$
30	$i\sigma (u^{\mu} \partial^{\mu})D + Hc$	$-4im[S - S \ln (m^2\theta)]$	34	$i \langle [u_{\mu}, \{u_{\lambda}, u_{\nu}\}] u_{\mu} \rangle \sigma^{\mu\nu} D^{\mu\nu} + H.c.$	$-8m^2\langle [u_\mu, \{v \cdot u, u_\nu\}]v \cdot u\rangle [S^a, S^b]$
21	$D_{\mu\nu} = D_{\mu\nu}$	-25 [D (#1	35	$iu^{\mu}(u_{k}, u_{k} u_{\mu})\sigma^{ka}D_{\mu}^{\ \rho} + H.c.$	$-8m^*v \cdot u([u_k, u_k]v \cdot u)[S^c, S^c]$
20	$[P_{\mu}, J^{\perp}] / 3T_{\nu}$	$-2\sigma_{\mu}[D_{\mu}, f_{\nu}^{\mu}]$	36	$i[u^{\mu}, u^{\nu}]\langle u_{\lambda}u_{\rho}\rangle\sigma_{\mu\nu}D^{\mu\nu} + H.c.$	$-8m^{-}[u^{\nu}, u^{\nu}][S_{\mu}, S_{\nu}]((v \cdot u)^{2})$
34	$[D^{\mu}, J^{\mu}]\gamma_{5}\gamma_{\mu}D_{\nu\delta} + H.c.$	$-s_{\mu} v \cdot D, f_{-}^{\mu\nu} v_{\nu}$	37	$i[u^{\mu}, u^{\mu}]\langle u_{\lambda}u_{\mu}\rangle\sigma_{\mu}^{\nu}D_{\nu}^{\nu}$ + H.c.	$-\delta m^{*}[u^{*}, v \cdot u][S_{\mu}, S^{*}](u_{\lambda}v \cdot u)$

P. C. Qiu and D. L. Yao, Phys. Rev. D 103 (2021) 034006

Chiral effective Lagrangian for doubly charmed baryons and its application

Э

III. One-loop analysis of the interactions between DC baryons and GBs

Chiral effective Lagrangian for doubly charmed baryons and its application

E> E

🗑 湖南大

All relevent diagrams up to $O(p^3)$ for the processes of $\psi_{cc}\phi o \psi_{cc}\phi$

Tree diagrams:

Loop diagrams:

	(b)	(c) -	· · · / / · · · · · · · · · · · · · · ·
(e)	$\begin{array}{c} & & \\$		
		(<i>l</i>)	(m)
(i) / (n) - (n) - (i)	\/ →(o)		
	\downarrow	\rightarrow (\widetilde{u}) (\widetilde{u})	

Э

≣ ≥

Structure of scattering amplitudes

御南大學

HNU

The standard decomposition of scattering amplitude:

$$egin{aligned} T = & T_{Gell-Mann} \cdot T_{Dirac} \ &= & \chi^{\dagger}_{b\prime} \lambda^{i} \cdots \lambda^{j} \chi_{b} \cdot ar{u}(p') [A + rac{1}{2} (\slashed{q} + \slashed{q}') B] u(p) \end{aligned}$$

where $\chi_{b'}$, χ_b are the isospinors of the baryons.

- For *T_{Dirac}*: obtain *A*, *B* (different graphs)
- For *T_{Gell-Mann}*: the specific forms (different graphs) and values (different processes)

• Tree diagrams at $O(p^1)$

Explicit expressions of A, B amplitudes

	1a	1b	1c
$A^{(1)}$	0	$\frac{2g_A^2m}{F^2}$	$\frac{2g_A^2m}{F^2}$
$B^{(1)}$	$-\frac{2}{F^{2}}$	$\frac{g_A^2(3m^2+s)}{F^2(m^2-s)}$	$\frac{g_A^2(2M^2+5m^2-s-t)}{F^2(2M^2+m^2-s-t)}$

The general scattering processes can be classified into 7 independent channels with definite (S, I) $% \left(\left(S,1\right) \right) =0$

• $T_{Gell-Mann}$ classified by (S, I) quantum numbers:

TABLE I. The processes are classified by strangeness (S) and isospin (I).

(S,I)	Processes	$\mathcal{F}^{(1a)}$	$\mathcal{F}^{(1b)}$	$\mathcal{F}^{(1c)}$
$(-2, \frac{1}{2})$	$\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$	$\frac{1}{4}$	0	$\frac{1}{2}(\Xi_{cc})$
$(0, \frac{3}{2})$	$\Xi_{cc}\pi\to\Xi_{cc}\pi$	$\frac{1}{4}$	0	$\frac{1}{2}(\Xi_{cc})$
(-1, 1)	$\Omega_{cc}\pi\to\Omega_{cc}\pi$	0	0	0
	$\Xi_{cc}\bar{K} \to \Xi_{cc}\bar{K}$	0	0	0
	$\Omega_{cc}\pi\to \Xi_{cc}\bar{K}$	$\frac{1}{4}$	0	$\frac{1}{2}(\Xi_{cc})$
(-1, 0)	$\Xi_{cc}\bar{K} \to \Xi_{cc}\bar{K}$	$-\frac{1}{2}$	$1(\Omega_{cc})$	0
	$\Omega_{cc}\eta\to\Omega_{cc}\eta$	0	$\frac{1}{3}(\Omega_{cc})$	$\frac{1}{3}(\Omega_{cc})$
	$\Xi_{cc}\bar{K}\to\Omega_{cc}\eta$	$\frac{\sqrt{3}}{4}$	$-\sqrt{\frac{1}{3}}(\Omega_{cc})$	$\frac{1}{2\sqrt{3}}(\Xi_{cc})$
(1, 0)	$\Xi_{cc}K\to \Xi_{cc}K$	$-\frac{1}{4}$	0	$-\frac{1}{2}(\Omega_{cc})$
(1, 1)	$\Xi_{cc}K\to \Xi_{cc}K$	$\frac{1}{4}$	0	$\frac{1}{2}(\Omega_{cc})$
$(0, \frac{1}{2})$	$\Xi_{cc}\pi \to \Xi_{cc}\pi$	$-\frac{1}{2}$	$\frac{3}{4}(\Xi_{cc})$	$-\frac{1}{4}(\Xi_{cc})$
	$\Xi_{cc}\eta \to \Xi_{cc}\eta$	0	$\frac{1}{12}(\Xi_{cc})$	$\frac{1}{12}(\Xi_{cc})$
	$\Omega_{cc}K\to\Omega_{cc}K$	$-\frac{1}{4}$	$\frac{1}{2}(\Xi_{cc})$	0
	$\Xi_{cc}\pi \to \Xi_{cc}\eta$	0	$\frac{1}{4}(\Xi_{cc})$	$\frac{1}{4}(\Xi_{cc})$
	$\Xi_{cc}\pi\to\Omega_{cc}K$	$-\frac{\sqrt{3}}{4\sqrt{2}}$	$\frac{\sqrt{3}}{2\sqrt{2}}(\Xi_{cc})$	0
	$\Xi_{cc}\eta\to\Omega_{cc}K$	$-\frac{\sqrt{3}}{4\sqrt{2}}$	$\frac{1}{2\sqrt{6}}(\Xi_{cc})$	$-\frac{1}{\sqrt{6}}(\Omega_{cc})$

4 1 1 4 1 1

前南大学 UNAN UNIVERSITY

HNU

- The $O(p^2)$ amplitudes can be derived analogously:
 - Dirac part: $A^{(2)}$ and $B^{(2)}$;
 - Gell-Mann part: Classified by (S, I) in the table below.

(S,I)	Processes	$F_{1}^{(2)}$	$\mathcal{F}_2^{(2)}$	$\mathcal{F}_3^{(2)}$	$\mathcal{F}_4^{(2)}$	$\mathcal{F}_5^{(2)}$	$\mathcal{F}_6^{(2)}$	$\mathcal{F}_7^{(2)}$
$(-2, \frac{1}{2})$	$\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$	$2M_{\pi}^2 - 4M_K^2$	$-\frac{2}{3}(M_{\pi}^2 + M_K^2)$	2	4	$^{-8}$	$^{-8}$	-2
$(0, \frac{3}{2})$	$\Xi_{cc}\pi\to\Xi_{cc}\pi$	$-2M_{\pi}^{2}$	$-\frac{4}{3}M_{\pi}^{2}$	2	4	$^{-8}$	-8	$^{-2}$
(-1, 1)	$\Omega_{cc}\pi\to\Omega_{cc}\pi$	$-2M_{\pi}^{2}$	$\frac{2}{3}M_{\pi}^{2}$	0	4	0	$^{-8}$	0
	$\Xi_{cc}\bar{K} \to \Xi_{cc}\bar{K}$	$2M_{\pi}^2 - 4M_K^2$	$\frac{2}{3}(2M_k^2 - M_\pi^2)$	0	4	0	$^{-8}$	0
	$\Omega_{cc}\pi\to \Xi_{cc}\bar{K}$	0	$-M_{K}^{2} - M_{\pi}^{2}$	2	0	$^{-8}$	0	$^{-2}$
(-1, 0)	$\Xi_{cc}\bar{K} \to \Xi_{cc}\bar{K}$	$2M_{\pi}^2 - 4M_K^2$	$-\frac{2}{3}(4M_k^2 + M_\pi^2)$	4	4	-16	$^{-8}$	4
	$\Omega_{cc}\eta\to\Omega_{cc}\eta$	$\frac{2}{3}(M_{\pi}^2 - 4M_K^2)$	$\frac{22}{9}M_{\pi}^2 - \frac{40}{9}M_K^2$	$\frac{8}{3}$	4	$-\frac{32}{3}$	$^{-8}$	0
	$\Xi_{cc}\bar{K}\to\Omega_{cc}\eta$	0	$\sqrt{\frac{1}{3}}(5M_K^2 - 3M_\pi^2)$	$-\frac{2}{\sqrt{3}}$	0	$\frac{8}{\sqrt{3}}$	0	$-2\sqrt{3}$
(1, 0)	$\Xi_{cc}K\to \Xi_{cc}K$	$-2M_{\pi}^{2}$	$\frac{2}{3}M_{\pi}^2 + 2M_k^2$	$^{-2}$	4	8	$^{-8}$	2
(1, 1)	$\Xi_{cc}K\to \Xi_{cc}K$	$-2M_{\pi}^{2}$	$\frac{2}{3}M_{\pi}^2 - 2M_k^2$	2	4	$^{-8}$	$^{-8}$	$^{-2}$
$(0, \frac{1}{2})$	$\Xi_{cc}\pi\to\Xi_{cc}\pi$	$-2M_{\pi}^{2}$	$-\frac{4}{3}M_{\pi}^{2}$	2	4	$^{-8}$	$^{-8}$	4
	$\Xi_{cc}\eta \rightarrow \Xi_{cc}\eta$	$\frac{2}{3}(M_{\pi}^2 - 4M_K^2)$	$\frac{8}{9}(M_K^2 - M_{\pi}^2)$	23	4	$-\frac{8}{3}$	$^{-8}$	0
	$\Omega_{cc}K\to\Omega_{cc}K$	$-2M_{\pi}^{2}$	$\frac{2}{3}M_{\pi}^2 - 2M_K^2$	2	4	$^{-8}$	$^{-8}$	2
	$\Xi_{cc}\pi \rightarrow \Xi_{cc}\eta$	0	$-2M_{\pi}^{2}$	2	0	$^{-8}$	0	0
	$\Xi_{cc}\pi\to\Omega_{cc}K$	0	$-\sqrt{\frac{3}{2}(M_K^2 + M_{\pi}^2)}$	$\sqrt{6}$	0	$-4\sqrt{6}$	0	$\sqrt{6}$
	$\Xi_{cc}\eta\to\Omega_{cc}K$	0	$\sqrt{\tfrac{1}{6}}(5M_K^2 - 3M_\pi^2)$	$-\sqrt{\frac{2}{3}}$	0	$4\sqrt{\frac{2}{3}}$	0	$\sqrt{6}$

TABLE II. The processes are classified by strangeness (S) and isospin (I).

御南大學

HNU

- The calculation of $O(p^3)$ tree amplitudes is finished:
 - Dirac part: $A^{(3)}$ and $B^{(3)}$;
 - Gell-Mann part: Classified by (S, I) in the table below.

(S,I)	Processes	$\mathcal{F}_1^{(3)}$	$\mathcal{F}_2^{(3)}$	$\mathcal{F}_3^{(3)}$	$\mathcal{F}_4^{(3)}$	$F_{5}^{(3)}$	$F_{6}^{(3)}$
$(-2, \frac{1}{2})$	$\Omega_{cc}\bar{K}\to\Omega_{cc}\bar{K}$	-4	8	$^{-2}$	$^{-2}$	$-4M_{K}^{2}$	$-4M_{K}^{2}$
$(0, \frac{3}{2})$	$\Xi_{cc}\pi \to \Xi_{cc}\pi$	-4	8	$^{-2}$	$^{-2}$	$-4M_{\pi}^{2}$	$-4M_{\pi}^{2}$
(-1, 1)	$\Omega_{cc}\pi\to\Omega_{cc}\pi$	0	0	0	$^{-2}$	0	0
	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	0	0	0	-2	0	0
	$\Omega_{cc}\pi\to \Xi_{cc}\bar{K}$	-4	8	$^{-2}$	0	$-4M_{\pi}^{2}$	$-4M_{K}^{2}$
(-1, 0)	$\Xi_{cc}\bar{K}\to \Xi_{cc}\bar{K}$	8	-16	-4	-2	$8M_K^2$	$8M_K^2$
	$\Omega_{cc}\eta\to\Omega_{cc}\eta$	0	0	$-\frac{8}{3}$	-2	0	0
	$\Xi_{cc}\bar{K}\to\Omega_{cc}\eta$	$-4\sqrt{3}$	$8\sqrt{3}$	$\frac{2}{\sqrt{3}}$	0	$-4\sqrt{3}M_K^2$	$\frac{4}{\sqrt{3}}(M_{\pi}^2 - 4M_K^2)$
(1, 0)	$\Xi_{cc}K\to \Xi_{cc}K$	4	$^{-8}$	2	$^{-2}$	$4M_{K}^{2}$	$4M_{K}^{2}$
(1, 1)	$\Xi_{cc}K\to \Xi_{cc}K$	-4	8	$^{-2}$	$^{-2}$	$-4M_{K}^{2}$	$-4M_{K}^{2}$
$(0, \frac{1}{2})$	$\Xi_{cc}\pi \to \Xi_{cc}\pi$	8	-16	$^{-2}$	$^{-2}$	$8M_{\pi}^{2}$	$8M_{\pi}^{2}$
	$\Xi_{cc}\eta \rightarrow \Xi_{cc}\eta$	0	0	$-\frac{2}{3}$	-2	0	0
	$\Omega_{cc}K\to\Omega_{cc}K$	4	$^{-8}$	$^{-2}$	$^{-2}$	$4M_{K}^{2}$	$4M_{K}^{2}$
	$\Xi_{cc}\pi \rightarrow \Xi_{cc}\eta$	0	0	$^{-2}$	0	0	0
	$\Xi_{cc}\pi\to\Omega_{cc}K$	$2\sqrt{6}$	$-4\sqrt{6}$	$-\sqrt{6}$	0	$2\sqrt{6}M_{\pi}^{2}$	$2\sqrt{6}M_K^2$
	$\Xi_{cc}\eta\to\Omega_{cc}K$	$2\sqrt{6}$	$-4\sqrt{6}$	$\sqrt{\frac{2}{3}}$	0	$\frac{2\sqrt{2}}{\sqrt{3}}(4M_{K}^{2}-M_{\pi}^{2})$	$2\sqrt{6}M_K^2$

TABLE III. The processes are classified by strangeness (S) and isospin (I).

Loop diagrams in process

The calculation of loop diagrams of $O(p^3)$ is ongoing.

- UV divergences:
 - dimensional regularization
 - $\overline{\mathrm{MS}} 1$ subtraction

PCB terms:

- Due to internal baryon propagators appearing in the loop (the baryon mass is non-vanished in the chiral limit)
- We prefer the EOMS scheme to remedy this issue

雪

IV. Summary and Outlook

Chiral effective Lagrangian for doubly charmed baryons and its application

Ξ

《日》 《國》 《臣》 《臣》

- Calculate scattering amplitudes up to O(p³) order (tree diagrams and loop diagrams)
- Utilize EOMS scheme to solve power counting breaking problem
- Obtain scattering lengths with the accuracy of one-loop order
- Compare our ChPT results with lattice data (QMHPC cluster @ HNU) to determine the unknown LECs
- Study the spectrum of the doubly charmed baryons

Thank you very much for your patience!

Chiral effective Lagrangian for doubly charmed baryons and its application

문 > 문

< A > <