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Hadron interaction is important for
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Study of Interactions within chiral perturbation theory (ChPT

ChPT with respect on symmetries of QCD
Power counting

NOT in power series: as, a?, a, ...
expanded with small momentum
systematically study, order by order, error controlled

check of standard model

Natual extension

2-body force, 3-body force,...

Wide applications



Nucleon-nucleon interaction
3N Force 4N Force
L
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With Heavy Meson EFT, we study the systems made up of

DD
DD
DD~

Similar for B®)B®) and corresponding anti-meson pair system.



Leading order vertice

contact terms: DODODODM vertice
D®DM 7, DXOD®rr vertice
Next-to-leading order vertice

they absorb divergences, provide finite higher-order corrections

LY = DaTr[Hy,H] Tr[Hy*A] + Dy Tr [Hy,ysH] Tr [HytysH]
+E, Tr [Hy A?H] Tr [Hy* AaH] + Ep, Tr [Hy,ysA2H] Tr [Hy*ysAaH],
£5 — —<(iv.aH)F|>—<Hv-rH>+g<H¢y5H>—%A(Hawﬂaw,
L3 = DhTr[Hy Al Tr[Hy A Tr (x4) + ..
+D4 Tr [Hy, %4 H] Tr [Hy*A] + ...
+D] Tr [(D*H)yuys(D"H)] Tr [HyvysH] + ... 6



Diagrams

Leading order

contact, one-pion exchange

Next-to-leading order
two-pion exchange, renormalization to D®)D® 7 coupling, loop

corrections to contact term, tree diagrams with NL vertice




Leading order

contact, one-pion exchange

Next-to-leading order

two-pion exchange, renormalization to D®)D®) 7 coupling, loop

corrections to contact term, tree diagrams with NL vertice

\ 1 \ / \ / / \

\ N . / \v/ \V/ l/ \\
(c1) (c2) (e3) (c4)

- 1 LI T T T T

| | | | I 1 N\ ’

| | | | | | N

| | | | | | /)(\

I I I I I | 7/ \
(¢5) (¢6) (c7) (e8)




Leading order

contact, one-pion exchange

Next-to-leading order

two-pion exchange, renormalization to D®)D®) 7 coupling, loop

corrections to contact term, tree diagrams with NL vertice

— T = T

I I I I

| | | |
(b1) (b2) (b3) (b4)
() [ a
T T T T
I I 1~ = N I
| | L |
(b5) (b6) (b7) (b8)

7z N 27N 27N 27N

(1O IIRT: Y L11Y 19



oegeme

Leading order

contact, one-pion exchange

Next-to-leading order

two-pion exchange, renormalization to D®)D®) 7 coupling, loop

corrections to contact term, tree diagrams with NL vertice
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Search for new states

Potentials— partial waves, dynamical equation (momentum space)
— T matrices — poles

Potentials— Fourier transform, dynamical equation (coordinate

space)

— eigenvalues of bound states for different partial waves

Example:
potentials for B‘B* with I(J?) = 0(1%) + binding energies:
" ‘ ‘ ‘ ‘ AEzs = -12. 6*3229 MeV,
N ] e =R MY
.. —Total

strong decays are forbidden

because of phase space

V(r) (GeV)

they can be searched in BBy
or BByy
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We have caleulated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to O(c)
with the heavy meson chiral perturbation theory. We take into account the contributions from the football,
triangle, box, and with the 2¢p exchange and P s to the contact terms. We.
notice that the total 2¢-exchange potential alone is attractive in the small momentum region in the
BB, BB, or BB,'~'"2, while repulsive in the channel B B'~". Hopefully the analytical chiral
structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice
QCD simulation.
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Electromagnetic properties

(T) W) a(TN) (NT)
.
/
b (T) c(N) d(T)
' |
N /

dW) H(T) FN)

we have studied electromagnétic properties within ChPT

Decuplet to octet baryon electromagnetic transitions
EPJC 79, 66 (2019); PRD 95, 076001 (2017).

Magnetic moments of the heavy baryons

PLB 777,169 (2018); PRD 98, 094013 (2018);

PRD 98, 054026 (2018); PRD96, 076011, (2017) 1
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Lattice QCD

LQCD starts from the first principle of QCD
model independent, reliable

LQCD gives hadron spectra and quark distribution functions

at finite volumes, large quark masses, discrete spaces

not directly related to physical observables

12



Connection between Scattering Data and Lattice QCD Data

Lattice QCD
large pion mass: extrapolation

finite volume
discrete space

Lattice QCD Data — Physical Data
Liischer Formalisms and extensions:

Model independent; efficient in single-channel problems
Spectrum — Phaseshifts; my_— my, etc.
Effective Field Theory (EFT), Models, etc
with low-energy constants fitted by Lattice QCD data

Physical Data — Lattice QCD Data
EFT: discretization, analytic extension, Lagrangian modification

various discretization: eg. discretize the momentum in the loop 13



Scattering Data and Lattice QCD data are two important sources

for studying resonances.

We should try to analyse them both at the same time.

14



N*(1535) with N Scattering

N*(1535) is the lowest resonance with 1(JP) = 3(37).

One needs to consider the interactions

among the bare baryon Ni, 7N channel, and nN channel.
Phase shifts and inelasticities

obtained by solving 3-dimensional reduction equation with the

interactions.
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
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Spectra with I(JP) = 3(3 ) at finite volumes 16



Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes

Non-interacting energies of the two-particle channels
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels

Eigenenergies of Hamiltonian effective field theory
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory

Coloured lines indicating most probable states observed in LQCD
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Components of Eigenstates with L
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Spectra with I(JP) = 3(3 ") and L ~ 3 fm

The 1st eigenstate at light quark masses is mainly =N
scattering states.

The most probable state at physical quark mass is the 4th
eigenstate.

It contains about 60% bare N*(1535), 20% 7N and 20% 7N. 17



Components of Eigenstates with L ~ 3 fm
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Our recent work about Hamiltonian Effective Field Theory

N*(1535) with Hamiltonian effective field theory
Liu,Kamleh,Leinweber,Stokes,Thomas,Wu, PRL116, 082004 (2016)
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N*(1440) with Hamiltonian effective field theory
Liu,Kamleh,Leinweber,Stokes,Thomas,Wu, PRD95, 034034 (2017);
Wu,Leinweber,Liu,Thomas, PRD97, 094509 (2018).
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Our recent work about Hamiltonian Effective Field Theory

N*(1535) with Hamiltonian effective field theory
Liu,Kamleh,Leinweber,Stokes,Thomas,Wu, PRL116, 082004 (2016)

N*(1440) with Hamiltonian effective field theory
Liu,Kamleh,Leinweber,Stokes,Thomas,Wu, PRD95, 034034 (2017);
Wu,Leinweber,Liu,Thomas, PRD97, 094509 (2018).

A(1405) with Hamiltonian effective field theory
Liu,Hall,Leinweber,Thomas,Wu, PRD95, 014506 (2017).
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Our results are verified
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interpolating operators: N(0), N(0)a(0), N(p)rt(—p), A(p)=(-p). from Lang,
Leskovec, Padmanath, Prelovsek, PRD95 (2017) no.1, 014510.

No these two higher states with N="(0)7z(0)... from CMMS.

Lattice Hamiltonian Effective Field Theory
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Kaonic Hydrogen

20



Kaonic Hydrogen

“normal” hydrogen “exotic” (kaonic) hydrogen
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Kaonic Hydrogen

“normal” hydrogen “exotic” (kaonic) hydrogen

energy shift and width of 1s level were measured at SIDDHARTA-2

K, transition

el = 283+ 36(stat) + 6(sys) eV,
rs = 541+89(stat) +22(sys) eV,

they are related to the scattering length of K=p
o —20(3 H27 ak-
&P l p e *K-p P

e = p
S22 14 200 uk-—p (INae — 1) ak—p

HEFT provides
. =307eV, TP =533eV,

where KN interactions are not fine tuned. 20



Kaonic Deuteron without Recoil Effect

KNN scattering amplitude can be solved by the Faddeev equation

K>S K- K K K=~ K=~ Tk-poicon
» P » T, » P T, » » . n
T = + N + N
n n n n n K\ n n K\ P

With the static approximation

aka = f PP Acal

m+m

A (r - éK*p‘FéK*n +(2éK*péK*n - bi)/l’—zbféK—n/rz

Our results without recoil effect are similar to others

d d
615|StaticAppr0x =855¢eV, r15|StaticAppr0X =1127eV.
21



Recoil Effect
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The recoil effect is mainly from the single scattering process
(T8 = [ dalo@PR Teu@.
If no A(1405) exists,

this kind of recoil effect can be totally neglected. ’



Comparison
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On progress: N(1535)iny + N - n+ N

to understand the structure of N(1535) and the interactions of

ntN/7N at low energies and near the resonance
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preliminary result from on going work by Dan Guo and Zhan-Wei Liu. 9y



With Chiral effective field theory, we have studied

interacting potentials between two hadrons
binding energies of possible molecular states

electromagnetic properties of hadrons

With Hamiltonian effective field theory, we have studied

nucleon resonances N(1535), N(1440), A(1405) and
related interactions

recoil effect for the life of kaonic deuteron

25
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