LFU Tests and Rare B Decays at the Z Pole

Lingfeng Li (HKUST)

LOI: SNOWMASS21-EF3 EF0-RF1 RF0-163 w/ Tin Seng Manfred Ho, Tsz Hong Kwok, and Tao Liu LOI:SNOWMASS21-EF3 EF0-RF1 RF0-IF3 IF6-077 w/ Yanyun Duan, Shu Li, Tao Liu, Manqi Ruan, Yudong Wang and Taifan Zheng

> Dec. 18, 2020 CEPC Snomass Progress

If lepton flavor universality are not violated, good theoretical predictions for the following ratios:

$$R_{K^{(*)}} \equiv \frac{\mathsf{BR}(B \to K^{(*)}\mu^+\mu^-)}{\mathsf{BR}(B \to K^{(*)}e^+e^-)} , \qquad (1)$$

$$R_{D^{(*)}} \equiv \frac{\mathsf{BR}(B \to D^{(*)}\tau\nu)}{\mathsf{BR}(B \to D^{(*)}\ell\nu)} , \qquad (2)$$
$$R_{J/\psi} \equiv \frac{\mathsf{BR}(B_c \to J/\psi\tau\nu)}{\mathsf{BR}(B_c \to J/\psi\ell\nu)} . \qquad (3)$$

Systematic uncertainty largely cancel.

FCCC and FCNC *B* Anomalies

	Experimental	SM Prediction	Comments			
R_K	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01	$m_{\ell\ell} \in [1.0, 6.0] \text{ GeV}^2$, via B^{\pm} .			
R_{K^*}	$0.69^{+0.12}_{-0.09}$	0.996 ± 0.002	$m_{\ell\ell} \in [1.1, 6.0]$ GeV ² , via B^0 .			
R_D	0.340 ± 0.030	0.299 ± 0.003	B^0 and B^\pm combined.			
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005	B^0 and B^{\pm} combined.			
$R_{J/\psi}$	$0.71 \pm 0.17 \pm 0.18$	0.25-0.28				
Tanabashi et al.(2018)][Altmannshofer et al.(2018)].						

Lingfeng Li

Giga-Z, Tera-Z and $10 \times \text{Tera-}Z$: a phase of future linear/circular lepton colliders. [Fujii et al.(2019), Dong et al.(2018), Abada et al.(2019)]

		(/)			
Channel	Belle II	LHCb	Giga-Z	Tera-Z	$10 imes {\rm Tera-} Z$
B^0 , $ar{B}^0$	5.3×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B^{\pm}	$5.6 imes 10^{10}$	$\sim 6 \times 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B_s , \bar{B}_s	5.7×10^8	$\sim 2 \times 10^{13}$	3.2×10^7	3.2×10^{10}	3.2×10^{11}
B_c^{\pm}	-	$\sim 4 \times 10^{11}$	2.2×10^5	2.2×10^8	2.2×10^9
Λ_b , $\overline{\Lambda}_b$	-	$\sim 2\times 10^{13}$	$1.0 imes 10^7$	1.0×10^{10}	1.0×10^{11}

Z factories are also $b(c/\tau)$ factories:

Comparison between *B* **Factories and Hadron Colliders**

Combines the characteristics of both B factories ($\Upsilon(4S,5S)$ pole) and hadron colliders.

VS. B Factories

- Much higher b quark boost
- Better track momentum measurements
- Larger displacements with smaller uncertainty
- Abundant heavy b hadron production

- VS. Hadron Colliders
 - ► Fixed *E_{cm}*
 - Clean environment
 - Direct missing momenta measurement
 - Larger detector acceptance
 - Better flavor tagging efficiency

.

.

LFU Test with $b \rightarrow s \tau \tau$ Measurements

Current $b\to c\tau\nu$ anomalies indicate large enhancement of $b\to s\tau\tau$ rates. [Capdevila et al.(2018)Capdevila, Crivellin, Descotes-Genon, Hofer, and Matias] Current experiment constraint on BR $\sim 10^{-2.5}$

Lingfeng Li

Dec. 18, 2020 6/22

LFU Test with $b \rightarrow s \tau \tau$ Measurements

More details in the published work (arXiv:2012.00665) [Li and Liu(2020)]

Fake 3π vertex from $D^{\pm}_{(s)} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp} + X$ decays:

	Properties	Decay Mode	BR
σ^{\pm}	$m = 1.777 \mathrm{GeV}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\nu$	9.3%
$\tau -$	$c\tau = 87.0 \ \mu \mathrm{m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}\nu$	4.6%
		$\tau^{\pm}\nu$	5.5%
D_s^{\pm}	$\begin{array}{l} m=1.968 {\rm GeV} \\ c\tau=151 \mu {\rm m} \end{array}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	0.6%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}2\pi^{0}$	4.6%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}K_{S}^{0}$	0.3%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}\phi$	1.2%
	m = 1.870 CeV	$\tau^{\pm}\nu$	< 0.12%
D^{\pm}	m = 1.870 GeV $c\tau = 311 \ \mu\text{m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	1.1%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}K_{S}^{0}$	3.0%

Flying direction is also the momentum direction:

$$\vec{p}_{B^0} \times \vec{V}_{B^0} = 0 \Rightarrow (\vec{p}_{K^{*0}} + \sum_{i=1,2} \vec{p}_{\tau,i}) \times \vec{V}_{B^0} = 0$$
, (4)

$$\vec{p}_{\tau,i} \times \vec{V}_{\tau,i} = 0.$$
(5)

The solution of neutrino momenta thus take the form

$$\vec{p}_{\nu,i} = \frac{-\vec{p}_{K^{*0}} \times \vec{V}_{B^0} \cdot \vec{V}_{\tau,j}}{\vec{V}_{\tau,i} \times \vec{V}_{B^0} \cdot \vec{V}_{\tau,j}} \vec{V}_{\tau,i} - \vec{p}_{3\pi,i} , \qquad (6)$$

which is invariant under a rescaling of displacements (\vec{V}) .

Overwhelmingly Large SM Backgrounds

Background overwhelming ($\mathcal{O}(10^5)$ larger before cuts) rather than background free!

Example	Typical BR
$b \to c \bar{c} s$ Type	
e.g. $B_s \to K^{*0} D_s^{(*)+} D^{(*)-}$	$\mathcal{O}(10^{-2} - 10^{-3})$
$b \to c \tau \nu$ Type	
e.g. $B^0 \to K^{*0} D_s^{(*)-} \tau^+ \nu$	$\mathcal{O}(10^{-3} - 10^{-5})$
$b ightarrow c ar{u} d$ Type	
e.g. $B^0 \to D^{(*)-} \pi^+ \pi^+ \pi^-$	$\mathcal{O}(10^{-2} - 10^{-3})$

No relevant background studies before!

Efforts to Remove Backgrounds

Good calorimetry saves the day!

Quite environment at the Z pole, using isolation variables to veto extra neutral particles (e.g. from $D_s \rightarrow \pi^\pm \pi^\pm \pi^\mp + n\pi^0$) and displaced K^0_S .

More advanced calorimetry: even better (e.g. π^0 reconstruction)?

Efforts to Remove Backgrounds (II)

We also impose other cuts. Soft enough without exploiting simplified simulations.

Lingfeng Li

Result of $b \rightarrow s \tau \tau$ at Z Pole

We study 4 benchmark channels $(B \to K^{*0}\tau^+\tau^-, B_s \to \phi\tau^+\tau^-, B^+ \to K^+\tau^+\tau^-$ and $B_s \to \tau^+\tau^-$). Having S/B ratio ~ a few % for the first three channels.

Process	$N_{\rm evt}$	$\epsilon_{ m pre}$	ϵ_1	ϵ_2	ϵ_3	$\epsilon_{m_{\tilde{B}}}$	Tera- Z Yield
$B \rightarrow K^{*0} \tau^+ \tau^-$	1.2×10^{4}	3.3×10^{-3}	6.3×10^{-1}	7.3×10^{-1}	8.8×10^{-1}	6.4×10^{-1}	1.0×10^{1}
$b \rightarrow c \tau \nu$	1.8×10^{7}	2.5×10^{-4}	1.8×10^{-1}	4.9×10^{-1}	7.0×10^{-1}	7.4×10^{-2}	2.1×10^{1}
$b \rightarrow c\bar{c}s$	2.4×10^9	$2.9 imes 10^{-4}$	4.2×10^{-2}	$4.0 imes 10^{-1}$	$4.7 imes 10^{-1}$	$4.5 imes 10^{-2}$	2.4×10^{2}
$B_s \rightarrow \phi \tau^+ \tau^-$	2.8×10^{3}	2.0×10^{-3}	6.3×10^{-1}	7.3×10^{-1}	8.8×10^{-1}	6.3×10^{-1}	1.4
$b \rightarrow c \tau \nu$	8.8×10^5	4.2×10^{-4}	2.4×10^{-1}	5.4×10^{-1}	8.1×10^{-1}	1.2×10^{-1}	4.7
$b \rightarrow c \bar{c} s$	$3.5 imes 10^8$	$3.0 imes 10^{-4}$	$6.3 imes10^{-2}$	$3.5 imes 10^{-1}$	$5.1 imes 10^{-1}$	$5.2 imes 10^{-2}$	$6.0 imes 10^1$
$B^+ \to K^+ \tau^+ \tau^-$	1.4×10^{4}	5.9×10^{-3}	6.3×10^{-1}	6.9×10^{-1}	9.0×10^{-1}	6.0×10^{-1}	2.0×10^{1}
$b \rightarrow c \tau \nu$	1.1×10^{7}	3.3×10^{-3}	2.1×10^{-1}	4.7×10^{-1}	7.9×10^{-1}	2.6×10^{-2}	7.5×10^{1}
$b \rightarrow c \bar{c} s$	5.3×10^8	2.3×10^{-3}	$6.2 imes 10^{-2}$	$3.2 imes 10^{-1}$	$6.9 imes 10^{-1}$	2.8×10^{-2}	4.5×10^2
$B_s \rightarrow \tau^+ \tau^-$	2.5×10^4	$9.2 imes 10^{-3}$	$5.4 imes 10^{-1}$	$6.4 imes 10^{-1}$	$6.7 imes10^{-1}$	$6.6 imes10^{-1}$	3.4×10^1
$b \rightarrow c \tau \nu$	4.1×10^{9}	5.4×10^{-3}	2.1×10^{-1}	$5.0 imes 10^{-1}$	5.0×10^{-1}	1.6×10^{-1}	1.9×10^{5}
$b \rightarrow c\bar{c}s$	5.8×10^9	$6.2 imes 10^{-3}$	$5.3 imes 10^{-2}$	$3.8 imes 10^{-1}$	$4.0 imes 10^{-1}$	$4.0 imes 10^{-1}$	1.2×10^5
$b \to c \bar{u} d$	$3.5 imes 10^9$	$9.9 imes10^{-3}$	$1.9 imes 10^{-1}$	$4.7 imes 10^{-1}$	$1.1 imes 10^{-1}$	$4.8 imes 10^{-1}$	$1.6 imes 10^5$

Reconstructed Signals and Backgrounds

Projected Limits

More details in the published work (arXiv:2012.00665) [Li and Liu(2020)]

Traditional cut-based analysis: $\mathcal{O}(10^{-5} - 10^{-7})$ precision. Still affected by limited detector spacial resolution (" ∇ " symbols): Motivation for detector R&D!

Lingfeng Li

LFU Tests and Rare B Decays

Constraints on EFT

Marginalized 1σ constraints on EFT operators. Current experimental constraint $\sim 10^3$.

Lingfeng Li

LFU Tests and Rare B Decays

LFU Test with $R_{J/\psi}$ Measurement (Prelim.)

Improved reconstruction quality, also expecting lower combinatoric bkg and mis-ID.

LFU Test with $R_{J/\psi}$ Measurement (Prelim.)

More details on signal reconstruction (including 10 μ m vertex uncertainties):

Preliminary!	N_{B_c} at Tera- Z	BR	ϵ_1	ϵ_2	Tera- Z yield
$B_c^+ \to J/\psi \tau^+ \nu_{\tau}$	$\sim 2.2 \times 10^8$	0.53%	1.03%	17.59%	$\sim 2.11 \times 10^3$
$B_c^+ \to J/\psi \mu^+ \nu_\mu$	$\sim 2.2 \times 10^8$	2.24%	5.93%	22.48%	$\sim 6.57 imes 10^4$
$J/\psi + \mu$ comb. bkg.	_	_	5.93%	3.16%	$\sim 4.10 \times 10^4$
$B_c^+ \to \chi_c(1P) l^+ \nu_l$	$\sim 2.2\times 10^8$	_	_	_	$\sim 2.31 \times 10^3$
Mis-ID bkg.	_	_	5.93%	-	$\epsilon_{\mu\pi} \times 7.18 \times 10^5$
J/ψ comb. bkg.	_	_	_	_	$< r_h \times 4.60 \times 10^3$

BR: Theoretical BR (from [Leljak et al.(2019)Leljak, Melic, and Patra], and [Wang et al.(2009)Wang, Wang, and Lu]) ϵ_1 : Theoretical BR of 3 muons final states ($\tau^+ \rightarrow \mu^+ \bar{\nu}_\mu \nu_\tau$, $J/\psi \rightarrow \mu^+ \mu^-$) ϵ_2 : Overall efficiency with the LHCb cuts ($\frac{\# \text{ of reconstruction}}{\# \text{ of ruth level } 3\mu}$) $\epsilon_{\mu\pi}$: Rate of misidentifying π^+ as μ^+ , $\epsilon_{\mu\pi} \ll 1$. $r_h = h/h_{LHCb} \lesssim 1$: the ratio w/ LHCb.

Without detailed analysis and optimal cuts, a Tera-Z can improve the $R_{J/\psi}$ precision by $\mathcal{O}(10)$.

- Better understanding of mis-ID & combinatoric backgrounds.
- ► Global flavor sensitivity of Z factories.
- Coarse grained differentiate measurement
- ► More FCCC channels to test LFU $(R_{D_s^{(*)}}, R_{\Lambda_h^{(*)}}, \text{etc})$
- Implication of new physics (SMEFT style)

Rare FCNC Decays: $B_s \rightarrow \phi \nu \nu$ (Prelim.)

 $b \to s \nu \nu$ transitions also important for B anomalies. Related with $b \to c \tau(\ell) \nu$ and $b \to s \tau \tau(\ell \ell)$ via gauge invariance.

	Experimental	SM Prediction
$BR(B^0 \rightarrow K^0 \nu \bar{\nu})$	$< 2.6 imes 10^{-5}$	$(2.17 \pm 0.30) \times 10^{-6}$
$BR(B^0 \to K^{*0} \nu \bar{\nu})$	$< 1.8 \times 10^{-5}$	$(9.48 \pm 1.10) \times 10^{-6}$
$BR(B^{\pm} \rightarrow K^{\pm} \nu \bar{\nu})$	$< 1.6 \times 10^{-5}$	$(4.68 \pm 0.64) \times 10^{-6}$
$BR(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$<4.0\times10^{-5}$	$(10.22 \pm 1.19) \times 10^{-6}$
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$	$(11.84 \pm 0.19) \times 10^{-6}$

[Tanabashi et al.(2018)] [Straub(2015)] [Geng and Liu(2003)] Current limit of this channel still led by LEP: (limited production at B factories, $\vec{p_{\nu}}$ not achievable at hadron colliders). Most likely to have breakthrough at Z factories.

Lingfeng Li

Rare FCNC Decays: $B_s \rightarrow \phi \nu \nu$ (Prelim.)

The dominant background comes from $B\to D^{(*)}\ell(\tau)\nu$, $D^{(*)}\to\phi X$ with no lepton tagged.

- Calorimetry greatly benefits the measurement.
- ▶ Challenges tracker performance (soft ℓ, IP, etc.)

Rare FCNC Decays: $B_s \rightarrow \phi \nu \nu$ (Prelim.)

	N_S	N_B	S/sqrt(B)	sqrt(S+B)/S
Total	180000	1.5e+11	0.46	2.15
$N_{\phi}>0$	6.78e4	4.82e+09	0.98	1.02
$E_l < 1~{ m GeV}$	5.55e4	2.05e9	1.22	0.82
$E_{Neutral}^{ISO} < 2.7 \; {\rm GeV}$	4.59e4	6.91e8	1.75	0.57
$E_{track}^{ISO} < 4 \; {\rm GeV}$	4.25e4	4.17e8	2.08	0.48
lpha < 0.8	1.71e4	5.77e+5	22.52	0.045
Efficiency	0.095	3.85e-06		

Based on CEPC full simulation.

Current stage: considering better event reconstruction. Also need to accumulate more data.

Angular analysis and differential branching fraction of the decay $B_s^0 \rightarrow \phi \mu^+ \mu^-$. JHEP, 09:179, 2015. doi: 10.1007/JHEP09(2015)179.

- A. Abada et al.
 Future Circular Collider.
 2019.
- W. Altmannshofer et al. The Belle II Physics Book. 2018.
- Bernat Capdevila, Andreas Crivellin, Sbastien Descotes-Genon, Lars Hofer, and Joaquim Matias. Searching for New Physics with b → sτ⁺τ⁻ processes. Phys. Rev. Lett., 120(18):181802, 2018. doi: 10.1103/PhysRevLett.120.181802.

Mingyi Dong et al. CEPC Conceptual Design Report: Volume 2 - Physics & Detector. 2018.

- Keisuke Fujii et al. Tests of the Standard Model at the International Linear Collider. 8 2019.
- C.Q. Geng and C.C. Liu. Study of $B_s \rightarrow (\eta, \eta', \phi) \ell \bar{\ell}$ decays. *J. Phys. G*, 29:1103–1118, 2003. doi: 10.1088/0954-3899/29/6/313.
- Domagoj Leljak, Blazenka Melic, and Monalisa Patra. On lepton flavour universality in semileptonic $B_c \rightarrow \eta_c, J/\psi$ decays. JHEP, 05:094, 2019.

doi: 10.1007/JHEP05(2019)094.

- Lingfeng Li and Tao Liu. $b \rightarrow s\tau^+\tau^-$ Physics at Future Z Factories. 12 2020.
- David M. Straub. $b \rightarrow k^{(*)} \nu \bar{\nu}$ sm predictions. Dec 2015.
- M. Tanabashi et al.
 Review of Particle Physics.
 Phys. Rev., D98(3):030001, 2018.
 doi: 10.1103/PhysRevD.98.030001.
- Xiao-Xia Wang, Wei Wang, and Cai-Dian Lu.
 B(c) to P-Wave Charmonia Transitions in Covariant Light-Front Approach.
 Phys. Rev. D, 79:114018, 2009.
 doi: 10.1103/PhysRevD.79.114018.