

Status and plan of ACTS

G. Li For CEPC-ACTS group

Dec 14th, 2020

Software meeting

> CEPC ACTS activities

- Implementation
- Performance study

>Plan and problem to be sovlved

Introduce ACTS to CEPC

- From ATLAS, driven by the core idea to become **A** Common **T**racking **S**oftware
 - Encapsulating the well-tested ATLAS tracking code high performance in the past
 - Independent from detectors and framework
- Modern technologies
 - Dealing with the CPU problem in dense tracking environment
 - Generic programming with C++ 17
 - Thread-safe design and efficient memory allocation
- Active group for the developing
 - Potential to become the future ATLAS tracking software
 - Other experiments are also trying
 - BELLE-2, sPHENIX, FASER, CEPC ... *
- In term of CEPC, our activities started from last year
 - Participate in the ACTS development
 - Implement different detector designs
 - Detector details and tracking performance studies
 - Layout optimization and framework integration

CEPC ACTS Activities

https://gitlab.cern.ch/jinz/acts-framework-cepc

Implementation

Baseline tracker

DD4hep based geometry to describe CEPC inner tracker and built with XML file

- Easy to modify the detector parameters
- Good readability
- Easy to integrate to CEPCSW
- One of the standards in the future

Propagation

• A powerful tool to debug the geometry

Software meeting

Implementation

Resolutions of sub-detectors

Sub-detector			loc0_res [μm]	loc1_res [µm]	
Barrel	Vertex	1	3	3	pixel
		2	4	4	pixel
		3	4	4	pixel
	SIT 1, 2		5	250	strip
	TPC		100	5000	TPC
	SET		5	250	strip
Endcap	FTD 1, 2		3	3	pixel
	FTD 3, 4, 5		5	250	strip
	ETD		5	250	strip

TPC layer

Silicon module

Software meeting

- FATRAS (Fast ATLAS Track Simulation) to do the simulation
 - Smear true position \rightarrow hit

Baseline tracker

- - Particle gun: 800,000 single μ^- from (0, 0, 0)
 - Magnetic field: (0, 0, 3T) •
 - p_T : 100GeV, θ : 85°, φ : uniform distribution
- Kalman Filtering
 - Pull distribution of track parameters

Following standard normal distribution

Smear resolution in FATRAS

Tracking Residuals

• Result in ACTS (p_T : 100GeV, θ : 85°) • $\sigma_{r\varphi} = 1.67 \ \mu m$

 $\sigma_{1/p_T} = 2.93 \times 10^{-5} \ c/GeV$

- Full simulation resolution in CDR
 - $\sigma_{r\varphi} = 1.89 \ \mu m$

$$\sigma_{1/p_T} = 2.75 \times 10^{-5} \ c/GeV$$

Generally match with full simulations in CDRFurther validation

Plan

- FST implementation and validation
- Migrated to CEPCSW
 - ✓ ACTS version in FWCore (Lin Tao)
 - ✓ DD4hep (working with Chengdong)
 - ➤ Implementation
 - ➤ extensions
 - Geometry/material parameters used in tracking (Chengdong)
 - ✓ Develop a tracking algorithm in CEPCSW based on ACTS
 - ✓ Using existing truth tracking

✓ Fast simulation of trackers ...

✓ Detector and physics study ...