CEPC Physics @ Snowmass

Manqi RUAN

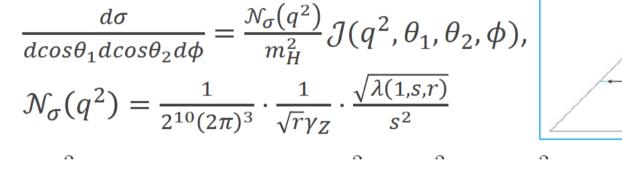
CEPC Snowmass Lols

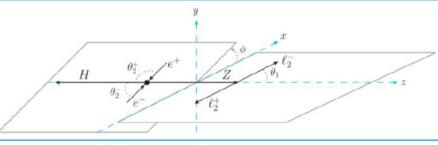
	9% 🔳 11:53	谢∦炎49		₩ ⁴⁶ .111 🙃			
			\supset	言息(121)	く 聊天信		
\\	Ann		*****		-20		
E	S	100 A					
	开心	庄胥爱	方亚泉	王连涛	曼曼奇		
E	* 10						
	李一鸣	张昊	杨思奇	GLI	刘真		
E	· 重伟	賴培築	xxxtex 郑太范	④ 重儿蛋儿	梁志均(
	Th		APAC/6		*******		
			A TONY OF CAL				
E	张华桥	I_U	廖红波	朱宏博	朱华星		
EF					A A A A A A A A A A A A A A A A A A A		
	XCLou	Wang J	赵明锐	史欣	Cen		
E					14		
	顾嘉荫	李数	李钊	李衡讷	李海波		
EF							
	王健	武雷(lovecho	刘言东	高俊		
	200	1	=	ALL A			

WG	Lol					
FF04	Higgs boson CP properties at CEPC					
EF01	Measurement of branching fractions of Higgs hadronic decays					
EF02	Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC Detector Simulation					
	Complementary Heavy neutrino search in Rare Higgs Decays					
EF03	Feasibility study of CP-violating Phase ϕ s measurement via Bs \rightarrow J/ $\Psi \phi$ channel at CEPC					
	Probing top quark FCNC couplings tq\gamma, tqZ at future e+e- collider					
	Searching for Bs $\rightarrow \phi$ vv and other b \rightarrow svv processes at CEPC					
	Measurement of the leptonic effective weak mixing angle at CEPC					
EF04	Probing new physics with the measurements of $e+e- \rightarrow W+W-$ at CEPC with optimal observables					
	NNLO electroweak correction to Higgs and Z associated production at future Higgs factory					
EF05-07	Exlusive Z decays					
FF00	SUSY global fits with future colliders using GAMBIT					
EF08	Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC					
	Search for t + j + MET signals from dark matter models at future e+e- collider					
FF00 10	Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets					
EF09-10	Dark Matter via Higgs portal at CEPC					
	Lepton portal dark matter, gravitational waves and collider phenomenology					

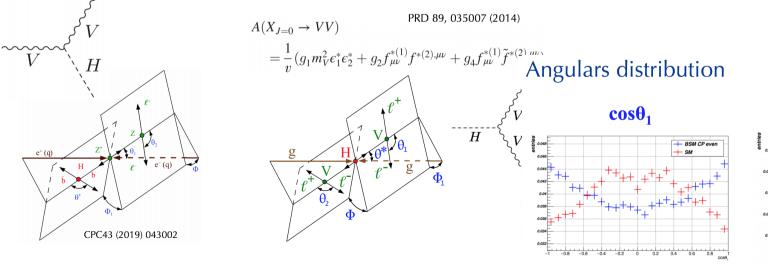
20/7/2020

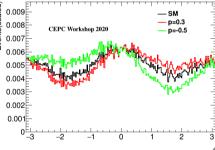
Topics

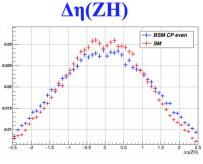

WG	Lol	Ť
EF01	Higgs boson CP properties at CEPC	
EFUI	Measurement of branching fractions of Higgs hadronic decays	
EF02	Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC Detector Simulation	Higgs Physics: 4
	Complementary Heavy neutrino search in Rare Higgs Decays	
	Feasibility study of CP-violating Phase ϕ s measurement via Bs \rightarrow J/ $\Psi \phi$ channel at CEPC	Flavor Physics: 3
EF03	Probing top quark FCNC couplings tq\gamma, tqZ at future e+e- collider	
	Searching for Bs $\rightarrow \phi$ vv and other b \rightarrow svv processes at CEPC	EW: 3
EF04	Measurement of the leptonic effective weak mixing angle at CEPC	
	Probing new physics with the measurements of $e+e- \rightarrow W+W-$ at CEPC with optimal observables	QCD: 1
	NNLO electroweak correction to Higgs and Z associated production at future Higgs factory	
EF05-07	Exlusive Z decays	BSM: 5
EF08	SUSY global fits with future colliders using GAMBIT	
	Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC	Tool: 1 (GAMBIT)
EF09-10	Search for t + j + MET signals from dark matter models at future e+e- collider	
	Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets	
	Dark Matter via Higgs portal at CEPC	
	Lepton portal dark matter, gravitational waves and collider phenomenology	


Multiple Working Group

$\leftarrow \ \rightarrow$	C indico.ihep.ac.cn/category/715/	Friday, 27 November 2020			
	Admin CEPC ILC FCC Software Physei December 2020	09:00 - 09:10 09:10 - 10:50	Individ	ual Talks EF01:Higgs CP in e+e>Z(mumu)H with optimal variable method 20' Qiyu, Sha Material: Slides M	
	18 Dec CEPC Snowmass Progress New!			Hutchili Sildes EF08: SUSY Search at the CEPC 20' Jiarong Yuan Material: Slides Update on Higgs CP measurement via ZH->ZZZ* Channel 20' Xin Shi Material: Slides Afb_b measurements at CEPC Z pole 20' Zhenyu Zhao	
	27 Nov CEPC Snowmass Progress September 2020				
	25 Sep CEPC Snowmass Bi-week Meeting August 2020		10:30	Material: Slides Weasurement of Bs->2 pi0 at the CEPC 20' Yuexin Wang Material: Slides Slides Material: Slides Material: Slides Materi	
	 26 Aug CEPC Snowmass Lols: General Statu 19 Aug Lol status chat June 2020 	s Discussion	Сс	ommunicate with Snowmass Conveners, Discussions/Presentations organized Accordingly.	
	28 Jun Snowmass General - 01				


Higgs: CP measurements with IIH & H->ZZ final states


Differential cross section for $ee \rightarrow ZH \rightarrow llH$



Angular Distributions

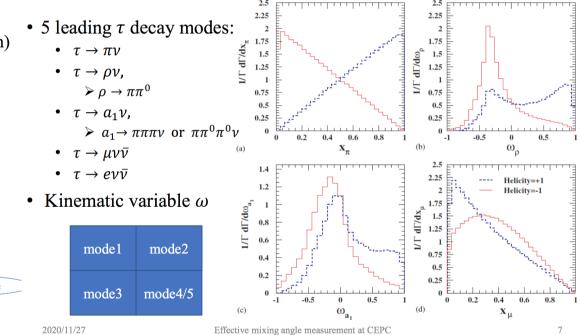
20/7/2020

Snowmass EF

EW: Afb(b) measurement & TGC

1. AFB method — theory

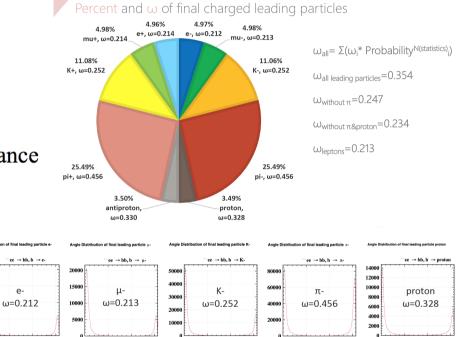
- In theory, $A_{FB} = A_{FB}(\sin^2 \theta_{eff})$, so one can derive $\sin^2 \theta_{eff}$ by measuring A_{FB} (software ZFITTER can be used for calculation)
- Error propagation:

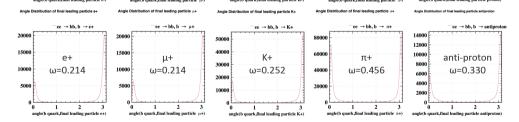

sensitivity =
$$S_{phy} \coloneqq \frac{\Delta A_{FB}}{\Delta \sin^2 \theta_{eff}}$$

• Error estimation for stw

$$\Delta sin^{2} \theta_{eff}(stat.) = \sqrt{\frac{1 - (A_{FB}^{measure})^{2}}{N \epsilon_{tagging}}} \cdot \frac{\sqrt{1 - 2f + 2f^{2}}}{1 - 2f} \cdot \frac{1}{S_{phy}}$$
Tagging efficiency
Effective mixing angle measurement at CEPC

2020/11/27


2. How to get P_{τ} — kinematic spectrum

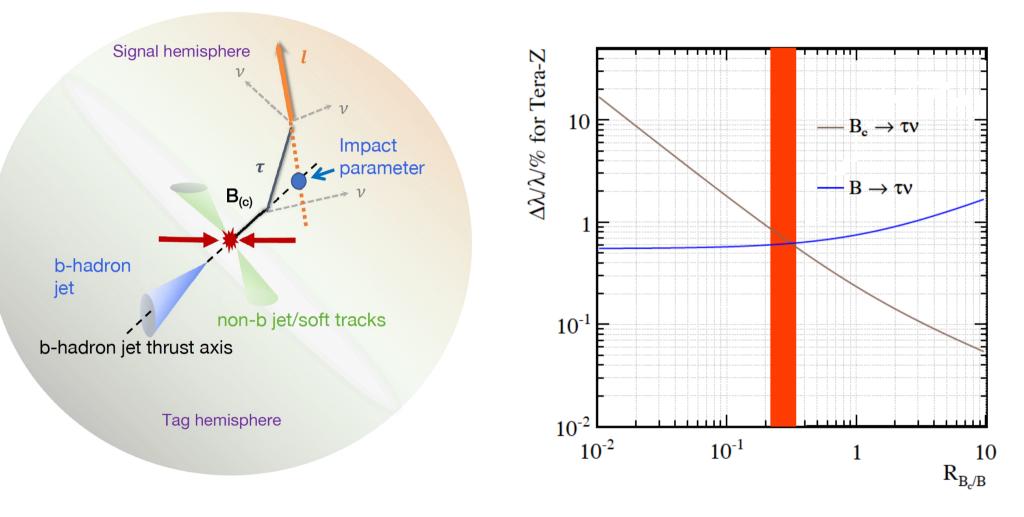


Afb(b) measurement & Performance

What we further need

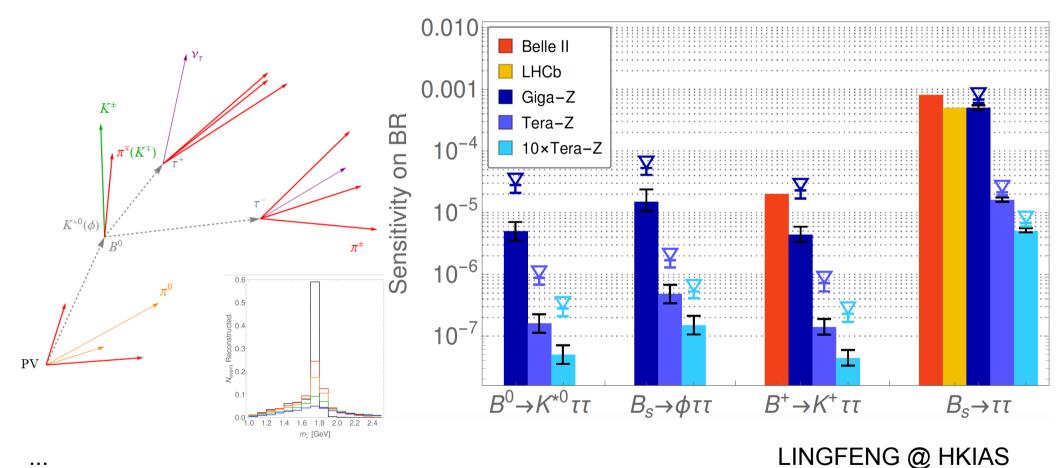
- AFB method:
 - Hope for further results of b quark tagging performance
 - Tagging efficiency $\epsilon_{tagging}$
 - Charge mis-id rate *f* and error of *f*
- P_{τ} method:
 - Need:
 - ECAL: error of 4-momentum of: π^{\pm} ; π^{0} ; e; μ ; τ
 - Efficiency: ϵ and $\Delta \epsilon$ of: π^{\pm} ; π^{0}
 - Plan:
 - Study systematic error and get final results
 - Study the energy running effect of P_{τ} method

Health interactions with the Performance study... and lots of work ahead!


e-

Snowmass EF

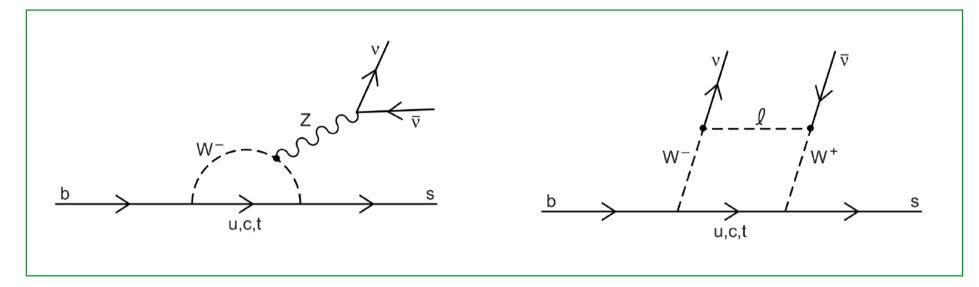
Flavor Benchmark analyses: status


- Bc -> tau+v -> e + 3v (In finalization, by Taifan Zhen, Fenfen An, Lu. Cao)
 - Rely on the flavor tagging (Z->bb), jet lepton identification
 - Percentage level accuracy could be achieved at the CEPC
 - Current identification of jet lepton is good enough for this channel
- B0 -> J/psi + Phi -> mumu KK (by Mingrui Zhao of 401)
 - Rely on the Jet Charge measurement,
 - MCTruth level study, to mount/Xcheck corresponding performance study
- Tau -> muon + photon (by Yudong Wang, etc)
 - Photon energy resolution, lepton id
 - MCTruth + Smearing level.
- b -> stautau (by Linfeng Li of HKUST)
 - Reducible background might strongly limit the final accuracy
- *Bs->Phi* + *vv* (*by Yudong Wang*); *Truth* + *Full Simulation analyses*
- B0/Bs->2 pi0 (by Yuexin Wang); Truth level analyses

Bc->Tauv

Taifan, etc, Accepted by CPC. Collaborate with Wei Wang, et.al. 9

VTX: reconstruction accuracy V.S final accuracy: ideal, 1, 2, 5, 10µm resolution

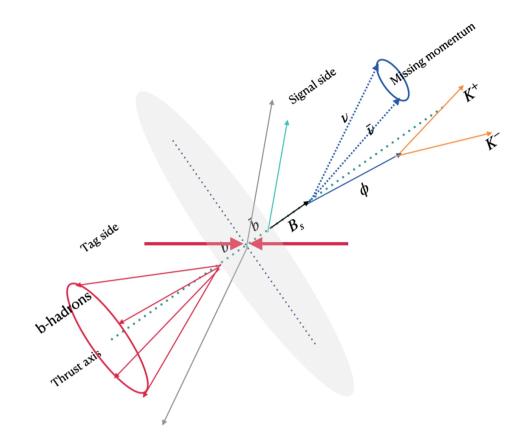


Contamination of D decay that mimics tau 3-prong decay;

15/12/2020

$$b \to s \nu \bar{\nu}$$

Flavor-change-neutral-current(FCNC) process. Be suppressed by the loop factor and heavy weak boson mass .


One-loop level in the Standard Model (SM) via "penguin" and "box" diagrams.

	Experimental [1]	SM Prediction [2]				
$BR(B^0 \to K^0 \nu \bar{\nu})$	$< 2.6 imes 10^{-5}$	$(2.17 \pm 0.30) \times 10^{-6}$				
${ m BR}(B^0 o K^{*0} \nu \bar{ u})$	$< 1.8 imes 10^{-5}$	$(9.48 \pm 1.10) \times 10^{-6}$				
$BR(B^{\pm} \to K^{\pm} \nu \bar{\nu})$	$< 1.6 imes 10^{-5}$	$(4.68\pm0.64) imes10^{-6}$				
${ m BR}(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$< 4.0 imes 10^{-5}$	$(10.22 \pm 1.19) imes 10^{-6}$				
$\mathrm{BR}(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$	$(11.84 \pm 0.19) imes 10^{-6}$				
Table 1: Constraints and predictions for various $b \to s \nu \bar{\nu}$ decays.						

Yudong

[1] M. Tanabashi et al., "Review of Particle Physics," Phys. Rev., vol. D98, no. 3, p. 030001, 2018.

[2] D. M. Straub, " $b \rightarrow k^{(*)} \nu \bar{\nu}$ sm predictions," Dec 2015.

- Accuracy: ~o(1%).
- Depends on
 - Lepton id (to veto background from B/D leptonic decay)
 - Missing energy/momentum reco.
 - Phi reco (Pid)

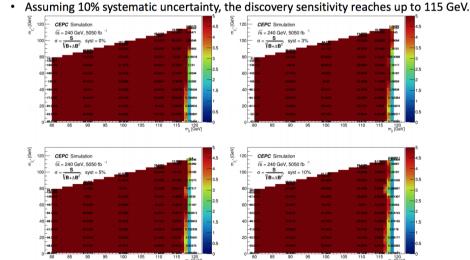
	N_S	N_B	S/sqrt(B)	sqrt(S+B)/S
Total	180000	1.5e+11	0.46	2.15
$N_{\phi}>0$	6.78e4	4.82e+09	0.98	1.02
$E_l < 1~{ m GeV}$	5.55e4	2.05e9	1.22	0.85
$E_{Neutral} < 2.7~{ m GeV}$	1.20e4	6.9e8	1.75	0.0543
lpha < 0.8	1.73e4	7.5e+4	20.08	0.0503
Efficiency	0.0966	5e-06	Pi	eliminary!!

BSM: SUSY

Direct stau: Optimization Strategy Use the leading track with minus(positive) charge to represent the $\tau^{-}(\tau^{+})$ for simplicity. • Select events with 2 OS τ with energy > 0.5GeV. Perform a multi-dimension optimization, considering variables: $\Delta R(\tau,\tau), \Delta R(\tau, recoil), \Delta \varphi(\tau,\tau), \Delta \varphi(\tau, recoil), M_{\tau\tau}, M_{recoil}, E_{\tau}$ Check for both upper cut and down cut for each variable. $\frac{3}{\sqrt{B+dB^2}}$ as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty). Use $\rightarrow \tau \tau$ CEPC SH $\rightarrow \tau \tau$ (s = 240 GeV, 5050 fb ใก้กันทบ 10⁸ (s = 240 GeV, 5050 ft 10 10⁸ 107 10 10 10 sw lomu sw lotau 10 = (100, 10) GeV = (100, 50) GeV 35 4.5 ∆ē(m1.recoil CEPC S CEPC SI CEPC S 10⁹ 109 (8 = 240 GeV, 5050 fb (s = 240 GeV, 5050 fb) (8 = 240 GeV, 5050 fb 108 10⁸ 108 10 10 10 CEPC Simulation 15 = 240 GeV, 5050 fb $\frac{3}{\sqrt{\mathbf{B}+\Delta\mathbf{B}^2}}$, syst = 0% 12 ∆R(m1,recoil

 A preliminary SUSY sensitivity study has been performed to direct stau production, direct smuon production and chargino pair production (Bino LSP and Higgsino LSP) in

> For direct stau production, the discovery sensitivity reaches up to 115 GeV.

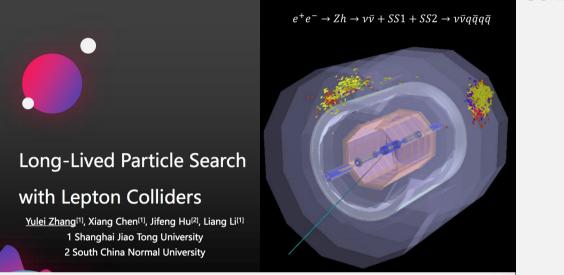

For direct smuon production, the discovery sensitivity reaches up to 115 GeV.
 For chargino pair production (Bino LSP), the discovery sensitivity can still reach up

> For chargino pair production (Higgsino LSP), the discovery sensitivity can reach

CEPC, which is promising. With assuming 10% systematic uncertainty:

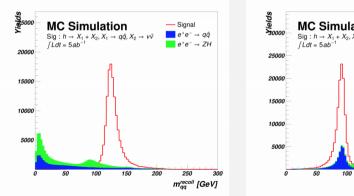
With relatively simple Final states & Covers many different models (Bino, Chargino, ...)

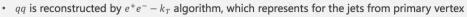
Direct stau: Sensitivity map


15/12/2020

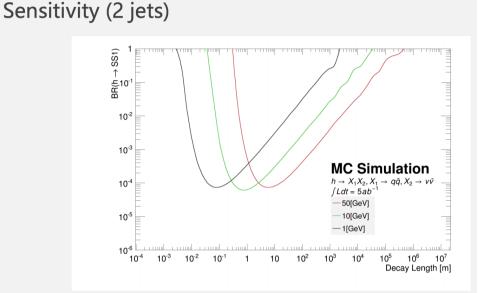
up to 118 GeV.

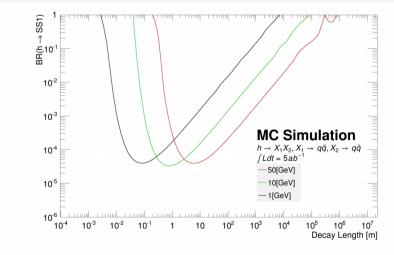
Summary


all the mass phase space.


BSM: Long Lived Particle

Mass of 2 prompt jets


15/12/2020



• Background is normalized to the scale of signal.

Sensitivity (4 jets)

Conclusion

- Snowmass: awaiting for mature results by July 2021
- 17 Lols submitted from CEPC.
 - Many original ideas
 - ~ 4 Lols reaches the needed maturity now
 - Bc->tau v;
 - B->stautau;
 - SUSY;
 - LLP
 - ...
 - ~Half of the Lols presented at CEPC Snowmass Lol meetings (bi-weekly based, hope to).
- Health interaction/collaborations between Performance & Physics
- Health & Helpful interactions with Snowmass community.
- Note: There are also many Physics Studies Not included in these Snowmass Lols. 15/12/2020