

Contribution ID: 47

Type: not specified

Nuclear system size scan for freeze-out properties and baryon-strangeness correlation in relativistic heavy-ion collisions by using a multiphase transport model

In this study, we employ a multiphase transport (AMPT) model for considering the bulk properties at the freeze-out stage for ${}^{10}\text{B}$ + 10 B, ${}^{12}\text{C}$ + 12 C, ${}^{16}\text{O}$ + 16 O, ${}^{20}\text{Ne}$ + 20 Ne, ${}^{40}\text{Ca}$ + 40 Ca, ${}^{96}\text{Zr}$ + 96 Zr, and ${}^{197}\text{Au}$ + 197 Au collisions at RHIC energies $\sqrt{s_{NN}}$ of 200, 20, and 7.7 GeV.

We use a statistical thermal model to extract the parameters at the chemical freeze-out stage, which agree with those from other thermal model calculations. It was found that there is a competitive relationship between the kinetic freeze-out parameter T_{kin} and the radial expansion velocity β_T , which also agrees with the STAR or ALICE results. We found that the chemical freeze-out strangeness potential μ_s remains constant in all collision systems and that the fireball radius R is dominated by $\langle N_{Part} \rangle$, which can be well fitted by a function of $a \langle N_{Part} \rangle^b$ with $b \approx 1/3$.

In the same context, the system size dependence of baryon-strangeness (BS) correlation also has been investigated. The combination of different hadrons affects BS correlations significantly. We find when the maximum rapidity acceptance $y_{\text{max}} > 3$, these coefficients are independent of the combination of different hadrons in the final state based on the AMPT model.

Primary author: Mr DONGFANG, Wang (Fudan university)

Co-authors: Mr YUGANG, Ma (Fudan university); Mr SONG, Zhang (Fudan university)

Presenter: Mr DONGFANG, Wang (Fudan university)