

Energy calibration for EMC

Dong Liu

University of Science and Technology of China

Dec. 29, 2020

PANDA China Collaboration Meeting

Outline

- EMC
- Calibration algorithm
 - Sample preparation
 - Input and output
 - Fitting
 - Iteration
- Calibration Result
- Calibration with single cluster
- Multi-thread implementation
- Summary and plan

EMC

- Functionality
 - Energy measurement of γ , e and part of hadrons

PANDA CM 20/2

- Position measurement
- Separation of γ /e and hadrons
- Shower shape measurement
- Calibration
 - Detection unit uniformity
 - Leakage
 - Preshower
 - Light yield non-uniformity
 - Energy response non-linearity
 - Electronics

3

Calibration

- Calibration sample
 - Abundance
 - Accurate quantity as standard value
 - Well understand interaction with EMC

 π^0

PANDA CM 20/2

- $\pi^0 / \eta \rightarrow \gamma \gamma$
 - Abundantly produced
 - Known mass and small width
 - Energy coverage

• Based on π^0 mass

Events

From Bernhard Roth & Marc Pelizaeus, Ruhr University Correction

Fit

Accumulation

- Implementation
 - Sample preparation
 - Raw data from beam test, physical run or MC simulation
 - π^0 candidates are saved in root file in a specific format (simplified data)

中国科学技术大学

iversity of Science and Technology of China

Raw data

 $m_{yy}A,B$

class entry { // pi0 candidate float m gg; // invariant mass of two γ int cpnr2; float fraction; float fraction2; float angle; // opening angle

std::vector<hit> this bump; // gamma std::vector<hit> associated bump;

- Implementation
 - Calibration
 - Initialize
 - Calibrate
 - Update
 - Iteration
 - Finalize

- Implementation
 - Calibration
 - Initialize
 - Set parameters
 - Load/Initialize
 calibration map
 - Load crystal map
 - Load π^0 samples

- Load π^0 samples (old strategy)
- _ ➤ From database

PANDA CM 20/2

- Multi-threaded design, locally or network connected threads
- Cache in database

Cache sample in memory

of data

Load π^0 samples

> From root file

High performance for later usage

Ability to deal with large amounts

> 5M π^0 need ~1G memory

Readable format with ROOT

- Implementation
 - Calibration
 - Initialize
 - Calibrate
 - Update
 - Load sample from cache for each crystal
 - Update hit energy

 $E_{Cluster} = \sum c_i A_i$

– Update E_{γ} , m($\gamma\gamma$) for each candidate

n

i=1

中国科学技术大学 University of Science and Technology of China

- Implementation
 - Calibration
 - Initialize
 - Calibrate
 - Update
 - Iteration
 - After iterations, $\lim_{k \to \infty} C_{i,k} = 1$
 - Iteration k < maxIteration</p>
 - C_i close enough to 1
 - C_i closer to 1 than last iteration
 - Width of C_i narrower than
 last iteration

中国科学技术大学

- Implementation
 - Calibration
 - Initialize
 - Calibrate
 - Update
 - Iteration
 - Finalize
 - Save calibration constants
 - Save calibrated candidates

PANDA CM 20/2

Test

- MC sample as input
 - 1 GeV π^0 , 5 M, ~400/crystal
 - Cover the barrel region
 - Uniform distribution
- Result check
 - Function

2020/6/24

- Novosibirsk function for π^{0}
- 3rd Chebyshev for bkg
- Performance
 - Memory usage, ~ 1G
 - Time usage, ~30min/iteration

Validation

- Input/output check
 - Gain fluctuations are assigned to crystals, $C_i=1 \rightarrow C_i = Gaus(1, 0.1)$
 - Hit energies are scaled with C_i
 - Use scaled sample to do calibration
 - Output consistent with input gain fluctuations
 - The calibration algorithm can recover gain fluctuations

Single cluster calibration

University of Science and Technology of China

中国科学技术大学

- Single cluster mode
 - γ or e with specific energy
 - One cluster per candidate
- Implementation
 - Same data format, but only use one bump
 - Add a flag to mark sample type
 - Set the calibration goal from pi0 mass to the specific energy
 - Recalculate the energy of the cluster with constants

Test

- Gamma sample
 - 5M, 1GeV γ
 - Barrel region
- Result
 - Closer to 1 GeV
 - Slightly narrower
 - Works fine

PANDA CM 20/2

Multi-thread

University of Science and Technology of China

- In calibrate
 - std::thread
 - Split xtals to n lists
 - Create a thread for each list +
 - In each thread
 - Fit $m(\gamma\gamma)$ for xtals in a list
 - Cache fit results
 - Check fit results
 Calculate calib consts

Multi-thread

Multi-thread

- Test
 - Single thread
 - Iterations: 7
 - Time: ~3h30min
 - 8 threads
 - Iterations: 7
 - Time: ~41min (5.9min/iteration)
 - Same result as single thread case
 - Improvement
 - Reduce 80% consuming time (1/5)

10

Summary

- Calibration algorithm
 - Calibration samples preparation
 - ROOT file as input, cached in memory
 - Calibrate
 - Update all hits
 - Validation
 - Multi-threads implementation and test
- Extend to single cluster case
 - Same data format
 - Change calibration goal
- Work to do
 - Optimize the algorithm
 - Test with MC closer to physics events

2020/6/24

Further work

- Edge crystals calibration [Hang Qi]
 - Obvious leakage at edge
 - Leakage related to angle
 - Correction with info from nearby cryst
 - Ratio E_{i-1}/E_i ?

Further work

- Edge crystals calibration [*Hang Qi*]
- Energy correction
 - Lateral correction, θ and ϕ related correction [2007 Jinst 2 P04004]
 - Variable definition, E1, E2
 - Compare two sides of seed crystal
 - Relation between Ecls Vs In(E2/E1)
 - Both θ and ϕ direction

Figure 8. Definition of E1 and E2 when a) W1 < W2 and b) W1 > W2 (see text). The star represents the electron's incident position.

Figure 10. Normalized mean energy measured in the 3×3 array around crystal 204 versus ln(E2/E1) in the Φ (left) and η (right) directions. The curves are 3rd order polynomial functions fitted to the measured distributions, independently for positive and negative values of ln(E2/E1). The square panels represent the central crystal with various regions indicated: T (top), B (bottom), L (left), R (right) and C1 and C2 (just off centre on each side). The labels on the distributions indicate in which region the electrons were incident.

PANDA CM 20/2

Further work

- Edge crystals calibration [*Hang Qi*]
- Energy correction
- Database
 - Sample and parameters accessed via database
- PandaRoot
 - A sub package in PANDAROOT

