

Jet Charge Reconstruction at CEPC

Cui Hanhua 2020 12 25

CHH

02 Methods

03 Results

Conclusion

CONTENTS

Jet Charge Introduction

What is "Jet Charge of b-jet system"?

Initial particle charge (b or anti-b).

What is the application of "Jet Charge of b-jet system"?

- 1. The precision of A_{FB}(Forward-Backward Asymmetry) measurement.
- 2. The precision of CP Violation parameter measurement in B hadron system.
- 3. ...

We already have flavor tagging algorithm, jet charge information can help searching for more physics.

A_{FB} Physics Introduction

$\cos\theta < 0$: backward

 $\cos\theta > 0$: forward

Theory of A_{FB}:

- 1. Z propagator has different coupling strength with left and right fermions.
- 2. Therefore, the final angular momentum distribution in $ee \rightarrow Z \rightarrow ff$ is asymmetrical.

Why A_{FB} need Jet Charge?——A_{FB} uncertainty:

- 1. A_{FB} Statistical uncertainty:
 - N_{Forward} and N_{Backward} Branching ratio, acceptance and efficiency affect N_{Forward} and $N_{\text{Backward}}.$
- 2. A_{FB} Systematic uncertainties:
 - ① Dominant effect: Charge mis-identification
 - ② Negligible effect: direction, energy, momentum, efficiency determination

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = A_{FB} (\sin^2 \theta_{\text{eff}}^f)$$

Using Jet Charge to measure A_{FB} at CEPC

1. High Productivity

 3×10^{12} Z bosons in 2 years \rightarrow Low statistical uncertainty \rightarrow High precision.

- 2. Accurate detector system.
 - 1. Good VTX system
 - 2. Good PID system
- 3. $A_{FB}(sin^2\theta_W)$ depends on center-of-mass energy & particle flavors
 - 1. higher energy scale

Measure $\sin^2\theta_W$ in different energy scale to test the running effect to higher energy scale.

2. Flavor comparison

Compare $sin^2 \theta_W$ between different flavor channels.

4. Clean Environment

CEPC has cleaner environment than hadron collider and lower background.

Samples : ee \rightarrow Z \rightarrow bb

Why use $ee \rightarrow Z \rightarrow bb$?

Easy to select High sensitivity of $A_{FB}(sin^2\theta_W)$ vs energy cut

Dominant decay:

b \rightarrow c+W W \rightarrow l+v (semileptonic decay) or qq \rightarrow hadron. c \rightarrow X+s \rightarrow X+K

Final particles we consider:

e+, e-, μ +, μ -, K+, K-, π +, π -, proton, antiproton

- Input: final leading particle information of the jet (eg: charge, energy, momentum,)
- Output: the charge of the jet (coming from b quark or bbar quark) and misjudgment rate ω

□ Use jet clustering to divide final leading particles into two jets.

- Find the relationship between observables of final leading particles and jet charge.
- □ Use observables of final leading particles to measure jet charge.

 \square Use Jet Charge misjudgment rate ω to measure the accuracy of Jet Charge Algorithm in each event in Truth Level.

- **D** Leading particle: {e, μ , K} / { π , proton}
- □ Kaon from different decay chains
- □ Leptons from different decay chains
- Use Jet Charge misjudgment rate ω to measure the accuracy of Jet Charge Algorithm in each jet in Truth Level.(Combine two jets to improve Jet Charge Algorithm.)
 - **D** Leading particle: {e, μ , K} / { π , proton}
 - □ Kaon from different decay chains
 - □ Leptons from different decay chains

D Use Jet Charge misjudgment rate ω to measure the accuracy of Jet Charge Algorithm in Full Simulation.

□ Understand the difference between ω in Truth Level and ω in Full Simulation, and study the influence of CEPC detector performance on Jet Charge misjudgment rate ω.

Use VTX information to improve Jet Charge Algorithm.

Use Jet Charge Algorithm to the precision measurement of relative benchmark.(eg: The precision of A_{FB}(Forward-Backward Asymmetry) measurement.)

ϵ , p⁺, p⁻, Misjudgment Rate ω

$$\epsilon_{\rm tag} = \frac{N_{\rm R} + N_{\rm W}}{N_{\rm U} + N_{\rm R} + N_{\rm W}}$$

$$\omega = \frac{N_{\rm W}}{N_{\rm R} + N_{\rm W}}$$

p⁺: if angle(x,bbar) < angle(x,b), p⁺ =
$$\int_{0}^{\pi/2} angle(x,b)$$

p⁻: if angle(x,bbar) > angle(x,b), p⁻ = $\int_{\pi/2}^{\pi} angle(x,b)$

p+ + p- = 1

ω = min(p⁺,p⁻)

Accuracy

$$\mathcal{A}_{\text{true}}(t) = \frac{N_{\overline{B}}^{\text{true}}(t) - N_{B}^{\text{true}}(t)}{N_{\overline{B}}^{\text{true}}(t) + N_{B}^{\text{true}}(t)} \qquad \qquad \mathcal{A}_{\text{obs}}(t) = \frac{N_{\overline{B}}(t) - N_{B}(t)}{N_{\overline{B}}(t) + N_{B}(t)}$$

$$N_{\overline{B}}(t) = (1 - \omega_{\overline{B}}) N_{\overline{B}}^{\text{true}}(t) + \omega_{B} N_{B}^{\text{true}}(t)$$
$$N_{B}(t) = (1 - \omega_{B}) N_{B}^{\text{true}}(t) + \omega_{\overline{B}} N_{\overline{B}}^{\text{true}}(t)$$

$$A_{FB}^{\rm obs} = \frac{1 - 2\mathcal{W}}{(1 - \mathcal{W})^2 + \mathcal{W}^2} A_{FB}^{\rm true}$$

Accuracy =
$$\sqrt{\frac{1}{\epsilon} \frac{(1-\omega)^2 + \omega^2}{(1-2\omega)^2}}$$

For each event, Final Leading Particles: $e \mu K \pi p$

b-hadron VS b-bar-hadron Probability

Truth level:

→b-bar ↓b	B⁺(u b-bar)	Bº(d b-bar)	Bs(s b-bar)	Bc+(c b-bar)	Λ_{b} -bar	other-b-bar- baryons	
B ⁻ (u-bar b)	10.01%	10.04%	3.19%	0.01%	6.55%	1.70%	31.51%
Bº-bar(d-bar b)	10.03%	9.92%	3.27%	0.01%	6.67%	1.70%	31.60%
Bs-bar(s-bar b)	3.20%	3.21%	1.04%	0.004%	2.15%	0.57%	10.17%
Bc⁻(c-bar b)	0.01%	0.01%	0.004%	0%	0.008%	0.001%	0.04%
Λ _b (udb)	6.69%	6.70%	2.16%	0.008%	4.54%	1.16%	21.26%
other-b- baryons	1.70%	1.70%	0.56%	0.001%	1.17%	0.31%	5.43%
	31.63%	31.57%	10.22%	0.03%	21.08%	5.45%	100%

Percent and ω of final charged leading particles

 $\omega_{all} = \Sigma(\omega_i^* \text{ Probability}^{N(\text{statistics})}_i)$ $\omega_{all \ leading \ particles} = 0.354$ $\omega_{\text{without }\pi}=0.247$ $\omega_{\text{without }\pi\&proton}=0.234$ $\omega_{\text{leptons}} = 0.213$

Energy spectrum of final leading particle

Angle distribution of final leading particle

CHH

Misjudgment rate ω vs energy section

 $\omega_{\text{leading particle}} = \Sigma(\omega_i * \text{Probability}^{N(\text{statistics})}_i * \text{Probability}^{E(\text{energy})}_i)$

Institute of High Energy Physics Chinese Academy of Sciences

For each event, Final Leading Particles: K+

Energy spectrum of final leading K+ from different decay chains

Misjudgment rate ω of final leading K+ from different decay chains All statistics = 909166

Percent of final leading K+ from different decay chains

Percent of final leading K+ from different decay chains vs energy section

03-3

For each event, Final Leading Particles: μ-

Energy spectrum of final leading μ - from different decay chains

Misjudgment rate ω of final leading μ - from different decay chains All statistics = 407935

Percent of final leading μ - from different decay chains

Final Leading μ-, 0.8GeV < Energy < 38.45GeV, Statistics = 407935

Percent of final leading μ - from different decay chains vs energy section

03-3

For each jet, Final Leading Particles: e, μ, K

Efficiency of final leading e, μ , K from different decay chains

Efficiency1 = $\frac{N_{\{e, \mu, K\}}}{N_{\{e, \mu, K, \pi, \text{ proton}\}}}$

Efficiency2 = $\frac{N_{e, \mu, K}, \text{charge of b-jet+charge of bbar-jet=0}}{N_{e, \mu, K}}$

 $Efficiency3 = \frac{N_{e, \mu, K}, \text{(charge of b-jet<0 \&\& charge of bbar-jet>0)}}{N_{e, \mu, K}, \text{(charge of b-jet+charge of bbar-jet=0)}}$

Purpose: Efficiency3 -> 1

Conclusion

"Jet Charge of b-jet system" is to judge initial particle charge (b or anti-b)

"Jet Charge of b-jet system" is important to the precision measurement of such as A_{FB}

CEPC has obvious advantages at using Jet Charge to measure A_{FB}

To develop Jet Charge Algorithm,

- \checkmark Use Jet Charge misjudgment rate ω to measure the accuracy of Jet Charge Algorithm in each event in Truth Level.
- > Use Jet Charge misjudgment rate ω to measure the accuracy of Jet Charge Algorithm in each jet in Truth Level.
 - Leading particle: {e, μ , K} / { π , proton}
 - Kaon from different decay chains
 - Leptons from different decay chains
- \Box Use Jet Charge misjudgment rate ω to measure the accuracy of Jet Charge Algorithm in Full Simulation.
- **□** Understand the difference between ω in Truth Level and ω in Full Simulation, and study the influence of CEPC detector performance on Jet Charge misjudgment rate ω .
- Combine two jets to improve Jet Charge Algorithm.
- □ Use VTX information to improve Jet Charge Algorithm.
- Use Jet Charge Algorithm to the precision measurement of relative benchmark.(eg: The precision of A_{FB}(Forward-Backward Asymmetry) measurement.)

THANK YOU! ^.^

CHH

BACK UP 1: Misjudgment rate ω of final leading K+ from different decay chains vs energy section

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 0.8GeV < Energy < 6.18GeV, Statistics = 90868

CHH

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 6.18GeV < Energy < 7.21GeV, Statistics = 91679

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 7.21GeV < Energy < 8.07GeV, Statistics = 90241

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 8.07GeV < Energy < 8.92GeV, Statistics = 91196

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 8.92GeV < Energy < 9.81GeV, Statistics = 90966

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 9.81GeV < Energy < 10.81GeV, Statistics = 91757

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 10.81GeV < Energy < 11.98GeV, Statistics = 89854

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 11.98GeV < Energy < 13.55GeV, Statistics = 91219

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 13.55GeV < Energy < 16.10GeV, Statistics = 92145

Misjudgment rate ω of final leading K+ from different decay chains vs energy section 16.10GeV < Energy < 28.85GeV, Statistics = 89241

BACK UP 2: Additional Theory Introductions

Weak Mixing Angle (θ_W) is the angle by which spontaneous symmetry breaking rotates the original W₀ and B₀ vector boson plane, producing as a result the Z₀ boson, and the photon.

$$\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} \begin{pmatrix} \cos \theta_w & \sin \theta_w \\ -\sin \theta_w & \cos \theta_w \end{pmatrix} \begin{pmatrix} B^0 \\ W^0 \end{pmatrix}$$

• It also gives the relationship between the masses of the W and Z bosons: $\cos \theta_W = \frac{m_W}{m_Z}$

Why $sin^2\theta_W$ is important?

Observables:

	experimental precision
Fine structure constant: α	10 ⁻⁹
Fermi constant: G _µ	10-7
Mass of Z boson: Mz	10 ⁻⁵
Mass of W boson: M _W	10-4
Effective weak mixing angle: sin²θ _{eff}	10 ⁻³

Weak mixing angle is important.

But it has the worst precision among fundamental parameters.

Function:
$$A_{FB}(sin^2\Theta_W)$$

$$\frac{d\sigma}{d\cos\theta} \propto 1 + \cos^{2}\theta + \frac{8}{3}A_{FB}^{b}\cos\theta$$

$$A_{FB}^{b,0} = \frac{3}{4} \left(\frac{2g_{V}^{e}g_{A}^{e}}{(g_{V}^{e})^{2} + (g_{A}^{e})^{2}}\right) \left(\frac{2g_{V}^{b}g_{A}^{b}}{(g_{V}^{b})^{2} + (g_{A}^{b})^{2}}\right)$$

$$\sin^{2}\theta_{W}^{eff,f} = \frac{1}{4|q_{f}|} \left(1 - \frac{g_{V}^{f}}{g_{A}^{f}}\right)$$

$$\overset{g_{0.44}^{e}}{=} \frac{1}{0.44} = \frac{1$$

The average A_{FB} VS $\sin^2\theta_W$ for $ee \rightarrow Z \rightarrow uu$ events at Z pole.

$$\begin{split} \hat{\mathbf{g}}_{\mathbf{X}} \left(\widehat{\mathbf{A}}_{\mathbf{F}B} \right) &= \frac{\partial_{\mathbf{F}} - \sigma_{\mathbf{B}}}{\sigma_{\mathbf{F}} + \sigma_{\mathbf{B}}}, \quad \mathbf{M}_{\mathbf{B}}^{\mathbf{H}} \widehat{\mathbf{A}}_{\mathbf{F}B} = \frac{N_{\mathbf{F}} - N_{\mathbf{B}}}{N_{\mathbf{F}} + N_{\mathbf{B}}}, \quad (\mathbf{g}_{\mathbf{B}}^{\mathbf{H}}, \mathbf{L}_{\mathbf{B}}^{\mathbf{H}} \mathbf{H}_{\mathbf{B}}^{\mathbf{H}}) \\ &= \frac{1}{q_{\mathbf{A}}} \left(\frac{d\sigma}{d\alpha} - \frac{1}{d\alpha} - \frac{1}{$$

 A_{FB} has roughly a linear relationship to $sin^2 \theta_W$.

Sensitivity of A_{FB} to $sin^2 \theta_W$

The sensitivity of A_{FB} to $sin^2\theta_{W}$, depends on center-of-mass energy and particle flavors.

 A_{FB} is sensitive to $sin^2 \Theta_W(e)$, and insensitive to $sin^2 \Theta_W(b)$.

Why $sin^2\theta_W$ measurement need precision?

0.1% uncertainty: effect from 2-loop contribution, one order magnitude larger than theoretical uncertainty.

EW global fitting is limited by the experimental results.

1-loop diagrams contribute to $sin^2\theta_{eff}$, shifting its value by 3.7%

2-loop diagrams contribute to $sin^2\theta_{eff}$, shifting its value by ~0.2%

$sin^2\theta_W$ Precision at LEP and CEPC

LEP in 1990s :

 A_{FB} and $sin^2\theta_W$: precision ${\sim}0.1\%$ (statistical uncertainty dominant) Known loop corrections to $sin^2\theta_W$: ${\sim}4\%$

CEPC CDR :

 A_{FB} and $sin^2 \theta_W$: precision ~0.01% (need specific measurement)

b quark decay

Dominant decay:

 $b \rightarrow c+W \rightarrow c+l+v$ (semileptonic decay) or $b \rightarrow c+W \rightarrow c+qq \rightarrow c+hadron$. $b \rightarrow X+c \rightarrow X+Y+s \rightarrow X+Y+K$ (s+uds $\rightarrow K$)

Final particles we consider:

e+, e-, μ +, μ -, K+, K-, π +, π -, proton, antiproton

B⁰ & anti-B⁰ mixing

Oscillation between B⁰ and B⁰-bar:

Flavor production at different experiments

Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	6×10^{10}	$3 \times 10^{10} \ (50 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	$3 imes 10^{13}$
B^0	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	$3 imes 10^8 ~(5 { m ab}^{-1} \ { m on} \ \Upsilon(5S))$	8×10^{12}
<i>b</i> baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	2×10^{11}		
D^+	6×10^{10}		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
τ^+	3×10^{10}	$5\times 10^{10}~(50\mathrm{ab^{-1}}$ on $\Upsilon(4S))$	

[Dong et al.(2018)]

