

中國科學院為能物昭納完備 Institute of High Energy Physics Chinese Academy of Sciences

2022年4-8月研究生考核报告

报告人:张 鹏 导 师:黄燕萍 实验物理中心高能量物理组

▶BESIII 分析

- $J/\psi \to \gamma K_s^0 K_s^0 \eta'$
- $J/\psi \to \gamma \pi^+ \pi^- \eta'$
- $J/\psi \to \gamma p \bar{p}$

- ▶ATLAS 分析
 - J/ψ → ee 能量刻度修正
 - Higgs粒子质量测量

 $J/\psi \to \gamma K_s^0 K_s^0 \eta'$ 分析

▶研究动机

・ 用分波分析方法测量 $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ 过程中的胶球候选者X(2370)的 自旋宇称

▶研究进展

- 完成了Referee Committee的申请并正根据收到的建议更新memo
- 相关结果已经在今年夏季的<u>BESIII Collaboration Meeting</u>报告
- memo链接:DocDB-1077, HyperNews-BAM-00603

▶下一步

• 继续回复Referee的问题和建议

PhysRevD.73.014516

Yanping Huang^a, Shan Jin^b, and Xiaoyan Shen^a, and Peng Zhang^a

^aInstitute of High Energy Physics, CAS ^bNanjing University

Internal Referee Committee

Igor Boyko (Chair)c, Yadi Wangd, and Xiaolin Kange

 $J/\psi \to \gamma K_s^0 K_s^0 \eta' 分析$

>目前的两个分波解

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0^+	$f_0(980)\eta'$	$2404.1^{+11.2}_{-11.7}$	$177.7^{+18.3}_{-17.9}$	14.4σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	$> 20\sigma$
X(wide)	0^+	$f_0(980)\eta'$	$2778.7^{+59.1}_{-53.8}$	$775.6^{+158.1}_{-121.6}$	15.0σ
η_c	0^-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
PHSP	0-+	$(K^0_S K^0_S)_{S/D-wave} \eta'$			17σ

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0^-+	$f_0(980)\eta'$	$2416.1^{+12.5}_{-13.1}$	$173.0^{+22.8}_{-17.6}$	12.7σ
X(2600)	0-+	$f_0(980)\eta'$	2617.8	199.8	4.2σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	$> 20\sigma$
X(2750)	0-+	$f_0(980)\eta'$	$2780.5^{+31.5}_{-34.9}$	$382.3^{+81.8}_{-62.7}$	10.1σ
η_c	0^-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
PHSP	0-+	$(K^0_S K^0_S)_{S/D-wave} \eta'$			18.0σ

≻X(2370)的测量结果

- $J^{pc} = 0^{-+}$
- Mass =2401.1 $^{+11.2}_{-11.7}(stat.)^{+12.0}_{-22.9}(syst.) MeV/c^2$
- Width =177.7 $^{+18.3}_{-17.9}(stat.)^{+15.0}_{-4.8}(syst.)MeV/c^2$
- $B[J/\psi \to \gamma X(2370)] * B[X(2370) \to f_0(980)\eta'] * B[f_0(980) \to K_s^0 K_s^0] = 0.94 \pm 0.27(stat.)^{+0.40}_{-0.06}(syst.) \times 10^{-5}$

Projection of combined channel: $\eta' \rightarrow \pi^+\pi^-\eta$ and $\eta' \rightarrow \gamma \rho^0$

taken as syst. uncertainty

 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 分析

▶ 研究动机

- 通过拟合π⁺π⁻η'不变质量谱上的"快速下降"结构来研究 X(1835)和pp不变质量阈增长结构之间的关系
- ▶ 研究进展
 - $a\pi^+\pi^-\eta'$ 不变质量谱 $p\bar{p}$ 质量阈附近观测到了显著的"快速 下降"现象
 - 采用了两种方案对 $\pi^+\pi^-\eta'$ 不变质量谱进行拟合
 - ✓ 使用Flatté形式描述X(1835)
 - ✓ 使用相干涉的Breit-Wigner描述X(1835)
 - 尝试使用两种新的方法重新估计 $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \eta'$ 本底
 - ✓ 基于机器学习的多维reweight
 - ✓ 基于质量因子(Q-factor)的reweight
- >目前对η'两个衰变道的同时拟合结果
 - Flatté: $M_{\text{pole}} = 1926.1 \text{ MeV}/c^2$, $\Gamma_{\text{pole}} = 286.4 \text{ MeV}/c^2$
 - Two BW: M =1837.8^{+6.9}_{-6.3} MeV/ c^2 , $\Gamma = 369.4^{+6.9}_{-6.3}$ MeV/ c^2
 - X(1920)的显著性均大于10σ

Data 2009+2012+2018+2019

Coherent Summation of Two Breit-Wigner

 $J/\psi \rightarrow \gamma p \bar{p}$ 分析

▶ 研究动机

- 用分波分析方法测量 $J/\psi \rightarrow \gamma p \bar{p}$ 过程中 $p \bar{p}$ 不变质量阈增长结构的质量和宽度
- ▶ 研究进展
 - 目前的分波解

✓ 在共振态参数化的时候考虑了库伦因子(Sommerfeld-Gamow factor)

 $\checkmark \sqrt{FSI(I=0)} \times \sqrt{C_p(S)} \times BW_{propagator}$

✓ 增加了一个新的共振态X(1879), 其参数为M=1879.3 and Γ=0.6 MeV

• X(pp)的测量结果:

 \checkmark M=1876.4 ± 0.1 MeV/c²

 $\checkmark \Gamma = 8.5 \pm 0.2 \text{ MeV/c}^2$

▶ 下一步

- 继续优化分波解
- 研究FSI效应来带的误差

Atlas: J/ψ → *ee* 能量刻度修正

- ➢ 研究动机: 通过高统计量且纯净的J/ψ → ee过程的data样本获得电子的能量刻度修正(energy scale corrections)
- ▶ 研究进展
 - 使用了新的EgammaCalibrationAndSmearingTool
 - 与calibration uncertainty做交叉检查
- ▶ 报告链接: <u>Report1</u>, <u>2</u>, <u>3</u>

tool.setProperty("ESModel", "es2022_R21_Precision"); tool.setProperty("useGainCorrection",1); tool.setProperty("doADCLinearityCorrection",1); tool.setProperty("doLeakageCorrection",1); tool.setProperty("useCaloDistPhiUnifCorrection",1);

Higgs粒子质量测量

▶Higgs粒子质量测量结果

- $m_H = 125.090^{+0.125}_{-0.125}$ (stat.) $^{+0.258}_{-0.258}$ (syst.) GeV
- ▶光子能量泄漏(leakage)对Higgs质量测量的影响
 - 样本: 40K ggF MC
 - σ_{leakage}的改变

$\sigma_{leakage}$	=	$\sigma_{tot}^2 -$	σ_{sta}^2
$\sigma_{leakage}$	=	$\sigma_{tot}^2 -$	σ_{sta}^2

1

2

3

4

5

6

7

8

9

11

12

13

14

	Current photon leakage	Updated photon leakage
$m_H \pm \sigma_{stat}$	125.09+	0.125 0.125 GeV
$m_H \pm \sigma_{tot}$	$125.09^{+0.158}_{-0.159}$ GeV	$125.09^{+0.127}_{-0.127}$ GeV
$\sigma_{leakage}$	+97.6 -96.4 MeV	+21.3 -20.8 MeV

▶光子转化(conversion)效率对Higgs质量测量的影响

- 根据光子重建的转化类型将其分为两类
- Reweight标准模型MC样本: f^{data} f^{MC} f

▶报告链接: Report1, 2

ATLAS Interna

Asimov data

\s = 13 TeV, 139 fb

2200

2000

1800

1600 1400

1200 1000 800 Asimov Data

SM_Higgs

Background

S + B fit

▶BESIII 分析

- $J/\psi \to \gamma K_s^0 K_s^0 \eta'$
 - ✓ 完成了Referee Committee的申请并正在回复问题(<u>HyperNews-BAM-00603</u>)
 - ✓ 在今年夏季的<u>BESIII Collaboration Meeting</u>报告了相关结果
- $J/\psi \to \gamma \pi^+ \pi^- \eta'$
 - ✓ 拟合 $\pi^+\pi^-\eta'$ 不变质量谱上的"快速下降"结构
 - ✔ 采用两种新的方法重新估计本底
- $J/\psi \to \gamma p \bar{p}$
 - ✓ 继续优化分波解
- ≻ATLAS 分析
 - J/ψ → ee 能量刻度修正
 - ✓ 基于新的EGamma recommendations, 给出了能量刻度修正(<u>Report1</u>, <u>2</u>, <u>3</u>)
 - Higgs粒子质量测量
 - ✓发现新的光子能量泄漏误差对Higgs质量测量的影响($\sigma_{leakage}$)下降了约78%
 - ✓ 光子转化效率的误差对Higgs质量测量的影响是可以忽略的. (Report1, 2)

Thanks!

Backup

> Due to the strong correlation between the conversion relative POIs (f_{conv} , $f_{reco\ conv}$, $f_{fake\ conv}$), 4 types are defined to propagate the uncertainty effect.

Туре	Truth	Reco	fraction	weight	0.6	— Hyy — Zliy	0.8	— Hyy — Zlly
1	Unconv	Unconv	$f_1 = (1 - f_{conv}) \times (1 - f_{fake})$	f_1^{data}/f_1^{MC}	0.5	reco	0.6	truth
2	Uconv	Conv	$f_2 = (1 - f_{conv}) \times f_{fake}$	f_2^{data}/f_2^{MC}	0.4	1000	0.5 0.493116	
3	Conv	Uconv	$f_3 = f_{conv} \times (1 - f_{reco})$	f_3^{data}/f_3^{MC}	0.2	0.157712	0.3	0.394/41
4	Conv	Conv	$f_4 = f_{conv} \times f_{reco}$	f_4^{data}/f_4^{MC}	0.1	0.0054737	0.1	0.144859 0.152142
					0	1 2 3 4 5 6 recType	0-1500 -1000	

The temporary solution, group the photons to two types based on the reconstructed type.

Туре	Reco	fraction	weight
1	Unconv	freco unconv	f ^{data} freco unconv/f ^{MC} unconv
2	Conv	freco conv	f ^{data} f ^{MC} conv

Reweight SM MC sample $w = w_{\gamma_1} \times w_{\gamma_2}$

Rcon