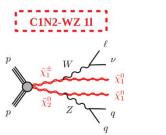
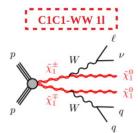
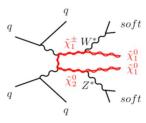


考核报告

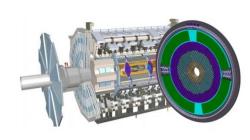
报告人: 翟明杰

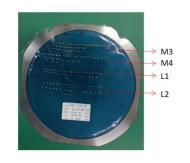

导师: Joao Guimaraes da Costa, 徐达

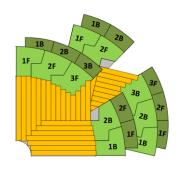

报告日期: 2022.09.02

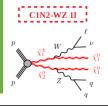

研究工作 (2022.5 - 2022.8)

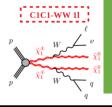
- 1. ATLAS实验超对称(SUSY)寻找
 - 1. 单轻子分析


2. Compressed分析

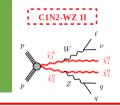




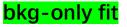

- 2. ATLAS实验高颗粒度时间探测器(HGTD)项目
 - 1. NDL 传感器的性能研究
 - 2. PEB (周边电子学)的性能研究



研究方向1-1: ATLAS SUSY 单轻子分析

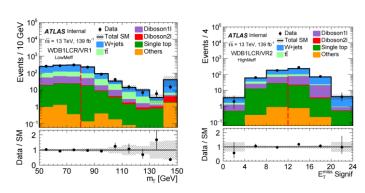


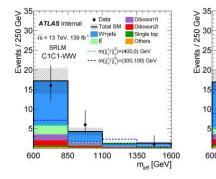


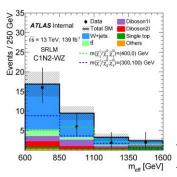

该分析首次研究1L末态的gaugino—>WW/WZ信号。

- ➤ 电弱相互作用的gaugino 通过 WW/WZ的衰变:
 - ➤ 该分析产生截面小/信号与SM本底类似->challenge->首次使用boost tagging技术
 - ➤ 末态: 1 lepton + 2-3 jets + MET
- ▶ 该分析于刚刚进行了最终的ATLAS审核,预计下周发表公开的ATLAS note。作为分析最主力分析人员,本人代表分析组进行SUSY物理大组审核报告和ATLAS合作组审核报告。
- ▶ 本人主要工作1: 负责新一轮systematic ntuple的产生和检验。
- ➤ 本人主要工作2: 对新的Sh2.2.11 V+jets样本进行研究:
 - ▶ 与旧的Sh2.2.1 V+jets 样本进行比较,发现新的样本统计误差较小,初选条件下,data/MC的符合程度较好。
 - 重新计算新样本各种理论误差。
- ▶ 本人主要工作3: 基于新的样本,负责产生和分析所有的拟合结果。
 - ➤ Bkg-only fit: 对所有本底在控制区进行拟合,检验拟合后不同区域的data/MC符合程度。
 - ➤ Model-dependent fit: 对所有本底+信号在控制区+信号区进行拟合,得出排除域。
 - ➤ Model-independent fit: 对所有本底+dummy信号在在控制区+信号区进行拟合,得出dummy信号的上限。

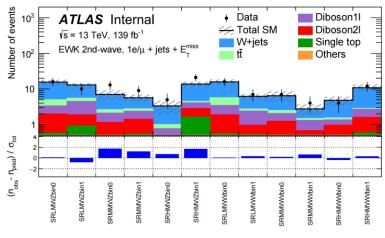
研究方向1-1: ATLAS SUSY 单轻子分析



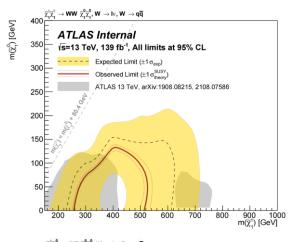

 $mu_DB2L = 1.22^{+0.18}_{-0.18}$

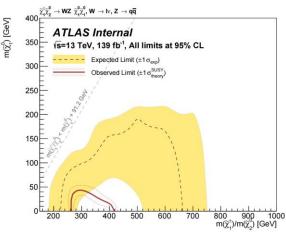

mu_ttbar = $0.81^{+0.10}_{-0.09}$

 $mu_WDB1L = 1.05^{+0.09}_{-0.09}$

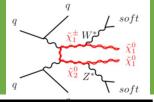


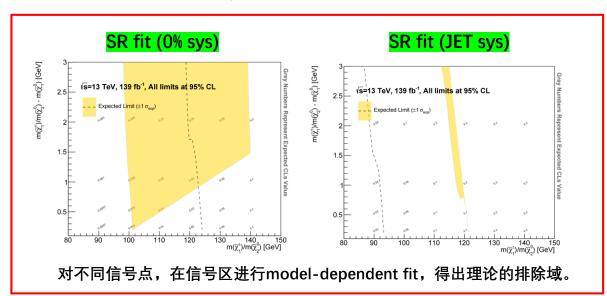
Data/MC在CR/VR符合程度很好。

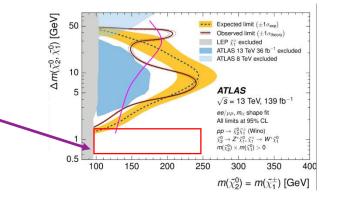


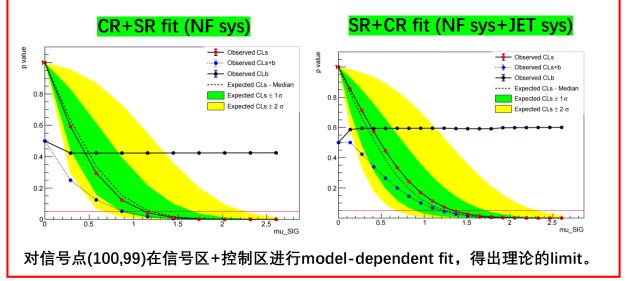


C1C1_WW的信号区里面,没有明显的超出。 C1N2_WZ的信号区里面,有一些小的超出(<2σ)。

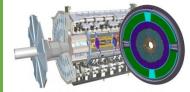

Model-dependent fit

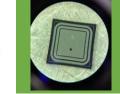

对于C1C1_WW过程, $\widetilde{\chi}_1^{\pm}$ 排除域相 较于之前的结果提升了100GeV。

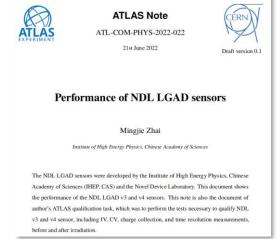

研究工作1-2: ATLAS SUSY Compressed分析

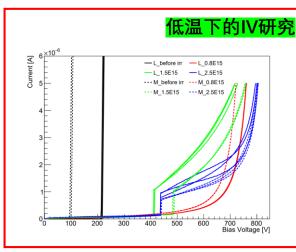


该分析主要研究质量压缩的SUSY空间;是寻找Higgsino粒子最适合的研究和热门课题。

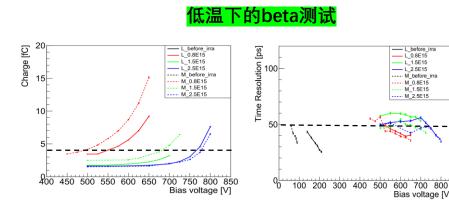

- ➤ 研究目标: 通过新"矢量玻色子融合VBF进程"进一步拓展deltaM<1GeV空间。
 - ▶ 质量压缩空间的末态粒子动量很低->难以重建
 - ➤ 标记两个VBF jets->触发事例
 - ➤ 末态: 2 VBF jets + MET (0 轻子)
- ➤ 该分析已于2021.06.11完成ATLAS的Partial Analysis Review; 计划于明年发表
- ▶ 本人目前担任该分析主要分析人员。
- ▶ 主要工作1:对信号区的信号显著性进行研究。
- ➤ 主要工作2:对QCD本底过程进行估计。




研究方向2-1: NDL_v4传感器性能研究

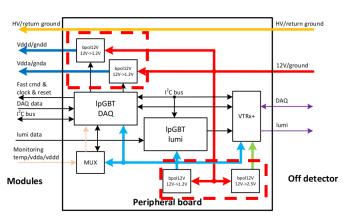


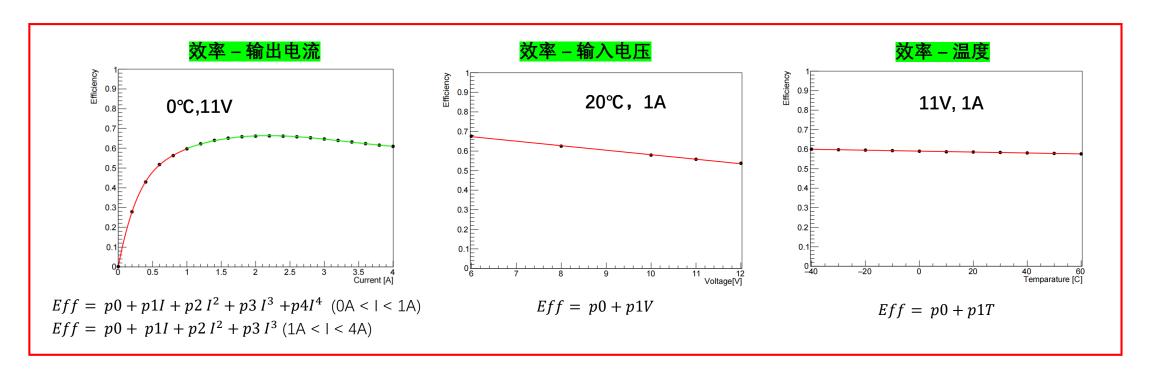
NDL传感器是高能所联合北师大设计制作的一款用于HGTD探测器的LGAD传感器。


- ▶ NDL第四版传感器包括三种不同注入的设计(高注入的过早击穿, 主要研究**低、 中注入**),本人**负责**对其进行性能的研究。
- ▶ 主要工作1: 完成了辐照后的性能测试
 - ▶ 低温的IV 测试。
 - ▶ 常温下CV测试。(上次考核已汇报)
 - ➤ 低温的beta测试,得出传感器的电荷收集和时间分辨等性能。
- ▶ 主要工作2: 汇总NDL第三版和第四版传感器研究成果。
 - ▶ 将全部的研究成果总结到ATLAS COM note里面。
 - ➤ 在HGTD long week里面总结汇报所有成果,顺利完成了本人的qualification task。

✓ 辐照之后,漏电流增 大, 击穿电压变高。

✓ 辐照剂量较低时,中注入的传 _ L_086016_ _ L_0.8E15


Bias voltage [V]

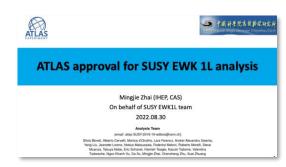

- 感器性能更好。剂量提高后, 中注入和低注入的性能接近。
- ✓ 结论:通过提高注入的方法, 不能有效提高传感器的抗辐照 性能。

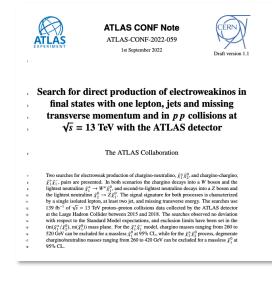
研究方向2-2: PEB(周边电子学)的性能研究

- ➤ BPOL12V可以把12V的电压转化成1.2V或2.5V的电压,进而给module和PEB的其他部件供电。
- ➤ 通过对BPOL12V的效率进行研究,有利于各部件的散热和电流输入进行优化。
- ▶ 本人主要工作:研究BPOL12V的效率和输出电流、输入电压、温度的之间关系。
- ▶ 下一步:对BPOL12V的效率进行多维拟合,同时测量并收集更多的数据。

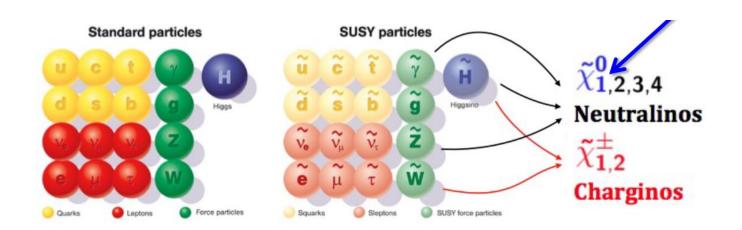
总结与展望

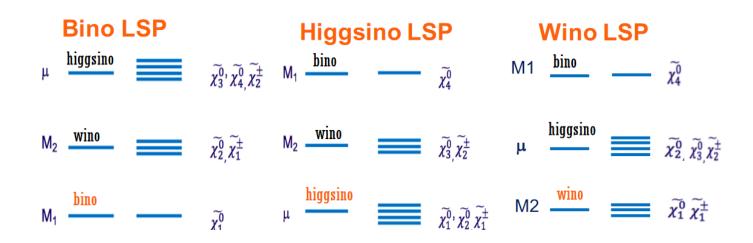
▶超对称物理探寻:


- ▶ 担任SUSY 1L分析的最主力分析人员和SUSY compressed组分析的主力分析人员。数次在这两个分析的组会作报告,同时在会议上给出重要报告如下:
 - ➤ 代表EWK 1L 组进行SUSY approval报告: https://indico.cern.ch/event/1177814/
 - ➤ 代表EWK 1L 组进行ATLAS approval报告: https://indico.cern.ch/event/1194429/
- ➤ 下一步:推动以上两分析,1L分析预计下周发表ATLAS CONF Note (**ATLAS-CONF-2022-059**), 年底发表一篇期刊文章。Compressed分析预计明年发表一篇文章。


➤ HGTD 研究:

- ➤ 本人对新一版的NDL传感器进行辐照前后IV、CV、电荷收集、时间分辨等性能的研究。
 - ➤ 在ATLAS HGTD long week汇报了本人所有的NDL sensor的研究结果 (https://indico.cern.ch/event/1127322/#128-qt-report-ndl-sensors),并将所有结果总结在 ATL-COM-HGTD-2022-023中。顺利完结了本人的qualification task。
- ➤ 正在进行PEB BPOL12V的效率研究。
- ▶ 下一步:继续参与PEB的研究工作。





Backup

超对称简介

ATLAS SUSY Compressed分析 --- region

OL Preselection:

- Passes MET trigger
- ➤ MET > 200 GeV
- ➤ Valid VBF tag(i.e. at least 2 non-btagged jets with pt > 30, eta < 5 that have eta1 * eta2 < 0)
- ➤ M_jj > 500 GeV
- \rightarrow nLep_signal = 0

SR

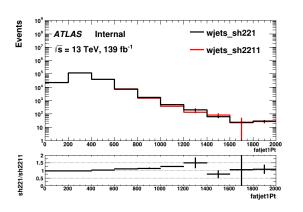
- nLep_signal == 0
- trigMatch_metTrig == 1
- vbfjM > 1000
- vbfTagJet1_Pt > 80
- vbfTagJet2_Pt > 80
- vbfiiDEta > 3
- vbfjjDPhi < 2
- minDPhiAllJetsMet > 0.6
- nBJet20 == 0
- nJets = $\{2,3,4\}$
- Met = {200,225,250,275,300,
 325,350,375,400,425,450,475,500,525,550,
 600,700,+∞}

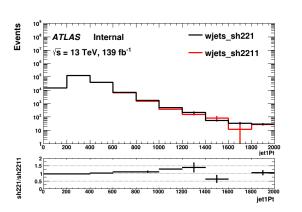
WCR

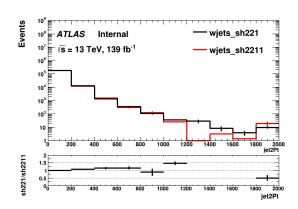
- nLep_signal == 1
- trigMatch_singleElectronTrig == 1|| trigMatch_singleMuonTrig == 1
- vbfjM > 1000
- vbfTagJet1_Pt > 80
- vbfTagJet2_Pt > 80
- vbfjjDEta > 3
- vbfjjDPhi < 2
- minDPhiAllJetsMet_LepInvis > 0.6
- nBJet20 == 0
- nJets = $\{2,3,4\}$
- met Et LepInvis > 200

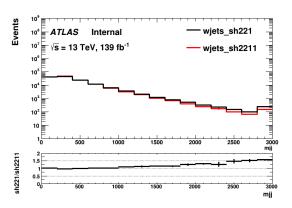
ZCR

- nLep_signal == 2
- trigMatch_diElectronTrig == 1|| trigMatch_diMuonTrig == 1
- vbfjM > 1000
- vbfTagJet1_Pt > 80
- vbfTagJet2_Pt > 80
- vbfjjDEta > 3
- vbfjjDPhi < 2
- minDPhiAllJetsMet_LepInvis > 0.6
- nBJet20 == 0
- nJets = $\{2,3,4\}$
- met_Et_LepInvis > 200

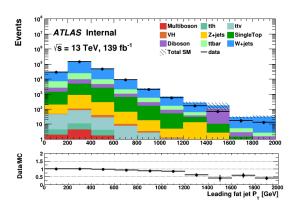

ATLAS SUSY 单轻子分析 --- region

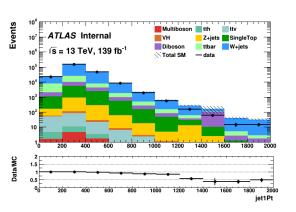

Variable	C1C1-WW model			C1N2-WZ model		
	SRLM	SRMM	SRHM	SRLM	SRMM	SRHM
$N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$	1					
$N_{\rm jet}$ ($p_{\rm T} > 30~{\rm GeV}$)	1 – 3					
$N_{\text{large-Rjet}} (p_{\text{T}} > 250 \text{ GeV})$	≥ 1					
$E_{ m T}^{ m miss}$ [GeV]	> 200					
$\Delta\phi(\ell, \mathrm{E_T^{miss}})$	< 2.6					
large-R jet type		W-tagged			Z-tagged	
$m_{\rm T}$ [GeV]	120–200	200-300	> 300	120–200	200-300	> 300
	Exclusion SR					
m _{eff} [GeV] (excl.)	[600–850, > 850] [600–850, > 8			0-850, > 85	50]	
$m_{\rm jj}[{\rm GeV}]$ (excl.)	[70–90, -]		[80–100, -]			
$\sigma_{E_{\mathrm{T}}^{\mathrm{miss}}}$ (excl.)	[> 12, > 15]			[> 12, > 12]		
	Discovery SR					
$m_{\rm eff}$ [GeV] (disc.)	> 600	> 600	> 850	> 600	> 850	> 850
$m_{\rm jj}[{\rm GeV}]$ (disc.)	_	-	-	80–100	-	-
$\sigma_{E_{\mathrm{T}}^{\mathrm{miss}}}$ (disc.)	> 15	> 15	> 15	> 12	> 12	> 12

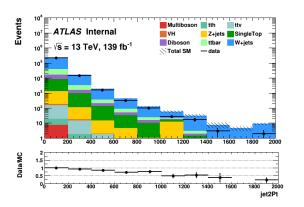

Variable	WDB1L and T		
	CR	VR1	VR2
$N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$	1		
$N_{\rm jet}$ ($p_{\rm T} > 30~{\rm GeV}$)	1 - 3		
$N_{\text{b-jet}} (p_{\text{T}} > 30 \text{ GeV})$	0 for WDB1L; > 0 for Top		
$N_{\text{large-Rjet}} (p_{\text{T}} > 250 \text{ GeV})$	≥ 1		
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 200		
$\Delta\phi(\ell, { m E_T^{miss}})$	< 2.9		
large-R jet type	W-tagged		
$m_{\rm eff}$ [GeV]	[600-850, > 850]		
$\sigma_{E_{ ext{ iny T}}^{ ext{miss}}}$	< 12	< 12	> 12
$m_{\rm T}$ [GeV]	50 - 80	> 80	50 – 120

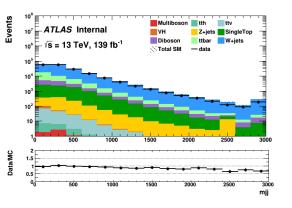

Variable	DB2L		
	CR	VR	
$N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$		2	
$N_{\rm jet}$ ($p_{\rm T} > 30$ GeV)	1 - 3		
$N_{\text{b-jet}} (p_{\text{T}} > 30 \text{ GeV})$	0		
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 200		
$\Delta \phi(\ell, { m E}_{ m T}^{ m miss})$	< 2.9		
$m_{\ell\ell}$ [GeV]	70 – 100		
$m_{\rm jj}$ veto [GeV]	75 – 95		
$\sigma_{E_{ ext{ iny T}}^{ ext{miss}}}$	> 12	> 10	
$m_{\rm T}$ [GeV]	50 – 200	200 – 350	

ATLAS SUSY 单轻子分析 --- Sh221 vs Sh2211

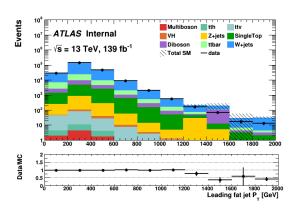


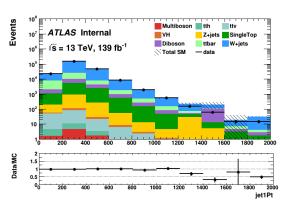

	raw	weighted
wjets_sh2211	5965846	192020 ± 244
wjets_sh221	2310017	190936 ± 473

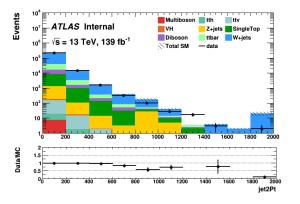

- ➤ At preselection level, Sh2.2.11 has lower estimation comparing to Sh2.2.1 in high jet Pt region (>400GeV).
- > The conclusion agrees with the discussion in note.
- > Sh2.2.11 has 2.6 times more stats than Sh2.2.1.

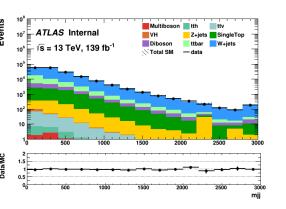

ATLAS SUSY 单轻子分析 --- Sh221 vs Sh2211

Sh2.2.1 for V+jets

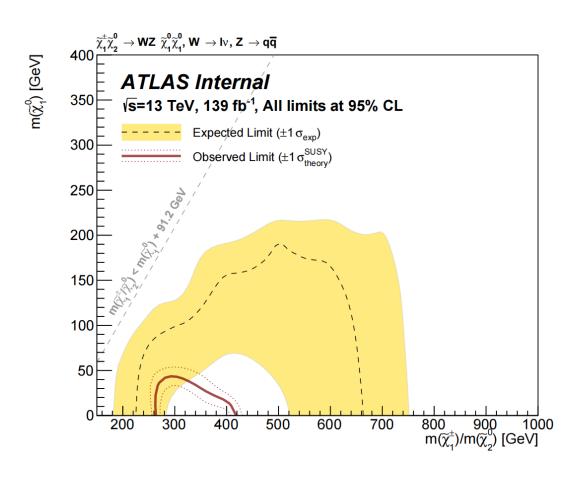


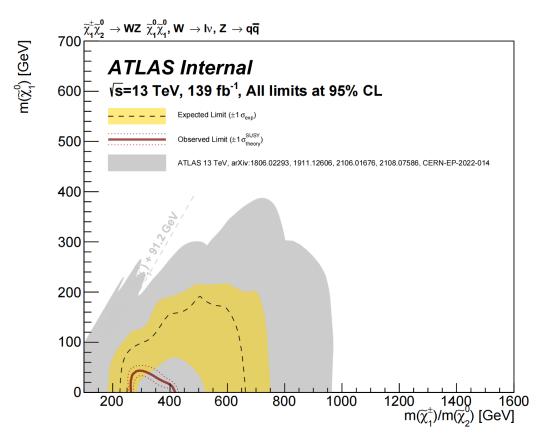






Sh2.2.11 for V+jets

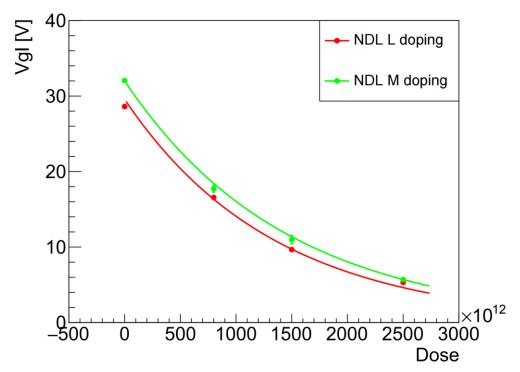


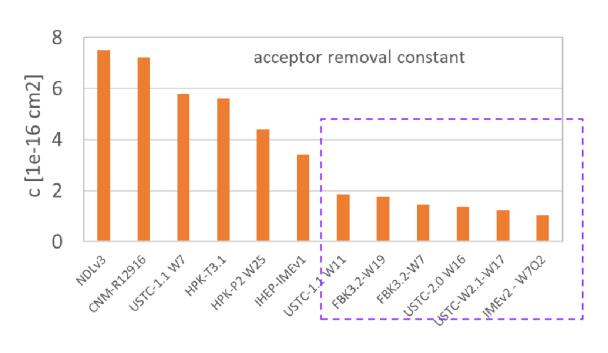


Improved data/MC agreement in high jet Pt region (esp. 400-1200GeV.)

ATLAS SUSY 单轻子分析 --- Limit (C1N2-WZ)

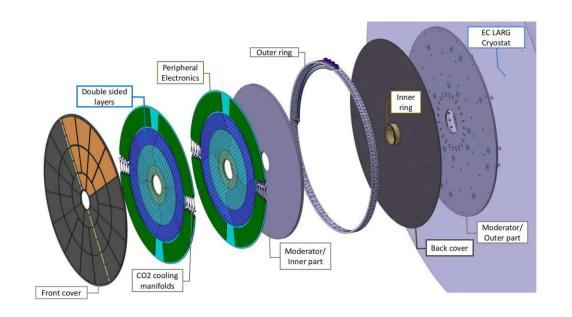
ATLAS HGTD sensor Specifications

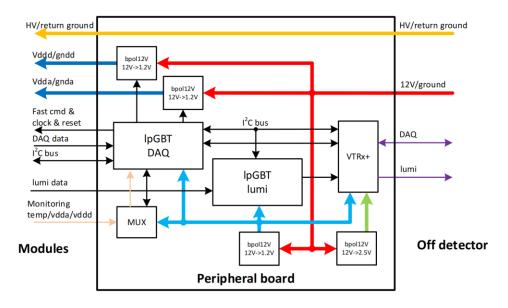

Technology	Silicon Low Gain Avalanche Detector (LGAD)	
Pad size	1.3 ×1.3 mm ²	
Pad array (rows × columns)	15 × 15	
Substrate	p-type	
Thickness (D)	50±5 μm (active), 300±30 μm (total)	
HV biasing	back side	
Time resolution	~35 ps at V _{op} (as produced)	
Charge collection	>15 fC at V _{op} (as produced)	
Passivation thickness	between 0.8 μm and 5 μm	
Bump-bonding pad opening	90 μm diameter	
Bump-bonding pad size	95 μm diameter	
Inactive edge Dicing chipping Dicing line	<300 μm <20 μm 80 μm	
Target pad capacitance	<4.5 pF (backplane+inter-pad)	
Gain layer depletion (Vgl)	< 60 V	
Full depletion (Vfd)	< V _{gl} + 90 V	
Breakdown voltage (V _{bd}) (-30°C) Breakdown condition (-30°C)	$(V_{bd}-V_{gl})/D>0.7 V/\mu m, V_{bd}>V_{fd}+30 V$ >200 nA/pad	
Device leakage current (-30°C)	$< 2 \mu A/cm^2$ at V_{op} (~35 ps, >15 fC)	
Pad leakage current (-30°C)	< 200 nA at V _{op} (~35 ps, >15 fC)	
Inter-pad gap (IP)	$40~\mu m < IP < 100~\mu m$ (region with <4 fC , time resolution < 50 ps)	
Fraction of good sensors per wafer (all pads within specifications)	70 % if the UBM is not done at fabrication site	
Optical inspection	no stains, residues or scratches on sensor area.	

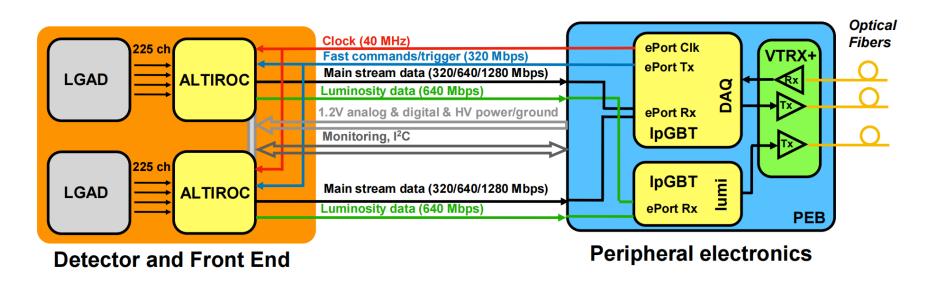

Pad leakage current (V _{bd} condition)	< 500 nA
Breakdown voltage requirement	(V _{bd} -V _{gl})/D>1.7 V/μm
Device leakage current	< 5 μA/cm ² at bias voltage <v<sub>bd</v<sub>
V _{gl,pad} spread over the sensor	$(Max(V_{gl,pad})-Min(V_{gl,pad}))/< V_{gl,pad} > < 0.01$
$V_{\text{bd,pad}}$ spread over the sensor	$RMS(V_{bd,pad})/<0.05$
Pad leakage current spread at 0.9·V _{bd}	Peak-to-Peak within a factor of 3x

Hit efficiency at normal incidence (central part of pad)	> 97% (>95%) before (after) irradiation
Time resolution	<35 ps (<70 ps) before (after) irradiation
Power consumption at Vop	< 100 mW/cm ²
Total leakage current	<125 μA/cm ²
Collected charge	>15 fC (start), >4 fC (end of lifetime)
Maximum pad leakage current	5 μΑ
Maximum bias voltage at the sensor	800 V

NDL 传感器 --- 抗辐照性能


Fit the function using Vgl = const * Exp (-c factor * dose)





	cons	err(cons)	c factor	err (c factor)
L doping	29.57	0.06	7.422*10-16	0.016*10-16
M doping	32.02	0.15	6.905*10-16	0.023*10-16

PEB结构

