2022年5-8月考核报告

张镇轩

导师:陈明水

2,Sept 2022

中國科學院為能物語為統 Institute of High Energy Physics Chinese Academy of Sciences

Outline:

1 Physics Analysis

- **1.** Resonant $HH \rightarrow WW\gamma\gamma$
 - HiggsDNA framework:
 - Object selection & Event selection & GEN study
 - Preliminary limit result
- 2. $H \rightarrow \gamma \gamma$ mass measurement with full Run2 dataset
 - Diphoton BDT Retraining
- **2** HGCAL project:
 - HGCAL gantry assemble works
 - Vacuum system update
 - Glue system update
- **3** Plans for near future

Resonant $HH \rightarrow WW\gamma\gamma$

Resonant HH $\rightarrow WW\gamma\gamma$

Physics Motivation

- Search for resonant di-Higgs production at LHC
 - Many BSM theories predict direct or indirect production of new resonances with enhanced cross-section : such as Warped extra dimension (WED), Next-to-minimal supersymmetric standard model(NMSSM) with Radion(spin0) or KK-Graviton(spin2)
 - direct coupling with Higgs boson
- Resonant HH $\rightarrow WW\gamma\gamma$ has not been studied yet
- $WW\gamma\gamma$ final state:
 - WW has second large BR in Higgs decay
 - $\gamma\gamma$ has good mass resolution, easy to trigger and good efficiency
- W decay modes:

M250 M500 M1000

M2000

4000

Object selection & Event selection & GEN study

>Add our object selection and event selection in HiggsDNA

- Created a tagger for HH → WWγγ preliminary selection(same as previous presentation (2022.04.15) selection criteria)
- Add GEN study in HiggsDNA
 - Created a gen_selection function based on numba to get the gen information for the DNN training

Form the 4 gen quarks (reco jets) as W boson based on invariant mass based on awkward array

"variables_of_interest" : [
 ["GenW1_qq","pt"],["GenW1_qq","eta"],["GenW1_qq","phi"],["GenW1_qq","mass"],
 ["GenW2_qq","pt"],["GenH2_qq","eta"],["GenH2_qq","phi"],["GenHW2_qqq_Higgs","pt"],["GenHWW_qqqq_Higgs","eta"],["GenHWW_qqqq_Higgs","phi"],["GenHWW_qqqq_Higgs","mass"]

考核

Preliminary limit result

- Flashgg final fit framework
- FullyHadronic channel
- plots mass point 300,700,1250,3000 manually, will try to write a script to run all mass points at once.
- Signal modeling:
 - only 125 GeV mass point with the best $\chi^2/n(dof)$ score
- Background modeling:
 - Perform f-Test to decide which functions(I require (weak) goodness-of-fit criteria)
 - choice of bkg pdf treated as additional discrete nuisance parameter

Limit result:

 \geq

m_{vv} (GeV)

$H \rightarrow \gamma \gamma$ mass measurement with full Run2 dataset

Introduction:

- XGBoost
- MC samples from Legacy16 + UL17 + ReReco18
 - opp from diphoton+jets MC
 - opf + ff from GJets and QCD MC
 - QCD samples down-weighted by a factor of 25 to prevent overtraining due to the high weights of QCD dijet samples
- so-called "default" training in the following slides
- Trying to retrain diphoton BDT for each UL16, UL17 and UL18 with
 - Data-driven QCD+Gjets (ff+pf)
 - Two API:
 - TMVA BDT in ROOT: so-called 'TMVA' in the following slides
 - XGBoost : so-called 'XGBoost' in the following slides
- Present the retraining results for UL17&UL18 today

考核

DiPhoton BDT retraining with data-driven QCD for $H{\rightarrow}\gamma\gamma$ with Run2 UL

Data-Driven QCD

> Similar strategy as [HIG-19-013] (ttH($\gamma\gamma$))

Events which fail the pre-selection cut on minimum photon ID MVA in data:

- "low photon ID sideband" : maxID>-0.9 and -0.95 < minID < -0.9</p>
- > Generating a new value of the minimum photon ID MVA in the range [-0.9, max photon ID MVA] randomly, with probability for each value dictated by the **fake PDF from fake photons in** γ **+jets MC** ("pf" with maxID>-0.9 and minID>-0.95)
- > To have the proper shape for the maximum photon ID MVA distribution, events are assigned an additional, individual weight

Normalization and reweighting

Normalization SFs of MC pp and data-driven pf+ff: 2D fit on min. and max. ID MVA

> Min ID MVA photon σ_E/E reweighting: σ_E/E distribution in data-driven pf+ff reweighted to that of "data-MC $\gamma\gamma$ ", to obtain better data/MC agreements on the mass resolutions (σ_{rv} and σ_{wv})

> Photon PT reweighting: 2D pT of (min ID-MVA γ , max ID-MVA γ) in data-driven pf+ff reweighted to "data-MC $\gamma\gamma$ ", ", to obtain better data/MC agreements on pT/mass for each photon candidate

> Checked data/MC comparisons for all input training variables, with data/MC mass-sideband events : next slide

• Events passing $H \rightarrow \gamma \gamma$ preselection

Diphoton BDT Retraining(UL17 & UL18):

Samples :

- Signal: 125 GeV ggH, VBF, VH, ttH signal events
- Backgrounds: MC pp (Diphoton+jets) plus data-driven pf+ff

Training strategy closely follows that in HIG-16-040/HIG-19-015

Same selections and 10 input variables to train the classifier

• Signal events is weighted, to assign a higher score for the events with a better mass resolution

$$w_{sig} = \frac{p_{vtx}}{\sigma_{rv}} + \frac{1 - p_{vtx}}{\sigma_{wv}}$$

• Also re-weight events to equalize the sum of weights of the signal and background for XGBoost

Retraining with two different API:

- TMVA BDT : ROOT api, identical configurations as in HIG-16-040, used for the cross check of the retraining performance
- XGBoost : python library, sklearn api

> 70% of events for training and the rest 30% of events for testing, for both sig and bkg

Training results

TMVA BDT:ROC curve & score distributions

!H:!V:!CreateMVAPdfs:BoostType=Gra d:UseBaggedBoost: :GradBaggingFrac tion=0.6:SeparationType=GiniIndex:n Cuts=2000:MinNodeSize=0.125: Shrinkage=0.1:NTrees=2000:!UseYes NoLeaf:MaxDepth=3

Same as in HIG-16-040

XGBoost: ROC curve & score distributions

Zhenxuan Zhang IHEP(Beijing)&CMS

DiPhoton BDT retraining with data-driven QCD for $H{\rightarrow}\gamma\gamma$ with Run2 UL

Performance comparisons

- Signal: all 125 GeV signals events
- Bkg: MC pp plus data-driven pf+ff

> AUC values:

Zhenxuan Zhang

UL17	UL18
Default AUC: 0.87807	Default AUC: 0.9025
TMVA AUC: 0.89251	XGB better than TMVA, so UL18 didn't cross check with TMVA
XGB AUC: 0.89284	XGB AUC: 0.9159

Better performance from the retraining compared to the exist "default" training

Almost identical performance between "TMVA" and "XGBoost" retraining

考核

• A tiny better performance with "XGBoost"

IHEP(Beijing)&CMS

2022/9/2

DiPhoton BDT retraining with data-driven QCD for $H \rightarrow \gamma \gamma$ with Run2 UL

Performance comparisons for UL17:

For the best event category of the mass measurement, as the preliminary results presented by Neil (link) (with the transformed "default" diphoton BDT > 0.932), the sig eff is ~2.5% with respect to the preselection

> With the same sig eff, compared bkg eff:

- "default" training: 0.093%
- "TMVA" retraining: 0.091%
- "XGBoost" retraining: 0.085%

> Compared to the "default" training, "XGBoost" retaining can improve S/\sqrt{B} by ~5%

2022/9/2

DiPhoton BDT retraining with data-driven QCD for $H \rightarrow \gamma \gamma$ with Run2 UL

Performance comparisons for UL18

For the best event category of the mass measurement, as the preliminary results presented by Neil (link) (with the transformed "default" diphoton BDT > 0.926(common boundary), the sig eff is ~2.7% with respect to all events passing the preselection

> With the same sig eff, compared bkg eff:

- "default" training: 0.109%
- "XGBoost" retraining: 0.093%

➤ Compared to the "default" training, "XGBoost" retaining can improve S/\sqrt{B} by ~8% and AMS(= $\sqrt{2((S+B)\ln(1+\frac{S}{B})-S)}$) by ~5%

Validations

- Validations with Data/MC events in mass side-band
 - UL2017 "DoubleEG" data
 - MC: MC pp plus data-driven pf+ff
 - Events passing $H \rightarrow \gamma \gamma$ preselection

\succ Validations with Z \rightarrow ee events

- Samples: UL2017 "SingleElectron" data triggered with "HLT_Ele32_WPTight_Gsf*", and DY MC
- Events passing $H \rightarrow \gamma \gamma$ preselection, but with inverted electron veto requirement
- Mass of diphoton candidates: [80,100] GeV

Data/MC Validations UL17

Good data/MC agreement

Agreements better than the data/pure MC comparison

Events in mass side-band MC: MC pp plus data-driven pf+ff

Data/MC Validations

Good data/MC agreement

Agreements better than the data/pure MC comparison

2022/9/2

考核

Zhenxuan Zhang IHEP(Beijing)&CMS

DiPhoton BDT retraining with data-driven QCD for $H \rightarrow \gamma \gamma$ with Run2 UL

Validations with $Z \rightarrow ee UL17$

Zhenxuan Zhang IHEP(Beijing)&CMS

Not yet include the **systematics** from photon ID MVA and photon energy resolution $\sigma_{\rm E}/{\rm E}$

2022/9/2

CMS

"transformed"

0.2

Zhenxuan Zhang

0.4

0.6

0.8Diphoton BDT score

IHEP(Beijing)&CMS

Events/0.03

 10^{7}

 10^{6}

 10^{5}

2.0

0.0

0.0

Hardware work

Hardware works

HGCAL gantry works:

- Vacuum system update:
 - In order to satisfy the official requirement of multiple assemble task, and out of the consideration of the stability and reliability of the vacuum system, we improve our vacuum system by:
 - Add more pipeline so that we can control more channel at the same time to meet the need of multiple assembling task
 - Quantify the rate of vacuum by using vacuum detector and check pipeline vacuum one by one to make sure the vacuum system work fine
 - Package the whole vacuum system to a box to avoid of accidentally touch
- Glue system update
 - Since the module patter have some update, we need to update our glue pattern too
 - Add a new function to add a glue point in the module
 - Check the new glue pattern and it works fine

考核

Zhenxuan Zhang IH

IHEP(Beijing)&CMS

Summary and plans

Summary

> Resonant $HH \rightarrow WW\gamma\gamma$:

- Transform object selection, event selection, gen selection to HiggsDNA framework
- Have a preliminary limit result
- \succ $H \rightarrow \gamma \gamma$ mass measurement with full Run2 dataset:
 - Retrain diphoton BDT for UL17 & UL18 and presented in CMS Hgg working meeting (<u>07/07/2022</u> & <u>28/07/2022</u>)
 - Improve the significance by 5% & 8% for UL17 & UL18
- > Hardware works:
 - Update vacuum system
 - Update glue system

Plans:

> Resonant $HH \rightarrow WW\gamma\gamma$:

• follow the previous result to make a complete version and have a presentation in Higgs meeting

> $H \rightarrow \gamma \gamma$ mass measurement with full Run2 dataset:

- retrain diphoton BDT for UL2016 preVFP and postVFP, with the same strategy (data-driven QCD and XGboost)
- focus more on the systematic part

> Hardware part:

- ready for the assemble works
- focus more on teaching new students

Zhenxuan Zhang IHEP(Beijing)&CMS

2022/9/2

考核

27

Data/MC comparisons of the 10 input features (UL17 cont.)

> Events in mass sideband, after $H \rightarrow \gamma \gamma$ preselection

MC: MC pp plus datadriven pf+ff

Good data/MC agreement

2022/9/2

Data/MC comparisons of the 10 input features UL18

S CMS

Zhenxuan Zhang IHEP(Beijing)&CMS

考核

Data/MC comparisons of the 10 input features (UL18 cont.)

> Events in mass side-band, after $H \rightarrow \gamma \gamma$ preselection

MC: MC pp plus datadriven pf+ff

> Good data/MC agreement

考核

DiPhoton BDT retraining with data-driven QCD for $H{\rightarrow}\gamma\gamma$ with Run2 UL

Validations of the inputs with $Z \rightarrow ee UL17$

CMS Preliminary

0.5

41.5 fb⁻¹ (13TeV)

Subleading y ID scores

考核

Z → ee data / 0.01 $Z \rightarrow ee MC$ 1000 MC Stat. Err. nts **Good data/MC** Ne l 800 agreement data/MC data/MC 0.5 0.2 0.6 0.8 Leading y ID scores 41.5 fb⁻¹ (13TeV) CMS Preliminary 02 ĉ Z → ee data 2.2 F $Z \rightarrow ee MC$ C Ó 2Ē MC Stat. Err. 1.8 1.6 1.4 1.2 0.8 0.6 0.4 data/MC

Zhenxuan Zhang IHEP(Beijing)&CMS

2022/9/2

0.5

Subleading $\gamma \eta_{cc}$

DiPhoton BDT retraining with data-driven QCD for $H{ ightarrow}\gamma\gamma$ with Run2 UL

Validations of the inputs with $Z \rightarrow ee UL17$ (cont.)

CMS Preliminary

×10³

1000

800

600

400

200

Events / 0.001

data/MC

Good data/MC agreement

-0.8

-0.4

0.5

0.8

coso

0.6

考核

DiPhoton BDT retraining with data-driven QCD for $H \rightarrow \gamma \gamma$ with Run2 UL

Zhenxuan Zhang IHEP(Beijing)&CMS

DiPhoton BDT retraining with data-driven QCD for $H{\rightarrow}\gamma\gamma$ with Run2 UL

Validations of the inputs with $Z \rightarrow ee UL18$ (cont.)

> Good data/MC
agreement

考核

 σ_{rv}