

中國科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

PFA ScECAL prototype update

Yazhou Niu (USTC)

On behalf of the CEPC Calorimeter working group

CEPC DAY, 22 Jan. 2021

CEPC Sc-ECAL prototype

scintillator strips

Ecal Basic Unit (EBU)

Super-layer: two EBU and absorber layers integrated

 \succ Energy resolution $< 16\%/\sqrt{E}$, position resolution $< 10mm \ \times 10mm$

> One EBU: 210 sensitive cells of scintillator strip coupling with SiPM

- Scintillator strips : $2mm \times 5mm \times 45mm$
- SiPM (HPK) : S12571-010P (24 layers) and S12571-015P (8 layers)
- Super-layers: two alternate of EBU and absorber layers integrated
- Complete Sc-ECAL prototype has been fabricated
 - Transverse dimension : 226 mm × 222 mm
 - Radiation length : 22 X₀

First beam test at IHEP E3

- IHEP E3 beam line: secondary particle beam
 - Mixed with proton/pion: proton dominate
 - Momentum : 300MeV-1.2GeV
 - Event rate: less than 100 per minute
- Task : learn to do beam test
 - Combined test with other detector
 - Event build through triggerID
 - "rehearsal" for future more beam test
- Data collection
 - 500 MeV, 800 MeV, 1 GeV momentum measured
 - Total 12 thousands events collected
 - More detailed analysis are ongoing

proton@1GeV candidate

3

Long-term cosmic ray test

- ScECAL has been rotated by 90 degree
 - Coincidence trigger of Layer1 & Layer29
 - Event rate : ~ 16 per minute
 - Target to collect ~ 400 thousands
- Position resolution (track fitting)
- Cell-to-cell MIP calibration (track correction)

Pedestal stability

Cosmic ray test result

Some pre-selections are needed

20

25

Number of Total Hit Layers

30

10

EBU with 10um SiPM

Cosmic ray track finding and fitting

• A preliminary algorithm has been performed

	preSelections	Cut	Efficiency
		$TotalHitLayer \ge 22$	92%
		$TotalHitStrips \leq 64$	99.6%
		$ADC \geq 5\sigma$	99%
	Iteration Fitting	All hits	
		$ Pos_{x/y} - tracking \le (47.5, 5, 7.5)$	
	Track Selections	$\begin{aligned} Intercept_{x/y} &\leq 114 \\ \varphi_{x/y} &\leq 0.7 \end{aligned}$	98.2%
		$\sigma_{x/y}^2 \le 9.6$	98.3%
		$TotalHitLayer_{x/y} > 6$	99.8%
	Alignment	Pos _{x/y} – track fitting	

Geant4 simulation

- A standalone package based on GEANT4 developed
- The track finding and fitting algorithm works fine
- The intrinsic angle resolution is about 0.7 degree
- Cosmic ray generator would be performed

- CEPC Sc-ECAL prototype
 - 30 layers
 - Absorber: WCu (85:15) 3.2 mm
- Version: Geant4-10.2.1
- Physics List: QGSP_BERT
- Cut: > 0.5 MIP

mu-@ 4GeV, plane, iso 0-30 degree

Cosmic ray test results

- Position resolution better than 3 mm Achieve the requirement for ScECAL
 - Strongly affected by large angle scattering
- Efficiency achieve about 90% for all layers
 - Layer 1 & 29 are trigger layers
 - Sensitive area is about 93.5%

ADC correction

Temperature monitor

• Each layers equipped 16 temperature sensors (0 $^{o}C \sim 85 ~^{o}C, \pm 0.1 ~^{o}C$)

Temperature reconstruction

- The temperature difference in one layer about $3 \ ^{o}C$
- Reconstruction algorithm : Inverse Distance Weighted
- The temperature reconstructed of each SiPM location

(W: temperature, Q: weight, L: length)

SiPM gain correction

- SiPM gain temperature dependence -2% / ^{o}C
- Setting 18 °C as reference temperature

Two periods with large temperature difference

Summary and plan

- A long term cosmic ray test is ongoing
- Position resolution better than 3mm, required $5mm \times 5mm$ granularity by MOST project for CEPC ScECAL
- Correction of incident angle and temperature effect on the ADC measurement have been implemented
- Cell-to-cell MIP response calibration is ongoing
- Postpone the March 2021 beam test at DESY and applying reserve a latter time slot

