Measurement of H->ZZ* at the CEPC

<u>Ryuta Kiuchi</u>, Yanxi Gu, Min Zhong, Shih-Chieh Hsu, Xin Shi, Kaili Zhang

2020-01-29

Contents

- Status report on HZZ analysis
 - Introduction
 - Brief description of the analysis flow
 - Obtained results
- Comparison with that in the CEPC white paper
- Summary

Introduction to HZZ channel

• Since the state has 3 Z bosons, there are multiple combinations of final products.

• Final states having $(\mu^+\mu^-, jj, \nu\nu)$ are promising channels, owing to its clear signature. On the other hand, its low statistics could limit the final precision.

• This presentation summarizes the updated results from channels with the decay product combination of $(\mu\mu, jj, \nu\nu)$

Table : Promising decay product combinations

Higgs boson width and HZZ measurement

- It is well known that the Higgs boson width and its precision can be deduced using the H->ZZ* precision using following relationship:
 - BR(H \rightarrow ZZ) = $\Gamma(H\rightarrow$ ZZ)/ $\Gamma_{\rm H} \propto g_{\rm HZZ}^2/\Gamma_{\rm H}$

•
$$\sigma(\text{ZH}) \propto g_{\text{HZZ}}^2$$

$$\sigma(ZH) \times BR(H \rightarrow ZZ) \propto \frac{g_{HZZ}^2 \times g_{HZZ}^2}{\Gamma_H}$$

4

- Independent measurement of $_{\sigma}({\sf ZH})\times {\sf BR}({\sf HZZ})$ and $_{\sigma}({\sf ZH})$
- H->WW* measurement can do the same calculation and current study shows that H->WW* precision will dominate the Higgs width precision (please refer the CEPC white paper)

Monte Carlo Simulation

- CEPC_v4 (240GeV, 3T) configuration
 - Generator: Whizard 1.95
 (with ISR, L=5.6 ab⁻¹, M_{higgs}=125 GeV)
 - Simulation :
- Geant4 and Mokka with ISR and bremsstrahlung effects si
 - Reconstruction: Marlin and ArborPFA

Signal Sample

-- $Z \rightarrow \mu\mu$, $H \rightarrow ZZ^* \rightarrow \nu\nu qq$ -- $Z \rightarrow \nu\nu$, $H \rightarrow ZZ^* \rightarrow \mu\mu qq$ -- $Z \rightarrow qq$, $H \rightarrow ZZ^* \rightarrow \nu\nu\mu\mu$

Analysis flow chart

Signature of $Z(->\mu^+\mu^-)H(->ZZ^*)$

Identify two muons from initial Z boson using invariant & recoil mass as usual

е

Signature of $Z(->\mu^+\mu^-)H(->ZZ^*)$

Distribution of invariant mass except two muons clearly shows each decay mode.

Note that above distribution is obtained by allowing $ZZ^* -> 4v$ events to be saved, which are dropped normally in our analysis.

Each signal shows 2 separate distribution in this kinematic phase space.

Separation on recoil mass distribution

• 2D Recoil mass distribution shows overwrap of two signal channels

Black : $Z \rightarrow \mu\mu$, $H \rightarrow ZZ^* \rightarrow \nu\nu \eta q$

```
\mathsf{Red}: \mathsf{Z} {\rightarrow_{\mathsf{V}}} \nu, \, \mathsf{H} {\rightarrow} \mathsf{Z} \mathsf{Z}^* {\rightarrow} \mu \mu q q
```

• To make each category exclusive, in other words, no double counting of events, "separation" has been performed on the recoil mass distribution.

Overview table I. Cut-based analysis

Table 1 Overview of the requirements applied when selecting events (cut-based).

		D	1					
	Pre-selections							
N(l) = 2, where lepton	s(l) should pass	the isolation crite	eria					
$N(\mu^+) = 1, N(\mu^-) = 1$	$\lim E(\mu^{\pm}) > 1$	3 GeV						
N(jet) = 2								
Selection (Cut-based)	$\mu\mu\mathrm{H} u u qq$	$\mu\mu Hqq u u$	$ u u H \mu \mu q q$	$ u u Hqq \mu \mu$	$qqH\nu\nu\mu\mu$	$qq H \mu \mu \nu \nu$		
Mass order	$M_{\rm miss} > M_{jj}$	$M_{\rm miss} < M_{jj}$	$M_{\mu\mu} > M_{jj}$	$M_{\mu\mu} < M_{jj}$	$M_{\rm miss} > M_{\mu\mu}$	$M_{\rm miss} < M_{\mu\mu}$		
$M_{\mu\mu}$ (GeV)	[80,	100]	[60, 100]	[10, 60]	[15, 55]	[75, 100]		
M_{jj} (GeV)	[15, 60]	[60, 105]	[10, 55]	[60, 100]	[75,	105]		
$M_{\rm miss}$ (GeV)	[75, 105]	[10, 55]	[75,	110]	[70, 110]	[10, 50]		
$M_{\mu\mu}^{\rm recoil}$ (GeV)	[110,	, 140]	-	-	[175, 215]	[115, 155]		
$M_{\rm vis}~({\rm GeV})$	-	[175, 215]	[110,	, 140]	[115, 155]	[185, 215]		
M_{ii}^{recoil} (GeV)	[185, 220]	-	-	-	[110,	140]		
$N_{\rm PFO}$	[20, 90]	[30, 100]	[20, 60]	[30, 100]	[40, 95]	[40, 95]		
$ \cos \theta_{\rm vis} $			<	0.95				
$\Delta \phi_{ZZ}$ (degree)	[60, 170]	[60, 170]	< 135	< 135	-	[120, 170]		
Region masking	$not-\nu\nu HZZ$	& not-qqHZZ	not - $\mu\mu HZZ$	& not-qqHZZ	not-vvHZZ &	$z not-\mu\mu HZZ$		

Overview table II. BDT-based analysis

Table 3 Overview of the requirements applied when selecting events (BDT-based).

Pre-selections							
N(l) = 2, where le	eptons(l) should	pass the isolation	ı criteria				
$N(\mu^+) = 1, N(\mu^-)$	$E(\mu) = 1$ with $E(\mu)$	=) > 3 GeV					
N(jet) = 2							
Selection (MVA)	$\mu\mu\mathrm{H} u u qq$	$\mu\mu Hqq u u$	$ u u H \mu \mu q q$	$ u u Hqq \mu \mu$	$qqH\nu u\mu\mu$	$qqH\mu\mu u u$	
Mass order	$M_{\rm miss} > M_{jj}$	$M_{\rm miss} < M_{jj}$	$M_{\mu\mu} > M_{jj}$	$M_{\mu\mu} < M_{jj}$	$M_{\rm miss} > M_{\mu\mu}$	$M_{\rm miss} < M_{\mu\mu}$	
$M_{\mu\mu}$ (GeV)	[80,	100]	-	-	-	-	
M_{jj} (GeV)	-	-	-	-	[75,	105]	
$M_{\rm miss}$ (GeV)	-	-	[75,	110]	-	-	
$M_{\mu\mu}^{\rm recoil}$ (GeV)	[110,	140]	-	-	-	-	
$M_{\rm vis}$ (GeV)	-	-	[110,	140]	-	-	
M_{ii}^{recoil} (GeV)	-	-	-	-	[110,	, 140]	
$N_{\rm PFO}$	[20, 90]	[30, 100]	[20, 60]	[30, 100]	[40, 95]	[40, 95]	
$\cos \theta_{\rm vis}$			<	0.95			
Region masking	not- $\nu\nu$ HZZ \gtrsim	& not-qqHZZ	not - $\mu\mu HZZ$	& not-qqHZZ	not-vv HZZ &	k not-μμHZZ	
$BDT \ score$	> 0.14	> 0.01	> -0.01	> -0.01	> -0.04	> -0.01	

Number of expected events & efficiency

Table 2 Summary of the selection efficiency ϵ and the number of expected events N_{evt}. for each category after the final event selection in the cut-based analysis..

(Cut-based)	$\mu\mu H\nu \mu$	νqq	$\mu\mu\mathrm{H}q$	$q\nu\nu$	$\nu\nu$ H μ	$\mu q q$
Process	ϵ [%]	Nevt.	ϵ [%]	Nevt.	ϵ [%]	Nevt.
Signal ("dominant")	38	53	36	50	54	76
Signal ("sub")	6	8	10	14	6	9
Higgs decays Bg.	$2.2 \cdot 10^{-3}$	25	$7.0 \cdot 10^{-2}$	794	$5.3 \cdot 10^{-4}$	6
SM four-fermion Bg.	$3.7 \cdot 10^{-6}$	4	$4.9 \cdot 10^{-4}$	520	$5.6 \cdot 10^{-6}$	6
SM two-fermion Bg.	0	0	0	0	0	0
	$\nu \nu Hqq$	$\mu\mu\mu$	$qqH\nu\nu$	$\mu\mu$	$qq\mathrm{H}\mu\mu$	ινν
Process	ϵ [%]	Nevt.	ϵ [%]	Nevt.	ϵ [%]	Nevt.
Signal ("dominant")	36	51	26	37	23	32
Signal ("sub")	8	11	7	10	4	6
Higgs decays Bg.	$1.0 \cdot 10^{-2}$	114	$2.4 \cdot 10^{-2}$	275	$1.4 \cdot 10^{-2}$	160
SM four-fermion Bg.	$4.3 \cdot 10^{-5}$	46	$1.5 \cdot 10^{-4}$	157	$1.8 \cdot 10^{-4}$	190
SM two-fermion Bg.	0	0	0	0	0	0

• Signal efficiency : 27 - 60 %

<u>BDT analysis</u>

- BDT training and cuts are applied after several simple cuts : M_{xx} , M^{recoil}_{xx} , N_{pfo} , $\cos\theta$, etc.
- BDT cut position is optimized based on the measure, $S/\sqrt{(S+B)}$, which to be maximized.

Events/GeV $Z \rightarrow \mu \mu$, $H \rightarrow ZZ^* \rightarrow \nu \nu \eta q$ 10^{2} 10 10 -0.3 -0.2 -0.1 -0.5 -0.4 0 0.1 0.2 0.3 BDT score

Variables used in the BDT

P _{all visible}	E _{leading-jet}	$Cos(\theta)$
Pt _{all visible}	E _{sub-leading-jet}	$(\operatorname{RecoilM}_{\operatorname{dimuon}})$
M _{dijet}	N(pfo)	(M _{all visible})
M _{dimuon}	Angle _(dijet-dimuon)	

Obtained precision

Obtained uncertainty from each category. Both of cut-based and BDT-based results are shown together.

Category	$\frac{\Delta(\sigma \cdot BR)}{(\sigma \cdot BR)} \ [\%]$		
	cut-based	BDT	
$\mu\mu H \nu \nu q q^{ m cut/mva}$	15.5	13.6	
$\mu\mu\mathrm{H}qq u u^{\mathrm{cut/mva}}$	48.0	42.1	
$ u u H \mu \mu q q^{ m cut/mva}$	11.9	12.5	
$ u u \mathrm{H} q q \mu \mu^{\mathrm{cut}/\mathrm{mva}}$	23.5	20.5	
$qq \mathrm{H} u u \mu \mu^{\mathrm{cut}/\mathrm{mva}}$	45.3	37.0	
$qqH\mu\mu\nu\nu^{ m cut/mva}$	52.4	44.4	
Combined	8.34	7.89	

Figs. Recoil mass distribution from two best categories.

H->ZZ* part in the CEPC white paper

$$Z \rightarrow \mu\mu, H \rightarrow ZZ^* \rightarrow \nu\nu\eta\eta$$

- $M_{\mu\mu}:$ 80-100 GeV
- $M^{recoil}_{\mu\mu}$: 120-160 GeV
- M_{jj}:10-38 GeV
- $P_t :> 10 \text{ GeV}$

$\underline{Z \rightarrow \nu \nu}, H \rightarrow ZZ^* \rightarrow |+|^- qq$

- Visible Energy : < 180 GeV
- M_{missing}: 58-138 GeV
- Mass & pt cuts on lepton/jet pairs

Table 8. Expected relative precision for the $\sigma(ZH) \times BR(H \rightarrow ZZ^*)$ measurement with an integrated luminosity 5.6 ab⁻¹.

ZH final state		precision
$Z \rightarrow \mu^+ \mu^-$	$H \rightarrow ZZ^* \rightarrow v \bar{v} q \bar{q}$	7.2%
$Z \rightarrow \nu \bar{\nu}$	$H \rightarrow ZZ^* \rightarrow \ell^+ \ell^- q \bar{q}$	7.9%
	combination	4.9% 16

Comparison of results

	Precision from current analysis (cut-based)	Precision in the white paper [#]
Z→µµ, H→ZZ*→vvqq	15.5%	7.2%
$Z \rightarrow_{VV}$, $H \rightarrow ZZ^* \rightarrow \mu \mu qq$	11.9%	8.2%#
2 channels combined	9.43%	5.4%

[#] 7.9% in previous page is the combined results from $Z \rightarrow vv$, $H \rightarrow ZZ^* \rightarrow \mu\mu qq \& Z \rightarrow vv$, $H \rightarrow ZZ^* \rightarrow eeqq$ where the former precision of 8.2% is not separately shown in the white paper.

there are certain discrepancy here . . .

Comparison of final recoil mass

In comparison with the current analysis (left), the figure in the white paper (right) shows

Much larger signal events :

-- N(sig)~200 (old)

-- N(sig)~60 (current)

(smaller bg. events :)

Number of events ?

Using following numbers,

-- σ_{ZH} =204fb, L=5600 fb⁻¹, BR(H->ZZ) =2.64%, BR(Z->qq)=70%, BR(Z->_VV)=70%, BR(Z->_\mu\mu)=3.3%

N(
$$Z \rightarrow \mu\mu$$
, H \rightarrow ($Z \rightarrow \nu\nu$, Z* \rightarrow qq)) = 139 events

Number of signal of more than 200 is not what we expect, therefore, the possible scenarios would be,

- 1. The plot in the white paper is sum of 2 channel : $(Z \rightarrow_{VV}, Z^* \rightarrow_{qq}) + (Z \rightarrow_{qq}, Z^* \rightarrow_{VV})$ despite the requirement, M_{ij} : 10-38 GeV, is described.
- 2. Something wrong with the scaling in the old result

Ref: Situation of $Z \rightarrow \mu\mu$, $H \rightarrow (Z \rightarrow qq, Z^* \rightarrow \nu\nu)$

- Background components for $Z \rightarrow \mu\mu$, $H \rightarrow (Z \rightarrow qq, Z^* \rightarrow_{VV})$ channel
 - -- H→bb
 - -- H \rightarrow WW
 - -- zz-sl0mu-up/down

There are huge background to this channel ## N(sig) ~ 50 events

• Hard to bring the precision of this channel to the opposite one.

Remaining background components ("cut-based")

name	scale	final
e2e2h_bb	0.21896	457
e2e2h_cc	0.011032	6
e2e2h_e3e3	0.023968	6
e2e2h_gg	0.0326888819557	2
e2e2h_ww	0.08176	312
e2e2h_zz	0.010024	7
e3e3h_zz	0.009968099681	2
qqh_e3e3	0.4844	4
qqh_zz	0.20216	14
zz_sl0mu_up	1.09032214858	125
zz_sl0mu_down	1.08025726079	386
zz_sl0tau_down	1.10887174477	4
ww_sl0muq	1.2235862395	6

Other info. - 1

表 5.2 H->ZZ*所有衰变末态中统计误差 > 20%的衰变道的统计结果

 Obtained precision in Yugian's thesis is relatively close to current result. (But the thesis is published in

2017)

	信号事例数	信号效率	统计误差
e ⁺ e ⁻ vvjj	65±8	50.1%	15.1%
µ⁺µ⁻vvjj	88±9	67.3%	12.0%
vv e⁺e⁻jj	43±7	27.6%	18.6%
νν μ⁺μ⁻jj	90±9	57.4%	11.4%
νν jj μ⁺μ⁻	77±8	49.7%	12.9%

- Root files to make the distribution in the white paper, lack the "weight" information, and weight=1 is assumed (info. from Kaili)
- Background samples might only include the one which has large yield. (info. from Kaili)

Other info. - 2

What is not in our analysis but is described in Yuqian's thesis :

FSR correction

• LCFIPlus (but no description of usage of tagging information in HZZ analysis is found)

[Short Summary]

Although our analysis has a room to improve, not easy to reach the level in the white paper.

A possible scenario is that the old result was obtained by including very limited number of background events/components.

$H{\rightarrow}ZZ^*$ precision from the other future colliders

• ILC

-- $\Delta\,(\sigma\,\cdot\,\text{BR}(\text{HZZ}))/\sigma\,\cdot\,\text{BR}(\text{HZZ})$ = 18% with L=250 fb⁻¹ at 250 GeV

 \implies it is corresponding to ~5% by scaling the number of ZH events to that of the CEPC

-- Various HZZ final states are included in that estimation.

"ILC Higgs White Paper" arXiv:1310.0763

• FCC-ee

- -- $\Delta(\sigma \cdot BR(HZZ))/\sigma \cdot BR(HZZ) = 4.4\%$ with L=5 ab⁻¹ at 240 GeV
- -- No specific information about the HZZ final states analyzed is obtained yet.

Abada, A., Abbrescia, M., AbdusSalam, S.S. *et al.* FCC-ee: The Lepton Collider. *Eur. Phys. J. Spec. Top.* **228**, 261–623 (2019). https://doi.org/10.1140/epjst/e2019-900045-4

Summary

• H \rightarrow ZZ* decay is analyzed on the final state, having 2µ, 2v, and 2-jets.

• The final precision is obtained as 8.3% from the cut-based analysis and 7.9% from the BDT-based analysis.

• On the other hand, the past result in the white paper is ~5% which shows discrepancy, and we do not have clear conditions(s) to account this difference yet.

• Any suggestions are welcome .

Thank you very much !