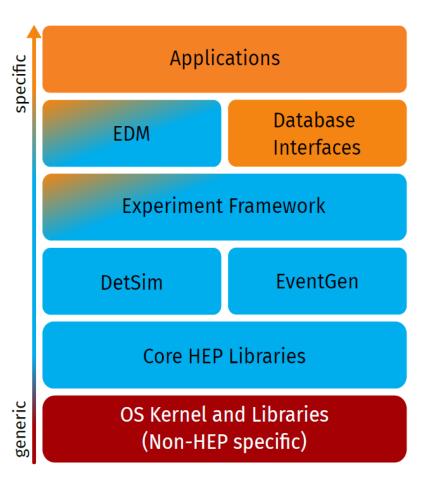
Key4hep and its application to the CEPCSW

Tao Lin

(on behalf of CEPC core software group)

IHEP


CEPC Physics and Detector Plenary Meeting

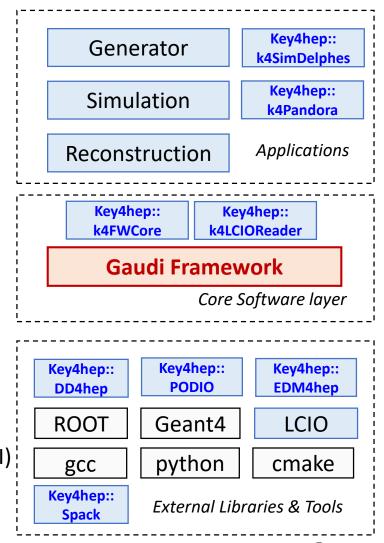
13 Jan 2021

Outline

- Overview of Key4hep project
- Status of Key4hep
- The application to CEPCSW
- Summary & Plan

HEP Software Stack

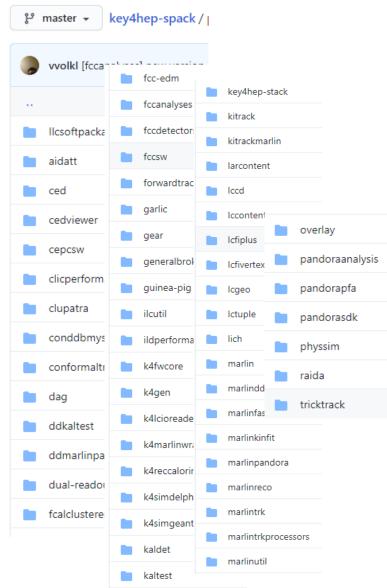
From Thomas Madlener, Epiphany Conference 2021


- Application layer of modules / algorithms / processors performing physics task
 - (PandoraPFA, FastJet, ACTS, ...)
- Data access and representation layer including Event Data Model
- Experiment core orchestration layer
 - (Marlin, Gaudi, CMSSW, ...)
- Specific components reused by many experiments
 - (DD4hep, Delphes, Pythia, ...)
- Commonly used HEP core libraries
 - (ROOT, Geant4, CLHEP, ...)
- Commonly used tools and libraries
 - (Python, CMake, boost, ...)

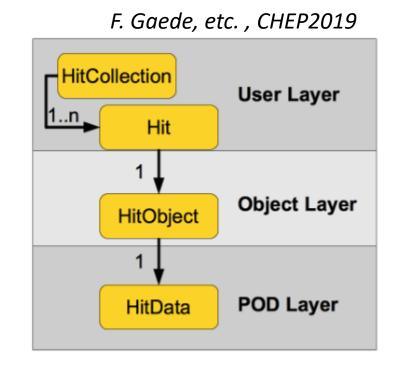
Overview of Key4hep (I)

- Motivation
 - Future detector studies rely on well maintained software to properly study possible detector concepts and their physics reach and limitations
 - Aim for a low maintenance common stack for future collider projects with ready to use "plug-ins" to develop detector concepts
- Future Collider Software Workshop (Bologna, June 2019)
 - CEPC, FCC, CLIC, ILC, SCTF
 - => Common software stack (Key4hep)
 - A turnkey system the share as many components as possible.
 - Re-use existing tools as much as possible.
 - Easy to use.
- Identified as important project in European Horizon 2020 and CERN EP R&D initiative.

Overview of Key4hep (II)


- Core components in Key4hep
 - Spack: manage the full software stack.
 - Gaudi framework: defines interfaces of all the software components and controls the event loop.
 - PODIO: toolkit to generate EDM
 - EDM4hep: generic event data model.
 - FWCore: manages the event data.
 - GeomSvc: DD4hep-based geometry management service.
- Software infrastructure
 - Documentation (Guide, Doxygen...)
 - Modern CMake
 - Automated builds and continuous integration (CI)
 - Distributed via CVMFS
 - Regular release

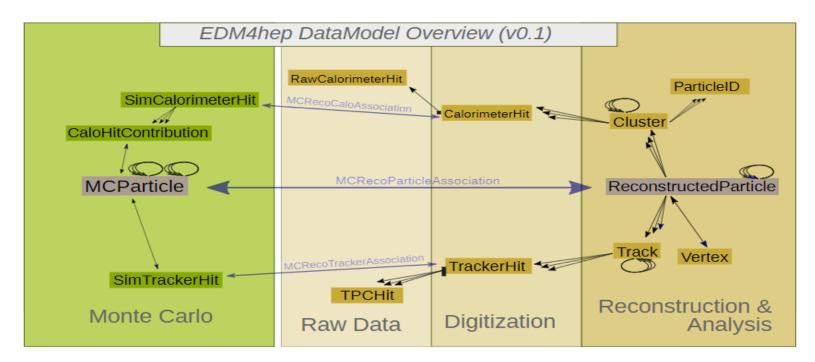
Key4hep-spack: Modern Software Stack Building


- Spack is a package manager
 - Originally developed by HPC community, independent of operating system.
 - Build all packages from source.
 - Handle the dependencies of all the packages.
 - Dealing with multiple configurations of the same package
 - Version, compilers, dependencies...
 - Several versions of the same package can coexist.
- Status
 - Starting in the beginning of 2020
 - Key contributions from ILC/CLIC, FCC, CEPC, ...
 - Spack based installation is already deployed in CVMFS

https://Key4hep.github.io/Key4hep-doc/

PODIO: an Event-Data Model toolkit

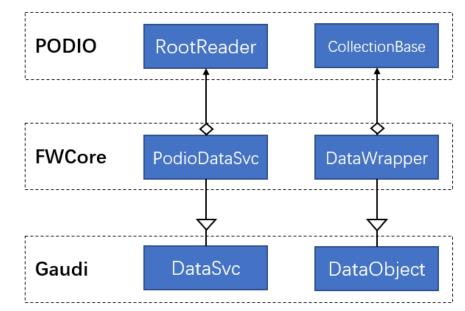
- Generate C++ code automatically from YAML files.
 - Support analysis in ROOT and Python.
- user layer (API):
 - handles to EDM objects (e.g. Hit)
 - collections of EDM object handles (e.g. HitCollection).
- object layer
 - transient objects (e.g. HitObject) handling references to other objects and vector members
- POD layer
 - the actual POD data structures holding the persistent information (e.g. HitData)



direct access to POD also possible - if needed for performance reason

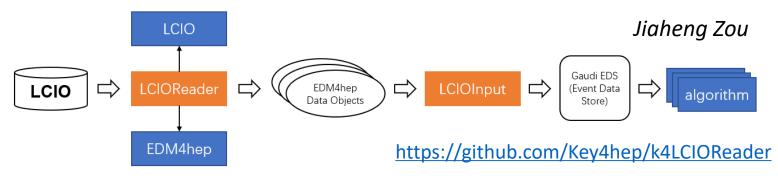
https://github.com/AIDASoft/podio

EDM4hep: the official Event Data Model


- Common EDM in Key4hep
 - The code is generated by PODIO.
 - The first version (v0.1) has been released recently

Github repository: https://github.com/Key4hep/EDM4hep

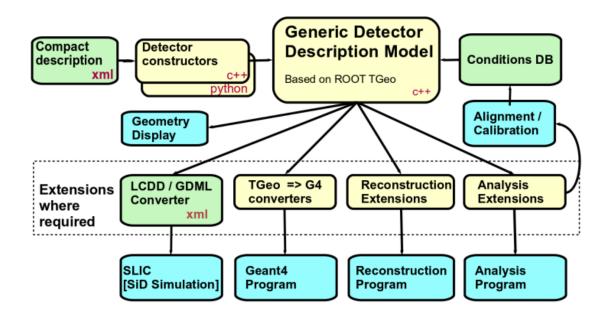
k4FWCore: integration with Gaudi


- k4FWCore is mainly used for the PODIO data handling in Gaudi
 - PodioDataSvc: a service for PODIO(in ROOT format) data I/O
 - DataWrapper: a PODIO data collection that managed in Gaudi EDS (Event Data Store)
- Status:
 - Recently switched to Gaudi v35

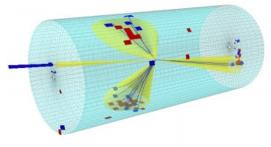
https://github.com/Key4hep/k4FWCore

Reading LCIO Data

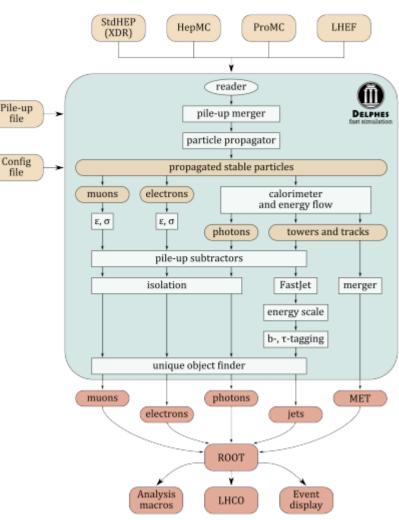
- k4LCIOReader: Generate EDM4hep data collections on the fly from LCIO input files in Gaudi
 - LCIOReader: read data from LCIO format files, and convert to EDM4hep data objects in memory
 - LCIOInput: register the converted data objects in Gaudi EDS, so that other algorithms can access the data


- SIO-backend in PODIO: save/read EDM4hep data objects in SIO format
 - SIO is originally a part of LCIO
 - Now a standalone project

https://github.com/iLCSoft/SIO


DD4hep: Detector Description Toolkit

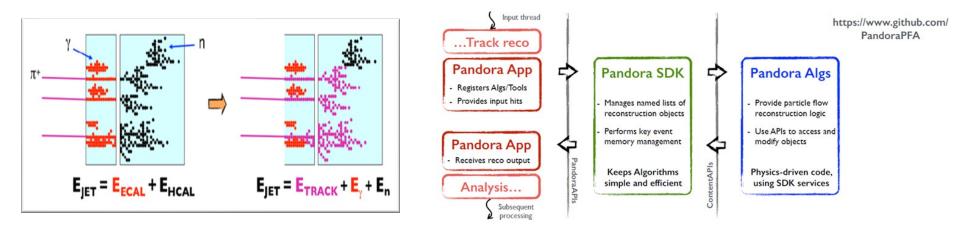
- Originally developed for ILC and CLIC but with all of HEP in mind.
- A complete detector description with a single source of information
 - Geometry, materials, visualization, readout, alignment, calibration, reconstruction, ...
- Covering the full life cycle of an experiment
 - Detector concepts, optimization, construction and operation


k4SimDelphes: Delphes to EDM4hep converter

- Delphes is a fast simulation tool based on a parameterized description of the detector for phenomenological studies.
- k4SimDelphes uses Delphes to do the simulation and reconstruction and creates output files in EDM4HEP format
- Status:
 - Work on full integration is ongoing
 - It will be adopted by CEPCSW when it is ready.

Delphes event display

Thomas Madlener & Valentin Volkl



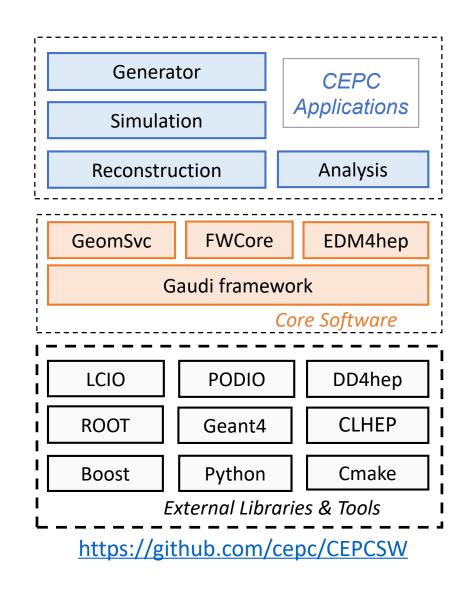
Workflow chart of Delphes fast simulation

k4Pandora: Run Pandora in Gaudi

Wenxing Fang

- Using PFA algorithm to do particle reconstruction is a common choice for future collider experiments, such as ILC, FCC, and CEPC.
- Pandora is a framework designed to solve pattern recognition problem. The algorithms can be arranged flexibly.
- The k4Pandora is a Pandora App designed using EDM4HEP data as input. It supports to read detector geometry information from DD4HEP or Gear.

k4MarlinWrapper: Run Marlin Processor in Gaudi


Andre Sailer

- The software of CLIC is also under migration from iLCSoft to Key4hep.
- A generic wrapper to execute the Marlin processors.
 - Use one Gaudi algorithm to run any Marlin processors.
 - Get LCIO event from Gaudi Data Store and call the marlin processors.
- Very minimal changes needed in Marlin
 - Make marlin::Processor::setParameters/setName public

	Marlin	Gaudi		
language	C++	C++		
working unit	Processor	Algorithm		
configuration language	XML	Python		
set up function	init	initialize		
working function	processEvent	execute		
wrap up function	end	finalize		
Transient data format	LCIO	anything		

CEPCSW: the first application of Key4hep

- Architecture of CEPCSW
 - external libraries
 - core software
 - CEPC applications for simulation, reconstruction and analysis.
- Core software
 - Gaudi framework: defines interfaces of all the software components and controls the event loop.
 - EDM4hep: generic event data model.
 - FWCore: manages the event data.
 - GeomSvc: DD4hep-based geometry management service.
- CEPCSW is already included in Key4hep software stack.

Xingtao Huang: https://indico.ihep.ac.cn/event/11444/session/12/contribution/169/material/slides/0.pdf5

CEPCSW: towards to Gaudi v35

- Gaudi v35 introduces major changes including
 - Modern CMake support. A lot of complicated CMake Macros are removed from Gaudi.
 - Deprecated APIs are removed.
- Status in CEPCSW:
 - The migration of all the 45 packages from Gaudi v34 to v35 is done.
 - Optimization of the CMake.
 - The configuration time is reduced from 5 min to ~40 seconds.
 - Support Make and Ninja build tools.

gaudi_add_module(GeomSvc
SOURCES src/GeomSvc.cpp
LINK
DetInterface
<pre>\${DD4hep_COMPONENT_LIBRARIES}</pre>
Gaudi::GaudiKernel
\${GEAR_LIBRARIES}
\${ROOT_LIBRARIES}
)
install(TARGETS GeomSvc
EXPORT CEPCSWTargets
RUNTIME DESTINATION "\${CMAKE INSTALL BINDIR}" COMPONENT bin
LIBRARY DESTINATION "\${CMAKE INSTALL LIBDIR}" COMPONENT shlib
COMPONENT dev)

- In the modern cmake, only need to declare the dependencies on target.
- The include directories and link libraries are resolved automatically.

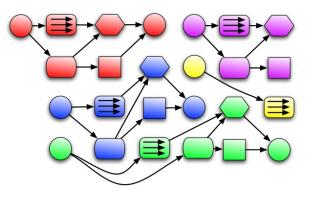
https://github.com/cepc/CEPCSW/pull/120

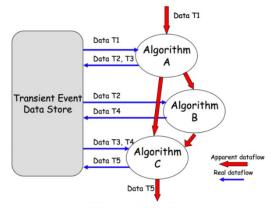
Tao Lin

Add a new external library to the Key4hep stack

• Motivation

Tao Lin

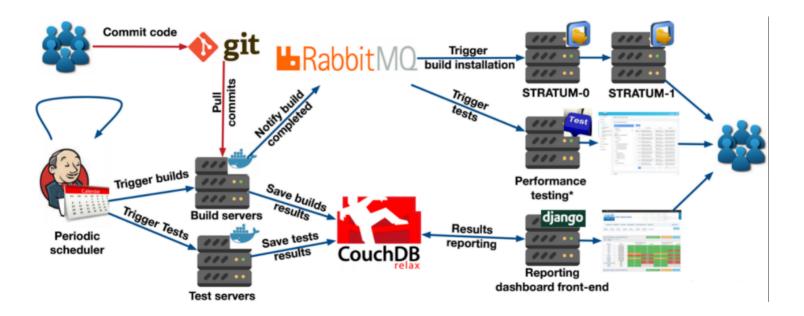

- Genfit is used in the reconstruction of Drift Chamber.
- Adding a new external library which is not included in spack will break the compilation of Key4hep.
- Cooperated with Genfit (DONE), spack (DONE) and Key4hep (WIP)
 - Waiting for a new release of Genfit.


🖵 GenFi	it / GenFit	③ Watch ▼ 14	Unstar 🛱 spa	k/spack		Unstar 1.9k %
<> Code	() Issues 13 1 Pull requests 1 O A	Actions III Projects 3 III V	Viki <> Co	e () Issues 1.3k [] Pull requests 349	Discussions 🕞 Actions	Projects 10
	he C++ standard from re	0		package GenFit #206	53	Edit
	onsistencies between Ge		and 🕞 Me	alalazo merged 2 commits into spack:deve	elop from mirguest:develop 💾 6 days ag	lo
∏xea ⊱ Merge	the eigen URL in CI #98 ed eckerpatrick merged 5 commits into GenFit:mest			nversation 2 -o- Commits 2 🗐 Ch	ecks (28) 🗄 Files changed (1)	
				mirguest commented 8 days ago	Contributor 😳 …	Reviewers
Conv	rersation (19 -O- Commits (5 F) Checks (0 🗄 Files changed 4		The GenFit will add release number soon, as me		🌒 alalazo
	mirguest commented on 9 Sep 2020	Contributor 😳 ····	Reviewe	branch will be used to install GenFit in current PR.		
	Dear GenFit developers, No		No revie	lao Lin		No one assigned
	I am Tao Lin from IHEP, working on the CEPCSW. Currently we try to build GenFit with LCG release. The p	weblam I found is the BOOT 6 is	Assignee No one a	mirguest force-pushed the mirguest:de	in mirguest force-pushed the mirguest:develop branch from fd9d4dc to eeea68f 8 days ago	

Multi-threading in CEPCSW

- In order to speed up the simulation and reconstruction in CEPCSW, the multi-threading solution is under investigation.
- GaudiHive: the multi-threaded Gaudi
 - Both event level and algorithm level
- Current status
 - Integration of the Garfield++ in algorithm level parallelism has been done.
- Next to do
 - Reading and writing EDM4HEP data using GaudiHive.
 - Try multi-threading in event level for Pandora reconstruction.

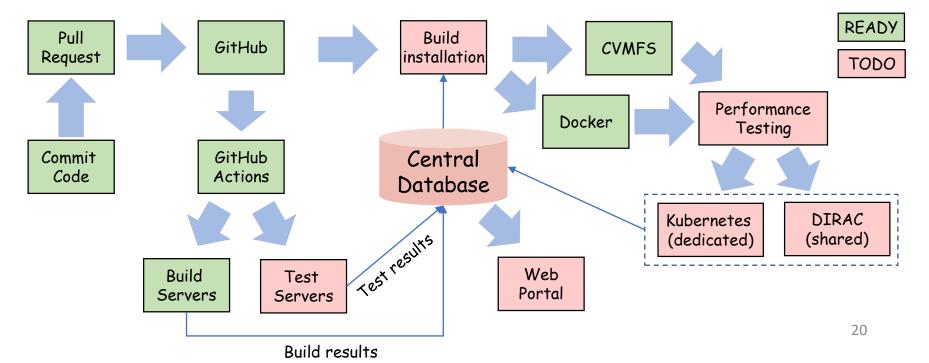
Wenxing Fang & Jiaheng Zou



Dataflow in Gaudi

Test and Validation framework (I)

- Based on the LHCb validation system:
 - A nightly build system based on Jenkins
 - A rich set of GitLab CI tests
 - Standard CI tests for simple tests, e.g. unit tests and simple analysis
 - Customized CI tests for complicated tests, e.g. complex analysis



Chris Burr's talk: https://indico.ihep.ac.cn/event/11444/session/12/contribution/173/material/slides/0.pdf

Test and Validation framework (II)

Teng Li & Tao Lin

- Validation system proposed for Key4hep
 - Based on the Github Action system
- Support wide range of features
 - Customized test runners, Nightly build and unit test, Performance test, Dashboard based on central database (CouchDB), Messaging components for long running tests

Test and Validation framework (III)

- Work in progress
 - Build self-hosted runners
 - Jenkins, Kubernetes and DIRAC
 - Build central database and messaging components
 - Customize test container image
 - Support tests on multiple platforms
 - Support CVMFS
 - Unify tools for unit test and performance test
 - Enable automatic software release
 - Auto building/registering container images
 - Auto CVMFS deployment
- Timeline
 - Prototype in 2021
 - Fully functioning in 2022

Summary & Plan

- Key4hep is the common software stack for future experiments.
 - Reusing the existing libraries and tools
 - Gaudi is one of the baseline frameworks
 - EDM4hep being developed as the common Event Data Model
- Since the meeting in Bologna in June 2019, Key4hep project becomes very active and lots of progress has been made.
- CEPCSW is fully integrated with the Key4hep by
 - Adopting EDM4hep, FWCore as well as Gaudi
 - Implementing k4LCIOReader and k4Pandora
- A short-term plan of China group
 - Multi-threading testing of EDM4hep with GaudiHive
 - An automatic testing and validation framework for Key4hep