

中國科學院為能物現湖完備 Institute of High Energy Physics Chinese Academy of Sciences

Measurement of B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$ at CEPC

Yuexin Wang, Manqi Ruan 2021.01.13

CEPC Physics and Detector Plenary meeting

Outline

- Brief introduction of B⁰ & Bs $\rightarrow \pi^{o}\pi^{o}$
- Reconstruction of π^{o}
- Separation of B⁰ and Bs
- Individual measurement of B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$
- Mixed measurement of B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$
- Summary

Brief introduction of B⁰ & Bs $\rightarrow \pi^{o}\pi^{o}$

$B^{0} \rightarrow \pi^{o}\pi^{o}$

$\Gamma(\pi^0 \pi^0) / \Gamma_{\text{total}}$ in PDG 2018						Г ₃₈₈ /Г
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT I	D	TECN	COMMENT	
1.59±0.26 OUR AV	/ERAGE	Error includes s	cale fact	or of 1.4	ł.	
$1.31 \pm 0.19 \pm 0.19$		¹ JULIUS	17	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.83 \pm 0.21 \pm 0.13$		¹ LEES	13D	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

(2017) https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.032007

$Bs \rightarrow \pi^o \pi^o$

Experimental upper limit

(1995) https://www.sciencedirect.com/science/article/pii/0370269395010420

Theoretical estimation

(2007) https://journals.aps.org/prd/abstract/10.1103/PhysRevD.76.074018 ~ 3×10-7					
$\bar{B}^0_s \to \pi^0 \pi^0$	ann	$0.012\substack{+0.001+0.013+0.000+0.082\\-0.001-0.006-0.000-0.011}$		$0.28\substack{+0.08+0.04+0.01\\-0.07-0.05-0.00}$	<210
$ar{B}^0_s o \pi^+ \pi^-$	ann	$0.024\substack{+0.003+0.025+0.000+0.163\\-0.003-0.012-0.000-0.021}$		$0.57\substack{+0.16+0.09+0.01\\-0.13-0.10-0.00}$	<1.36

Why choose B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$?

- Clear dependence on detector and reconstruction performance
 - $\pi^{\circ} \rightarrow \gamma \gamma$, EM object, ECAL performance
 - Bs, b-tagging, background rejection
- CEPC can achieve Tera-Z (~10¹⁰ Bs) >> LEP
 - promising to observe this rare decay

NH	16 November 1995	
		PHYSICS LETTERS B
ELSEVIER	Physics Letters B 363 (1995) 127-136	
	Search for neutral charmless B decays at	t LEP
	L3 Collaboration	

Since no candidate event has been found in data for any of the eight final configurations, upper limits at 90% confidence level have been set using the following numerical values: $N_{had} = 3.088.053$ as the number of Z bosons decaying to hadrons, $\Gamma_{\tilde{b}}/\Gamma_{had} = 0.222 \pm$ $0.003(\text{stat.}) \pm 0.007(\text{syst.})$ as the partial width of Z decays into b quark with respect to the hadronic decays [20], $f(b \rightarrow B_d^0) = 39.5 \pm 4.0\%$ and $f(b \rightarrow B_s^0) =$ $12.0 \pm 3.0\%$ as the fractions of $B_{d(s)}^0$ produced in the fragmentation of b quarks at LEP, in agreement with the available measurements [21], $Br(\eta \rightarrow \gamma \gamma) =$ 38.8% and $Br(\pi^0 \rightarrow \gamma \gamma) = 98.8\%$ [22]. The errors on

The following results are all based on fast simulation...

Reconstruction of π°

Decay channel: $\pi^{o} \rightarrow \gamma \gamma$

Pair up photons and select π^0 candidates according to the invariant mass

Optimize the mass window to get maximal efficiency × purity

$$\epsilon = \frac{Number \ of \ selected \ \pi^0 s \ that \ are \ true \ \pi^0 s \ in \ Monte \ Carlo}{Number \ of \ all \ generated \ \pi^0 s}$$

 $p = \frac{Number \ of \ selected \ \pi^0 s \ that \ are \ true \ \pi^0 s \ in \ Monte \ Carlo}{Number \ of \ all \ selected \ \pi^0 s}$

Reconstruction of π°

Maximal efficiency × purity

More details in CEPC Note: http://cepcdoc.ihep.ac.cn/DocDB/0002/000249/002/Pi0FastSimuReco.pdf

Separation of B⁰ and Bs

ECAL energy resolution better than $1\%/\sqrt{E \oplus 0.5\%}$ is required.

MCTruth Distribution of B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

(a) Energy spectrum of π^0 pairs in $B^0 \to \pi^0 \pi^0$ (left), $B_s^0 \to \pi^0 \pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

(b) $\theta_{\pi^0\pi^0}$ vs $E_{\pi^0\pi^0}$ in $B^0 \to \pi^0\pi^0$ (left), $B_s^0 \to \pi^0\pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

Cut chain

L3 Collaboration / Physics Letters B 363 (1995) 127-136

Table 1

134

Final cuts for all the B_d^0 and B_s^0 decay modes. The (I) and (II) modes refer to the search for a four photon final state, or one with a photon pair for one η and a single cluster for the other one, respectively. "Kinematics" refers to global kinematic variables of the $B_{d(s)}^0$ candidate, "Photons", "Cluster" and "2nd cluster" to the cuts on purity of photons, single cluster or most energetic π^0 single cluster, if any.

	Cut	$B^{0}_{d(s)} \rightarrow \eta \eta \ (1)$	$B^0_{d(s)} \rightarrow \eta \eta$ (II)	$B^0_{d(s)} \rightarrow \eta \pi^0$	$B^0_{d(s)} \rightarrow \pi^0 \pi^0$
Kinematics	$M_{\gamma\gamma}$ (GeV)	0.51-0.58	0.530-0.564	0.530-0.564	-
	$\cos \theta^*$	0.7	0.775	0.75	0.6
	$\theta_{\rm mesons}$	28°	25°	26°	23°
	Total energy	17.0	27.5	25.0	22.0
Photons	Energy (GeV)	0.3	0.5	1.0	_
	$\chi^2_{ m em}$	10.0	8.0	8.0	_
	θ_{3D} (mrad)	30.0	50.0	50.0	-
Cluster	Energy (GeV)	_	10.0	13.0	6.0
	$\chi^2_{\rm em}$	_	-	8.0	30.0
	θ_{3D} (mrad)	-	50.0	50.0	40.0
2 nd cluster	Energy (GeV)	-	_	-	14.0
	$\chi^2_{\rm em}$	-	-	-	5.0
	θ_{3D} (mrad)	-	-	_	40.0

As a starting point, just use the values in L3 paper:

Pi0 Emin > 6GeV & Emax > 14GeV & Total E > 22GeV & angle < 23°

Measure B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$ individually

at 1%/√E⊕0.5% ECAL resolution

An artificial sample contains 1e4 B0/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$ signal and 2.4e8 Z \rightarrow qq background

	B0 mass window (5.20, 5.36) GeV					
	Sig	Bkg_All	Bkg_uds	Bkg_c	Bkg_b	
No cut	9551	46145880	25644234	8524421	11977225	
Emin > 6GeV	5917	15633	12608	1765	1260	
Emax > 14GeV	5590	1744	1584	104	56	
ESum > 22GeV	5574	1424	1308	70	46	
Angle < 23º	4987	274	266	4	4	
		Bs mass w	indow (5.29,	5.45) GeV		
	Sig	Bkg_All	Bkg_uds	Bkg_c	Bkg_b	
No cut	9549	44494734	24781183	8215742	11497809	
Emin > 6GeV	6005	15254	12195	1775	1284	
Emax > 14GeV	5666	1787	1625	101	61	
ESum > 22GeV	5645	1457	1329	78	50	
Angle < 23º	4975	259	249	5	5	

Cut chain

Just raw data, need to be scaled to Tera-Z

Further understanding on the effect of b-tagging

 π^{o} energy spectrum differs in different quark flavor events

Mixed measurement of B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

at 15%/√E⊕1% ECAL resolution

BR(Bs $\rightarrow \pi^{\circ}\pi^{\circ}$) can also be estimated by using the BR(B⁰ $\rightarrow \pi^{\circ}\pi^{\circ}$) measured in other experiments...

Next step...

Further evaluation of the impact of some realistic physics effects:

- Energy threshold
- Acceptance
- Separation of nearby photons
- Fake photons
- •

Reconstruction of $\eta \rightarrow \gamma \gamma$

Summary

Fast simulation study

Reconstruction of π^o

dependence on ECAL resolution and π° energy (sample dependent) Separation of B^o & Bs

strong limitation on ECAL resolution

stochastic term better than 1%

constant term better than 0.5%

Individual measurement of B⁰ & Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

Mixed measurement of B⁰ & Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

B-tagging is necessary

Future works

Further evaluate the impact of some realistic physics effects Reconstruction of $\eta \rightarrow \gamma \gamma$

Thanks!

Backup

π^0 reconstruction performance

Fast simulation analysis

✓ The first draft of CEPC Note has finished.

Separation of B⁰ and Bs

at 1%/ $\sqrt{E} \oplus 0.5\%$ ECAL resolution varying BR(Bs $\rightarrow \pi^{\circ}\pi^{\circ}$) from 10⁻⁸ to 2.1×10⁻⁴

Separation of B⁰ and Bs

at 15%/ \sqrt{E} = 1% ECAL resolution varying BR(Bs $\rightarrow \pi^{\circ}\pi^{\circ}$) from 10⁻⁸ to 2.1×10⁻⁴

b-tagging efficiency

Introduction of $B^0 \rightarrow \pi^0 \pi^0$

$\Gamma(\pi^0 \pi^0) / \Gamma_{\text{total}}$ in PDG 2018 Γ_{388} / Γ						
VALUE (units 10 ⁻⁶) CL%	DOCUMENT ID	TECN	COMMENT			
1.59±0.26 OUR AVERAGE	Error includes scal	e factor of 1	.4.			
$1.31 \pm 0.19 \pm 0.19$	¹ JULIUS	17 BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$		
$1.83 \pm 0.21 \pm 0.13$	¹ LEES	13D BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$		

PHYSICAL REVIEW D 96, 032007 (2017)

Measurement of the branching fraction and *CP* asymmetry in $B^0 \rightarrow \pi^0 \pi^0$ decays, and an improved constraint on ϕ_2

T. Julius,⁴³ M. E. Sevior,⁴³ G. B. Mohanty,⁶⁶ I. Adachi,^{14,11} H. Aihara,⁷⁰ S. Al Said,^{65,32} D. M. Asner,⁵⁸ V. Aulchenko,^{3,56} T. Aushev,⁴⁶ R. Ayad,⁶⁵ V. Babu,⁶⁶ I. Badhrees,^{65,31} A. M. Bakich,⁶⁴ V. Bansal,⁵⁸ E. Barberio,⁴³ M. Barrett,¹³ M. Berger,⁶² V. Bhardwaj,¹⁶ B. Bhuyan,¹⁸ J. Biswal,²⁷ T. Bloomfield,⁴³ A. Bobrov,^{3,56} A. Bondar,^{3,56} G. Bonvicini,⁷⁵ A. Bozek,⁵³ M. Bračko,^{41,27} T. E. Browder,¹³ D. Červenkov,⁴ M.-C. Chang,⁹ Y. Chao,⁵² V. Chekelian,⁴² A. Chen,⁵⁰ B. G. Cheon,¹² K. Chilikin,^{37,45} K. Cho,³³ Y. Choi,⁶³ D. Cinabro,⁷⁵ N. Dash,¹⁷ S. Di Carlo,⁷⁵ Z. Doležal,⁴ D. Dossett,⁴³ Z. Drásal,⁴ D. Dutta,⁶⁶ S. Eidelman,^{3,56} H. Farhat,⁷⁵ J. E. Fast,⁵⁸ T. Ferber,⁷ B. G. Fulsom,⁵⁸ V. Gaur,⁷⁴ N. Gabyshev,^{3,56} A. Garmash,^{3,56} R. Gillard,⁷⁵ P. Goldenzweig,²⁹ J. Haba,^{14,11} T. Hara,^{14,11} K. Hayasaka,⁵⁵ H. Hayashii,⁴⁹ W.-S. Hou,⁵² C.-L. Hsu,⁴³ T. Iijima,^{48,47} K. Inami,⁴⁷ A. Ishikawa,⁶⁸ R. Itoh,^{14,11} Y. Iwasaki,¹⁴ W. W. Jacobs,²⁰ I. Jaegle,⁸ Y. Jin,⁷⁰ D. Joffe,³⁰ K. K. Joo,⁵ J. Kahn,³⁹ G. Karyan,⁷ P. Katrenko,^{46,37} T. Kawasaki,⁵⁵ C. Kiesling,⁴² D. Y. Kim,⁶¹ H. J. Kim,³⁵ J. B. Kim,³⁴ K. T. Kim,³⁴

We measure the branching fraction and *CP* violation asymmetry in the decay $B^0 \to \pi^0 \pi^0$, using a data sample of $752 \times 10^6 B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB e^+e^- collider. The obtained branching fraction and direct *CP* asymmetry are $\mathcal{B}(B \to \pi^0 \pi^0) = [1.31 \pm 0.19(\text{stat}) \pm 0.19(\text{syst})] \times 10^{-6}$ and $A_{CP} = +0.14 \pm 0.36(\text{stat}) \pm 0.10(\text{syst})$, respectively. The signal significance, including the systematic uncertainty, is 6.4 standard deviations. We combine these results with Belle's earlier measurements of $B^0 \to \pi^+\pi^-$ and $B^\pm \to \pi^\pm\pi^0$ to exclude the *CP*-violating parameter ϕ_2 from the range $15.5^\circ < \phi_2 < 75.0^\circ$ at 95% confidence level.

(Belle Collaboration)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.032007

Introduction of Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

Experimental upper limit

$\Gamma(\pi^0 \pi^0) / \Gamma_{\text{total}}$ in PDG 2018						Г ₈₇ /Г	
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
$<2.1 \times 10^{-4}$	90	¹ ACCIARRI	95H	L3	$e^+e^- \to$	Ζ	
¹ ACCIARRI 9	95н assumes f_{B^0} =	= 39.5 \pm 4.0 and	$f_{B_S} =$	12.0 \pm	3.0%.		

ELSEN	16 November 1995 ER Physics Letters B 363 (1995) 127–136	PHYSICS LETTERS B	Resolutions (σ mass distributions B_s^0 branching r the search for for one η and the efficiencies	of a G on), ef atios. a four a singl is sta
			Process	Res (N
	Search for neutral charmless B decay	s at LEP	$B^{()} \rightarrow m (1)$	107
	L3 Collaboration		$\mathcal{D}_{d} = \mathcal{A}_{d} (\mathbf{I})$	107

https://www.sciencedirect.com/science/ article/pii/0370269395010420

T-1.1. 0

Gaussian fit to the signal Monte Carlo invariant fficiencies and experimental limits for B_d^0 and The (1) and (11) modes refer respectively to photon final state or one with a photon pair le cluster for the other one. The first error on itistical, the second systematic.

Process	Resolution (MeV)	Efficiency (%)	Upper limit 90% C.L.
$B_d^0 \rightarrow \eta \eta$ (1)	107 ± 10	$2.5\pm0.2^{+0.2}_{-0.2}$	
$B_d^0 \rightarrow \eta \eta$ (II)	146 ± 11	$4.6\pm0.3^{+0.02}_{-0.2}$	
$B_d^0 \rightarrow \eta \eta$			$< 4.1 \times 10^{-4}$
$B_d^0 \rightarrow \eta \pi^0$	79 ± 5	$4.5 \pm 0.3^{+0.05}_{-0.03}$	$< 2.5 \times 10^{-4}$
$B^0_d \rightarrow \pi^0 \pi^0$	97 ± 4	$7.6 \pm 0.4^{+0.2}_{-0.5}$	$< 6.0 \times 10^{-5}$
${ m B}^0_s{ ightarrow}\eta\eta$ (1)	101 ± 10	$2.4 \pm 0.2^{+0.2}_{-0.2}$	
${\sf B}^0_s{ ightarrow}\eta\eta$ (11)	129 ± 8	$4.8 \pm 0.3^{+0.2}_{-0.3}$	
$B_s^0 \rightarrow \eta \eta$			$< 1.5 \times 10^{-3}$
${ m B}^0_s{ ightarrow}\eta\pi^0$	81± 1	$4.3\pm0.3^{+0.02}_{-0.1}$	$< 1.0 \times 10^{-3}$
$B^0_s \rightarrow \pi^0 \pi^0$	99 ± 4	$8.3 \pm 0.4^{+0.4}_{-0.7}$	$< 2.1 \times 10^{-4}$

Introduction of Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

Theoretical estimation

ALI, KRAMER, LI, LÜ, SHEN, WANG, AND WANG

PHYSICAL REVIEW D 76, 074018 (2007)

TABLE III. The *CP*-averaged branching ratios ($\times 10^{-6}$) of $B_s \rightarrow PP$ decays obtained in the pQCD approach (This work); the errors for these entries correspond to the uncertainties in the input hadronic quantities, from the scale dependence, and the CKM matrix elements, respectively. We have also listed the current experimental measurements and upper limits (90% C.L.) wherever available [13]. For comparison, we also cite the theoretical estimates of the branching ratios in the QCD factorization framework [16] and in SCET [20], quoting two estimates in the latter case for some decays.

Modes	Class	QCDF	SCET	This work	Experiment
$ar{ar{B}^0_s} ightarrow K^+ \pi^-$	Т	$10.2^{+4.5+3.8+0.7+0.8}_{-3.9-3.2-1.2-0.7}$	$4.9 \pm 1.2 \pm 1.3 \pm 0.3$	$7.6^{+3.2+0.7+0.5}_{-2.3-0.7-0.5}$	$5.0 \pm 0.75 \pm 1.0$
$\bar{B}^0_s \longrightarrow K^0 \pi^0$	С	$0.49^{+0.28+0.22+0.40+0.33}_{-0.24-0.14-0.14-0.17}$	$0.76 \pm 0.26 \pm 0.27 \pm 0.17$	$0.16^{+0.05+0.10+0.02}_{-0.04-0.05-0.01}$	
$\bar{B}^0_s \rightarrow K^+ K^-$	Р	$22.7^{+3.5+12.7+2.0+24.1}_{-3.2-8.4-2.0-9.1}$	$18.2 \pm 6.7 \pm 1.1 \pm 0.5$	$13.6^{+4.2+7.5+0.7}_{-3.2-4.1-0.2}$	$24.4 \pm 1.4 \pm 4.6$
$\bar{B}^0_s \longrightarrow K^0 \bar{K}^0$	Р	$24.7^{+2.5+13.7+2.6+25.6}_{-2.4-9.2-2.9-9.8}$	$17.7 \pm 6.6 \pm 0.5 \pm 0.6$	$15.6^{+5.0+8.3+0.0}_{-3.8-4.7-0.0}$	
$ar{B}^0_s o \pi^0 \eta$	$P_{\rm EW}$	$0.075\substack{+0.013+0.030+0.008+0.010\\-0.012-0.025-0.010-0.007}$	$0.014 \pm 0.004 \pm 0.005 \pm 0.004$	$0.05\substack{+0.02+0.01+0.00\\-0.02-0.01-0.00}$	<1000
			$0.016 \pm 0.0007 \pm 0.005 \pm 0.006$		
$ar{B}^0_s o \pi^0 \eta'$	$P_{\rm EW}$	$0.11\substack{+0.02+0.04+0.01+0.01\\-0.02-0.04-0.01-0.01}$	$0.006 \pm 0.003 \pm 0.002 \substack{+0.064 \\ -0.006}$	$0.11\substack{+0.05+0.02+0.00\\-0.03-0.01-0.00}$	
			$0.038 \pm 0.013 \pm 0.016 ^{+0.260}_{-0.036}$		
$\bar{B}^0_s \rightarrow K^0 \eta$	С	$0.34\substack{+0.19+0.64+0.21+0.16\\-0.16-0.27-0.07-0.08}$	$0.80 \pm 0.48 \pm 0.29 \pm 0.18$	$0.11\substack{+0.05+0.06+0.01\\-0.03-0.03-0.01}$	
			$0.59 \pm 0.34 \pm 0.24 \pm 0.15$		
$\bar{B}^0_s \rightarrow K^0 \eta'$	С	$2.0^{+0.3+1.5+0.6+1.5}_{-0.3-1.1-0.3-0.6}$	$4.5 \pm 1.5 \pm 0.4 \pm 0.5$	$0.72^{+0.20+0.28+0.11}_{-0.16-0.17-0.05}$	
			$3.9 \pm 1.3 \pm 0.5 \pm 0.4$		
$ar{B}^0_s o \eta \eta$	Р	$15.6^{+1.6+9.9+2.2+13.5}_{-1.5-6.8-2.5-5.5}$	$7.1 \pm 6.4 \pm 0.2 \pm 0.8$	$8.0^{+2.6+4.7+0.0}_{-1.9-2.5-0.0}$	<1500
			$6.4 \pm 6.3 \pm 0.1 \pm 0.7$	1.7 2.10 0.10	
$ar{B}^0_s o \eta \eta'$	Р	$54.0^{+5.5+32.4+8.3+40.5}_{-52-22.4-64-167}$	$24.0 \pm 13.6 \pm 1.4 \pm 2.7$	$21.0^{+6.0+10.0+0.0}_{-4.6-5.6-0.0}$	
			$23.8 \pm 13.2 \pm 1.6 \pm 2.9$	10 0.0 0.0	
$ar{B}^0_s o \eta' \eta'$	Р	$41.7^{+4.2+26.3+15.2+36.6}_{-4.0-17.2-8.5-15.4}$	$44.3 \pm 19.7 \pm 2.3 \pm 17.1$	$14.0^{+3.2+6.2+0.0}_{-2.7-3.9-0.0}$	
		10 172 0.0 10.1	$49.4 \pm 20.6 \pm 8.4 \pm 16.2$	2.7 5.9 6.6	
$ar{B}^0_s o \pi^+ \pi^-$	ann	$0.024^{+0.003+0.025+0.000+0.163}_{-0.003-0.012-0.000-0.021}$		$0.57^{+0.16+0.09+0.01}_{-0.13-0.10-0.00}$	<1.36
$ar{B}^0_s o \pi^0 \pi^0$	ann	$0.012\substack{+0.001 + 0.013 + 0.000 + 0.082 \\ -0.001 - 0.006 - 0.000 - 0.011}$		$0.28\substack{+0.08+0.04+0.01\\-0.07-0.05-0.00}$	<210
				~ 3×10)-7

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.76.074018

Unique Opportunities at Z pole

Giga-Z, Tera-Z and $10 \times \text{Tera-}Z$: a phase of future linear/circular lepton colliders. [Fujii et al.(2019), Dong et al.(2018), Abada et al.(2019)]

Z factories are also $b(c/\tau)$ factories:

Channel	Belle II	LHCb	Giga-Z	Tera- Z	$10 imes extsf{Tera-}Z$
B^0 , $ar{B}^0$	$5.3 imes 10^{10}$	$\sim 6 imes 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B^{\pm}	$5.6 imes 10^{10}$	$\sim 6 imes 10^{13}$	1.2×10^8	$1.2 imes 10^{11}$	1.2×10^{12}
B_s , $ar{B}_s$	5.7×10^8	$\sim 2 \times 10^{13}$	$3.2 imes 10^7$	$3.2 imes 10^{10}$	$3.2 imes 10^{11}$
B_c^{\pm}	-	$\sim 4 \times 10^{11}$	$2.2 imes 10^5$	2.2×10^8	2.2×10^9
Λ_b , $ar{\Lambda}_b$	-	$\sim 2\times 10^{13}$	$1.0 imes 10^7$	$1.0 imes 10^{10}$	$1.0 imes 10^{11}$