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RHIC beam energy scan

Can we locate the phase transition itself, either by locating a critical point,
or identifying a first order transition?
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Why dynamical modeling?

It is possible that RHIC/BES (or a future program at Fair or Nica) will
discover a critical point without the help of theorists, for example by
observing non-monotonic variation of a large set of observables in a narrow
range of beam energies, and demonstrating data collapse as a function of

energy/centrality /rapidity.

It is also possible that the extracted fluctuation observables can be matched
directly to QCD equilibrium susceptibilities near a critical point, computed

by evading the sign problem with the help of a quantum computer.

[However, it is also conceivable that there is no QCD critical point in the
regime of the phase diagram that can be probed in relativistic heavy ion

collisions.]



Why dynamical modeling?

In this talk we will attempt to avoid excessive optimism or pessimism:
There is a QCD critical point (and a first order phase transition) that can
be discovered by HIC experiments. However, given the small system size
and rapid evolution the interpretation of observables is not straightforward.

We cannot directly map fluctuation observables on equilibrium QCD
observables, and we may have to look at more exclusive probes, such as

correlation function in a specific kinematic range.

This means that we have to do dynamic modeling of critical fluctuations.



Outline:

1. Static universality: Realistic EOS with Ising universality

2. Dynamic universality: Model H in a static background
(a) Bulk viscosity near the critical point

(b) Multiplicative noise
3. Stochastic diffusion in an expanding medium
4. Hydrokinetics in an expanding background

5. Other approaches: Hydro—+, etc



1. Equilibrium fluctuations

Consider an Ising-like system with order parameter 9. Fluctuations
governed by an entropy functional

Prob[v, €] ~ exp(S|[y, €]) S = /d?’a: s(1, €)

energy density €, order parameter v

Conjugate variables

_0s
OxA

reduced temperature r, magnetic field h

QCD: Canonical pair

% = (e,n) Xo = (—08,8u)

energy density e, baryon density n

24 = (e, ) Xa = = (r,h)

inverse temperature (3, chemical potential u



Intensive
variables

densities

Mapping the Ising EOS to QCD

Ising

bl X, = (r,h)
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BEST collaboration equation of state

Parotto et al. write S(e,n) = Syeg(e,n) + AScrit(e,n). Taylor expand
regular part (constrained by lattice), linear map to Ising

rT-1. . -
T = w(rpsinay + hsinas) barameters
a ;,uc = w(—rpcosa; — hcosaz) (e, Te, 0, py 01, t2)
Critical Gibbs Free Energy (Zinn-Justin parameterization)
G, r] = hoMoR*~“g(0)
W= MoRP0 r=R(1—6? o}
magnetic EOS : _rm;_;_}s_\ﬁ\? : ::tt

h = hoR?°h(0)

0 € [—00,00] h(y) =0



A critical equation of state for QCD

Baryon density, compressibility, speed of sound.

Parotto et al. (2018)



2. Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ coupled to momentum density 7

(“model H")

) LOF 5F
e = AV 50 — gV - 7TT+ Gap

Diffusion Advection Noise

Free energy functional: Order parameter 1), momentum density @ = wv

1 . 2
Fo [t |+ S04 w4 ot D=

w

Noise average (noise kernel L = DTV?)

1 1
= E/DQD O(Y(x,t)) exp (_Z/d?)x CwL_1C¢)



Model H: Effective Action

MSRJD: Write noise average as an effective action

ZMSR — /D??DD’QZDTFD% exp (—/d4$£>

L= @Z (at - DVQ) ¥+ T (0,5 - VVQ) T Diffusion
—yDTV?) — 70TV 7 Noise
+1¢W Vb + uh DV + . .. Advection & Interaction
w

Consider background fluid at rest, 1y = const, 7o = O:

e Gaussian part: (1),1)) gives matrix propagators with analytic
structure of Keldysh formalism

e ‘J/-invariance: Detailed balance and Fluctuation-Dissipation re-
lations.

Martin, Siggia, Rose, Phys. Rev. A 8, 423 (1973).



Model H: Critical Dynamics

Non-critical fluids: Gradient expansion k¢ < 1.
Critical fluids: RG analysis, but fixed point not weakly coupled.

Consider “mode coupling” approximation: Use bare shear viscosity, and

static susceptibility yx
G H(w, k) =iw — Dk* — T

Order parameter relaxation rate (“Kawasaki function”).

_ T
- 67T770

[y K(k¢) K(x)= % 1+2°+ (2° + 27 ") arctan(x)] .

Order parameter susceptibility

X0

Xk = T R Xo = Xo(x/x0)* "




Application: Critical bulk viscosity

Express fluctuation in pressure in terms of Ising entropy

e+ P osls n Os's
§P = v — — RS
5] Fe O 5] I, Oe
Oe Osls

2p

Main term : R, = — - 7¢2 y = ’Y:H“l_
on Oe

This coupling generates (Kubo relation)

¢~ BV / dt (5P(0)SP(t)) ~ BV (ynTRS,)? / dt (02 (0)42 (1))

Slow order parameter relaxation — large bulk viscosity



Application: Critical bulk viscosity

Bulk viscosity from order parameter relaxation
2Tx}
—w + 21

~ (ynTR;)*¢*

w—0

¢~ (WTRZ)Q/d?’k

Critical bulk viscosity

Ly (4w>(§)2'8 34-1002  r>0
= =sin“(ay) | — | | =
s s/m) \&o 2.2-1071 <0

2z ~ 3 dynamical critical exponent.

sin(aq): angle between Ising » and QCD temperature.
[Note: For sin(aq) ~ 0 get (/s ~ (n/s)?]
Amplitude ratio (v_ /vy )? ~ 6.

Martinez, T.S., Skokov [1906.11306]; see also Stephanov & Yin [1712.10305], An et al. [1912.13456], and Onuki, PRE 55 403 (1997).
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Study: The role of multiplicative noise

Other interactions: Field dependent diffusion /viscosity, A = Ag(1 + Ap1)).

Do)Ap (V%Z) ¢2 B DOAD

Eint — 9

(V) v

noise non— hnear noise

O -

Coupling constant related by fluctuation-dissipation relation (7 -invariance)

Contribute to (non-critical) order parameter relaxation

2 .
S(w, k) = SAQ—I; (iwk? + [iw — Dk?] k?) \/k2 —~ 2%"

(non-critical) Kawasaki function not modified.

Chao, T.S. [2008.01269], see also Chen-Lin et al. [1811.12540]



Other results:

(Leading) MSRJD action in covariant form.

Kovtun, Moore, Romatschke [1405.3967]

Formulate effective action on Keldysh contour (KMS symmetry).
Study higher order (non-universal) corrections.

Glorioso, Liu [1805.09331]; Jain, Kovtun [2009.01356]

Fluctuation bounds, dn ~ (32T3)/778

Kovtun et al. [1104.1586]; Chafin, T.S. [1209.1006]; Akamatsu et al. [1708.05657]

Extend to non-trivial backgrounds.



3. Numerical Simulation: Stochastic Diffusion

Stochastic diffusion equation

omnp(z,t) =IV? (5—}—> + V- J(x,t)
(STLB

J(z,t) = V2IT(z, 1) (G2, )¢ (2 1)) = 6(x — 2')o(t — t')dy,

Free energy functional

Flo) =T [ &' (;n > (Anp)? + 2 (Vnp)?

n2 2n?2
A3 3 M\ 4 A 6
—|—3n2 (AnB) -+ 471,21 (A’IZB) -+ ng (A??,B)

T-T.
T, °

Scale m? ~ €72, \3 ~ £73/2 etc., parameterize £(r) with r =



Numerical results (diffusion in expanding critical fluid)

01 -/

T [fm/c]

0.01 ¢

Dynamical scaling: Consider correlation function
Co(t) = (Ang(k,0)Ang(—k,t)) for k=Fk* ~ &1
Determine decay rate Ca(t) ~ exp(—t/7").

Blue line: Expectation for z = 4.

M. Nahrgang, Bluhm, T.S., Bass [1804.05728]
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Comments on stochastic fluid dynamics

Fluctuations depend on resolution scale, (Ang/ng) ~ 1/va3. For
typical resolution scales in relativistic heavy ion collisions, fluctuations

are O(1).

Fluctuations renormalize transport coefficients and the equation of
state. In 3+1 dimensions, 6P ~ a2 and 6D ~ én ~ a1,

This is a feature, not a bug, but it implies that the bare coefficients
are different from the physical transport coefficients, and that critical
fluctuations are small compared to high frequency noise.

In practice, may have to employ smoothing, filtering, or non-local

noise kernels.

Alternative: Deterministic approaches.



4. Analytic study: Hydro tails in Bjorken geometry

Consider linearized stochastic dynamics about some fluid background (Bj)
Determine eigenmodes: two sound ¢4 , three diffusive modes ¢, ¢z,
Noise average: Deterministic equ for 2-point fct Wy, = (o (7, ) (7, 2')).
QoW +[A, W]+ {D, W} =PW + WP + N
evolution—+reactive + diffusive = sources + noise-correlator
Mixed representation: Wy (7, k).

Contains divergences, can be renormalized by subtraction in homogeneous
system.

Akamatsu et al. (2016), Martinez, T.S. (2017).



Expanding System

Study transit of critical point: Consider § = s/n and follow “mode
coupling” philosophy. Use static susceptibilty and critical relaxation rate I';.

O Wss(t, k) = —2T5(t, k) [Was(t, k) — Wes(t, k)| + ...,

F§(t7 k) - C?\Z'Q <k€)2<1 + (k€>2_77)7 W£§<t7 k) —

Correlation length £(t) = &(n(t), e(t)) = o fe(r(t), h(t))

on  Oe 1
hydro : AP AN

Isingmap : (e,n) — (r, h)

Emergent time scale tx: Expansion rate matches relaxation time for modes
with k* ~ £~ (modes fall out of equilibrium).

Emergent Iength scale lxz: gz = f(th). lgz ~ 1.6 fm

Akamatsu, Teaney, Yan, Yi [1811.05081], see also Berdnikov, Rajagopal [hep-ph/9912274]



Expanding System: Numerical Results

k=klgg t=t/tky

t=-3,-2,-1,-0.1 —— - 1.2 +

N§§

0.8

0.6

0.4

0.2

t=1,3,5 —— 1
equilibrium . equilibrium

tcr/tkz =0 tcr/tk:z =0
. 0.8 .
1 =06 ]
i=-01 | 0.4 i1
== o
F—_3 o= B ———

I I I I I i O I
0.5 1 1.5 2 2.5 3 0.5 1.5 2 2.5 3
k k
before CP after CP

Akamatsu, Teaney, Yan, Yi [1811.05081]



5. Further developments, other approaches

HYDRO+: Study feedback of hydro fluctuations on hy-
dro evolution. Central object: Non-equilibrium entropy

S ~ 5(log(¢q/0g) + (00/95) — e

Fully covariant formulation of evolution equation for two-
point function in a general background flow.

Re-interpret hydrokinetics in terms of particles (diffusons
& phonons).

Evolution equation for higher moments (Fokker-Planck).



Further developments, other approaches

Hydro+ 2-pt function ¢g(r,t)

Q=04fm™' Io=1fm™*
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An et al. [1912.13456]
K. Rajagopal et al. [1908.08539]

Kinetics of hydro fluctuations

(oo+

~ e
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equilibrium

W(ZE, Q) — Z wné(aj — xn)é(q — Qn)

An et al. [1912.13456]

parameter 2pt function

Y

2

S. Mukherjee et al. [1605.09341], An et al. [2009.10742]

Covariant Wigner-function for order

Wz, q) = / Ay S(u(z) - y)e— v

Evolution of 4th order cumulant



Summary

Dynamical evolution of fluctuations is important.

Model H dynamics in local rest frame: New parameters related to
embedding of Ising model, and background correlation length. New
results on bulk viscosity and multiplicative noise. New ideas about
effective actions on the Keldysh contour.

Dynamics in evolving background: Two basic approaches, “stochas-
tic’ or “deterministic’, each with their own advantages and disad-
vantages. Backreaction of fluctuations likely not important. Studies

of Cy(p1,n) important.

Not discussed: From conserved charges to particles.



