Dileptons/photons from RHIC BES

Lijuan Ruan (BNL)

Introduction: why dileptons/photons?

Existing measurements at RHIC

Future measurements at RHIC

Summary

Online seminar for the workshop of RHIC BES Physics – theory and experiment BROOKHAVEN NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

RHIC @ Brookhaven National Laboratory

Relativistic heavy ion collision

Electron-positron (dilepton) tomography

- Electron-positron pairs are penetrating probes and can provide information deep into the system and early time.
- Using electron-positron tomography, we would like to study the symmetry of the Quark-Gluon Plasma.

Spontaneous chiral symmetry breaking

- Generate 99% of visible mass in the universe.
- Microscopic picture:
- quark condensate: left-handed quark and right-handed antiquark attract each other through the exchange of gluons.

In the Quark-Gluon Plasma, which is hot and dense, is chiral symmetry restored?

 T_{c} (μ_{B} =0) = 156.5 ±1.5 MeV HotQCD, PLB 795 (2019)15

What do we know about the temperature experimentally?

Identified particle spectra

Pion, kaon, proton spectra

Phys. Rev. C 96 (2017) 44904

Strange hadron spectra

Phys. Rev. C 102 (2020) 34909

Particle yields

 $\pi^{\pm}, K^{\pm}, p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi, \text{ and } \overline{\Xi}.$

Particle ratios

 $\pi^-/\pi^+, \bar{K}^-/K^+, \bar{p}/p, \bar{\Lambda}/\Lambda, \overline{\Xi}/\Xi, K^-/\pi^-, \bar{p}/\pi^-, \Lambda/\pi^-,$ and $\overline{\Xi}/\pi^-$.

Freeze out temperatures

ρ and a1 resonance (spectrum function) in vacuum

Spontaneous chiral symmetry breaking: mass distributions are different

Chiral symmetry restoration: mass difference disappears

The p resonance mass spectrum function

Observable for chiral symmetry restoration:

a modified (broadened) p spectral function

Model: Rapp & Wambach, priv. communication Adv. Nucl.Phys. 25, 1 (2000); Phys. Rept. 363, 85 (2002)

Penetrating probe of the hot, dense medium

Low mass dileptons $(M_{II} < 1.1 \text{ GeV/c}^2)$ (Spectrum and v _n versus M_{II} , p _T)	vector meson in-medium modifications, link to Chiral Symmetry Restoration
Intermediate mass dileptons $(1.1 < M_{II} < 3.0 \text{ GeV/c}^2)$ (Spectrum and v _n versus M_{II} , p _T)	QGP thermal radiation, charm correlation modification.
Thermal photons (p_T <4 GeV/c) (p_T spectrum and v_n)	QGP thermal radiation, hadron gas thermal radiation

Energy and centrality dependence \rightarrow Constrain T₀, t₀, lifetime, and density profile ...

The STAR (Solenoidal Tracker at RHIC) Detector

Time Projection Chamber (TPC): measure ionization energy loss and Momentum

Time of Flight Detector (TOF) : Multi-gap Resistive Plate Chamber, gas detector, avalanche mode

has precise timing measurement, <100 ps timing resolution

Electron identification

Combining information from the TPC and TOF, we obtain clean electron samples at $p_T < 3$ GeV/c.

STAR Collaboration, PRL94(2005)062301

Electron-positron invariant mass distribution

Electron-positron signal

Electron-positron signal: e+e- pairs from light flavor meson and heavy flavor decays (charmonia and open charm correlation): Pseudoscalar meson Dalitz decay: π^0 , η , $\eta' \rightarrow \gamma e^+e^-$ Vector meson decays: ρ^0 , ω , $\phi \rightarrow e^+e^-$, $\omega \rightarrow \pi^0 e^+e^-$, $\phi \rightarrow \eta e^+e^-$ Heavy flavor decays: $J/\psi \rightarrow e^+e^-$, $ccbar \rightarrow e^+e^- X$, $bbbar \rightarrow e^+e^- X$ Drell-Yan contribution

In Au+Au collisions, we search for QGP thermal radiation at 1.1<M_{ee}<3.0 GeV/c² (intermediate mass range) Vector meson in-medium modifications at M_{ee}<1.1 GeV/c² (low mass range)

Electron-positron emission mass spectrum

Electron-positron mass spectrum from known hadronic sources without hot, dense medium contribution.

Dielectron mass spectrum in 200 GeV p+p collisions

The cocktail simulation with expected hadronic contributions, is consistent with data in p+p collisions.

Dielectron measurements in d+Au collisions

Hadronic cocktail is consistent with data in d+Au collisions.

dielectron mass spectrum in 200 GeV Au+Au

STAR: Phys. Rev. Lett. 113 (2014) 22301

Significant excess is observed for $0.3 < M_{ee} < 0.8 \text{ GeV/c}^2$, representing the hot, dense medium contribution.

PHENIX HBD Upgrade

- HBD provides active background rejection scheme
 - Veto on double tracks
 - Conversion rejection ~ 90%
 - Dalitz rejection ~ 80%
 - Improve S/B factor 5
 - However statistics limited

dielectron mass spectrum in 19.6-62.4 GeV Au+Au

STAR: PLB750(2015)64

Dileptons at 54.4 and 27 GeV

Year	Energy	Used events
2018	27 GeV	500M
2017	54.4 GeV	875M
2011	27 GeV	68M
2010	39 GeV	132M
2010	62.4 GeV	62M

A possible hint of QGP thermal radiation in the intermediate mass region

STAR: HP2020

The dielectron excess spectrum

A broadened ρ spectral function consistently describes the low mass dielectron excess for all the energies 19.6-200 GeV.

The low mass measurements: lifetime indicator

Low-mass electron-positron production, normalized by dN_{ch}/dy , is proportional to the life time of the medium from 17.3 to 200 GeV.

The contribution from hot, dense medium

The electron-positron spectrum from hot, dense medium is consistent with a broadened ρ resonance in medium.

The production yield normalized by dN_{ch}/dy is proportional to lifetime of the medium from 17.3 to 200 GeV. Why?

The contribution from hot, dense medium from 17.3 to 200 GeV

Low-mass electron-positron emission depends on T, total baryon

density, and lifetime

Coupling to the baryons plays an essential role to the modification of ρ spectral function in the hot, dense medium.

Normalized low-mass electron-positron production, is proportional to the life time of the medium from 17.3 to 200 GeV, given that the total baryon density is nearly a constant and that the emission rate is dominant in the Tc region.

STAR detector at BES-II

inner TPC upgrade

Endcap TOF

• Replaced inner sectors of the TPC

Major improvements for

BES-II

- Continuous Coverage
- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut from 125 MeV/c to 60 MeV/c

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at η = 1 to 1.5
- Improves the fixed target program
- Provided by CBM-FAIR

EPD Upgrade: • Improves trigger

Event Plane Detector

- Reduces background
- Allows a better and

independent reaction plane measurement critical to BES physics

What iTPC upgrade brings to dielectron measurements

Reduce the systematic uncertainties due to

- hadron contamination
- efficiency corrections
- acceptance differences between unlike-sign and like-sign pairs
- cocktail subtraction

A factor of 2 reduction in the systematic uncertainties for dielectron excess yield

Improves the acceptance for dielectron measurement by more than a factor of 2 in the low mass region, lowers the statistical uncertainties.

BES-II data taking

0+0

Au+Au

Au+Au

200 M (central)

250 M

2 B

1 week

2.5 weeks

3 weeks

100

8.35

3.85

200

17.1

3 (FXT)

3

3

3

Probe total baryon density effect 7.7 GeV to 19.6 GeV (2019-2021)

Broader and more electron-positron excess down to 7.7 GeV collision energy? Beam Energy Scan II provides a unique opportunity to quantify the total baryon density effect on the ρ broadening!

Distinguish the mechanisms of rho broadening

Knowing the mechanism that causes in-medium rho broadening and its temperature and baryon-density dependence is fundamental to our understanding and assessment of chiral symmetry restoration in hot QCD matter !

Other effects: production rate, non-equilibrium dynamics, space-time evolution Rapp: macroscopic effective many-body theory model PSHD: microscopic transport dynamic model

STAR forward upgrades

AL+HCAL At • •	2.5< η <4 Jets PID (π^0 , γ , e, Λ) charged particle resolution 20-30 0.2< p_T <2 GeV/c event-plane reco and trigger capa	momentum % at onstruction bility
Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~50%/√E+10%	
Tracking	charge separation	0.2 <p<sub>T<2 GeV/c with 20-30% 1/p_T</p<sub>

Installation of entire system (HCAL + ECAL + electronics) completed; System being commissioned in Run-21

Installation of entire Si and sTGC completed by mid-September 2021

STAR detector and Au+Au data sets

Low material, PID capability over extended η and p_T , improved trigger capability forward π^0 , γ , e, Λ , charged hadron, jets

STAR BUR20

24 weeks data taking for Run-23 and 25 each

TOON	minimum bias	high- p_T int. luminosity $[nb^{-1}]$			
year	$[\times 10^9 \text{ events}]$	all vz	vz < 70 cm	vz < 30 cm	
2014	9	26.5	10.1	15 7	TDO TOC LIFT MTD
2016		20.0	19.1 10.	10.7	
2023	10	43	38	32	iTPC+EPD+eTOF+TOF
2025	10	58	52	43	+MTD
	1	1			^r Forward upgrades

A factor of 10 more minimum bias data compare to Run-14 + Run-16 A factor of 4 more luminosity for high-p_T trigger

Back to 200 GeV Au+Au in 2023-2025

Low-mass dielectron measurement: lifetime indicator and provide a stringent constraint for theorists to establish chiral symmetry restoration at μ_B =0

Intermediate mass: direct thermometer to measure temperature

Enable dielectron v₂ and polarization, and solve direct photon puzzle (STAR vs PHENIX) Lijuan Ruan, BNL

Link to chiral symmetry restoration

- T_C~ T_{ch} (T_{ch} will be improved with iTPC upgrades from BESII and beyond)
- T₀ > T_{ch} (a reasonable guess)
- Low-mass dielectron emission dominates at T_c region (based on theory calculations)
- Rho meson significantly broadened: [average width $\Gamma \sim 400$ MeV, $\Gamma (T_C) \sim 600$ MeV]

The rho-meson in-medium broadening is a manifestation of chiral symmetry restoration!

Is it an evidence?

Link to chiral symmetry restoration

To link electron-positron measurements to chiral symmetry restoration need more precise measurement at $\mu_B = 0$:

- Lattice QCD calculation is reliable at $\mu_B = 0$.
- Theoretical approach: derive the a1(1260) spectral function by using the broadened rho spectral function, QCD and Weinberg sum rules, and inputs from Lattice QCD; to see the degeneracy of the rho and a1 spectral functions (Hohler and Rapp 2014).

Lijuan Ruan, BNL

Discoveries of Breit-Wheeler process and vacuum birefringence

Observation of Breit-Wheeler process with all possible kinematic distributions (yields, M_{ee} , p_T , angle)

Dielectron p_T spectrum: broadened from large to small impact parameters

Observation of vacuum birefringence: 6.7σ in UPC

arXiv: 1910.12400, submitted to PRL

Photon Wigner function and magnetic effects in QGP

 p_T broadening and azimuthal correlations of e^+e^- pairs sensitive to electro-magnetic (EM) field;

Impact parameter dependence of transverse momentum distribution of EM production is the key component to describe data.

Is there a sensitivity to final magnetic field in QGP?

Precise measurement of p_T broadening and angular correlation will tell at >3 σ for each observable.

Fundamentally important and unique input to CME phenomenon. Lijuan Ruan, BNL

Direct virtual photon in Au+Au

Models describing the low-mass e⁺e⁻ pairs agree with STAR photon data.

Direct photon in Pb+Pb

Calculations from the same models agree with ALICE photon data.

ALICE: PLB754(2016)235

Direct photon yields and v_n from PHENIX

- Results from PHENIX in 200 GeV Au+Au challenge model calculations.
 PHENIX: PRC94(2016)064901
- Precise measurements from various experiments, different system sizes and collisions energies are crucial!

Summary

We observed:

 A broadened ρ spectrum function consistently describes the low mass electron-positron excess in A+A collisions

In 2019-2021:

 Beam Energy Scan II (7.7-19.6 GeV) will provide a unique opportunity to quantify the effect of Chiral Symmetry Restoration via total baryon density effect on the ρ broadening.

In 2023+2025, indispensable mission with 200 GeV Au+Au data:

- Measure the temperature and lifetime of hot, dense medium
- Provide input for the community to establish connection between dilepton observables and chiral symmetry restoration
- Gain a quantitative understanding of magnetic field evolution in heavy ion collisions.
- Solve photon puzzle

Backup

The STAR (Solenoidal Tracker at RHIC) Detector

Time Projection Chamber (TPC): Measure ionization energy loss (dE/dx) and momentum Time of Flight Detector (TOF) & Muon Telescope Detector (MTD):

Multi-gap Resistive Plate Chamber (MRPC), gas detector, avalanche mode

TOF: has precise timing measurement, <100 ps timing resolution

MTD: provide trigger capabilities in heavy ion collisions and muon identification with precise timing and position information

Particle identification at STAR

Lijuan Ruan, BNL

Freeze out temperatures

