Wilson is Not Anomalous: On Gauge Anomalies In SMEFT

Higgs and Effective Field Theory – HEFT 2021 University of Science and Technology of China Hefei, China and Zoom 16 April 2021

Alejo N. Rossia

DESY Hamburg Theory Group Institut für Physik, Humboldt-Universität zu Berlin

In collaboration with Q. Bonnefoy, L. Di Luzio, C. Grojean and A. Paul arXiv 2012.07740

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

The Standard Model EFT (SMEFT)

Field content and gauge symmetries of the SM and linearly realized EW sym.

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4}^{\infty} \sum_{i} \frac{c_i^{(n)}}{\Lambda^{d-4}} \mathcal{O}_i^{(n)}$$

We work at dimension 6 in the Warsaw basis (1008.4884)

$$\mathcal{O}_{\phi q}^{(3)} = \left(H^{\dagger}i\overleftrightarrow{D_{\mu}^{a}}H\right)\left(\bar{q_{L}}\gamma^{\mu}\sigma^{a}q_{L}\right) \quad \mathcal{O}_{\phi q}^{(1)} = \left(H^{\dagger}i\overleftrightarrow{D_{\mu}^{a}}H\right)\left(\bar{q_{L}}\gamma^{\mu}q_{L}\right)$$
$$\mathcal{O}_{\phi u} = \left(H^{\dagger}i\overleftarrow{D_{\mu}^{a}}H\right)\left(\bar{u_{R}}\gamma^{\mu}u_{R}\right) \quad \mathcal{O}_{\phi l}^{(3)} = \left(H^{\dagger}i\overleftarrow{D_{\mu}^{a}}H\right)\left(\bar{l_{L}}\gamma^{\mu}\sigma^{a}l_{L}\right)$$

Why anomalies?

Gauge

Inconsistent QFT¹

The anomaly must

be cancelled

Classical symmetries might not be quantum symmetries

Anomalous symmetry

Global

It gives phenomenologically important information

• How to compute an anomaly

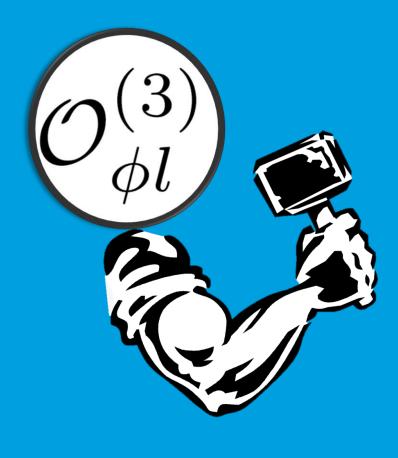
$$\partial^{\mu} \langle 0 | J_{\mu}^{i}(x) J_{\nu}^{j}(y) J_{\rho}^{k}(z) | 0 \rangle \propto D^{ijk} \equiv \sum_{LH\psi} \frac{1}{2} \operatorname{Tr} \left(T^{i} \{ T^{j}, T^{k} \} \right) - \sum_{RH\psi} (\operatorname{same}) J_{\mu}^{i}$$

Generators of:
 G_{i}, G_{j}, G_{k}

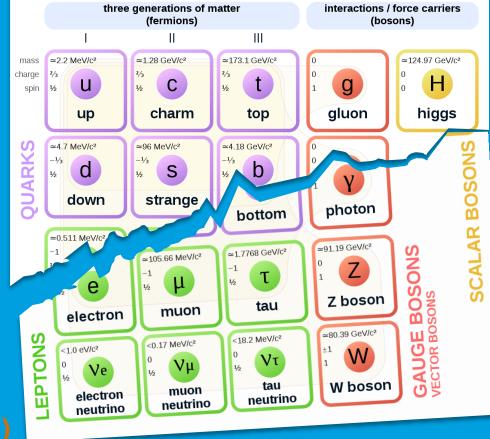
 J

¹: See J. Preskill, *Annals Phys.* 210 (1991) 323-379

From higher-dim. operators to anomalies



(Dramatization



Standard Model of Elementary Particles

Doubts on the horizon

SMEFT was understood to be gauge anomaly free at any order...

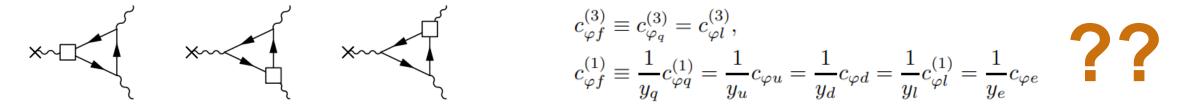
Gauge anomalies in the Standard-Model Effective Field Theory

(arXiv 2011.09976)

Oscar Catà,^{1, a} Wolfgang Kilian,^{1, b} and Nils Kreher^{1, c}

¹University of Siegen, Department of Physics, D–57068 Siegen, Germany (Dated: November 20, 2020)

Do chiral dim-6 operators generate gauge anomalies?



There are simple counterexamples

Add to the SM a singlet Weyl fermion (type 1 see-saw)

$\begin{array}{l} \textbf{A toy model: currents} \\ \mathcal{L} = -\frac{1}{4g_{A}^{2}}F_{A,\mu\nu}^{2} - \frac{1}{4g_{B}^{2}}F_{B,\mu\nu}^{2} + |D\varphi|^{2} - V(|\varphi|) + i\overline{\psi}_{k}\not{D}\psi_{k} \\ + i\frac{c_{L,k}}{\Lambda^{2}}\left(\varphi^{\dagger}\overleftarrow{D}_{\mu}\varphi\right)\overline{\psi}_{k,L}\gamma^{\mu}\psi_{k,L} + i\frac{c_{R,k}}{\Lambda^{2}}\left(\varphi^{\dagger}\overleftarrow{D}_{\mu}\varphi\right)\overline{\psi}_{k,R}\gamma^{\mu}\psi_{k,R} \\ \bullet & \bullet \\ \sim \mathcal{O}_{\phi q}^{(1)} = \left(H^{\dagger}i\overleftarrow{D}_{\mu}H\right)(\bar{q}_{L}\gamma^{\mu}q_{L}) \\ \end{array}$

$$\varphi \to e^{iq_{\varphi}^{B}\epsilon_{B}}\varphi, \ \psi_{k} \to e^{iq_{k}^{B}\gamma_{5}\epsilon_{B}}\psi_{k} \ D_{\mu}\psi_{k} = (\partial_{\mu} + iq_{k}^{A}A_{\mu} + iq_{k}^{B}\gamma_{5}B_{\mu})\psi_{k}, \ D_{\mu}\varphi = (\partial_{\mu} + iq_{\varphi}^{B}B_{\mu})\varphi$$

Anomaly cancellation conditions from dim.-4 operators:

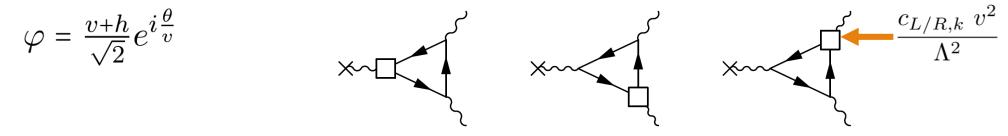
$$U(1)_A^2 \times U(1)_B : (q_k^A)^2 q_k^B = 0 , \quad U(1)_B^3 : (q_k^B)^3 = 0$$

A toy model: more currents

Fermion currents modified by dim.-6 operators:

$$\mathcal{L} \supset -\left(q_k^B + q_{\varphi}^B \frac{2c_{L,k} |\varphi|^2}{\Lambda^2}\right) \overline{\psi}_{k,L} \mathcal{B} \psi_{k,L} - \left(-q_k^B + q_{\varphi}^B \frac{2c_{R,k} |\varphi|^2}{\Lambda^2}\right) \overline{\psi}_{k,R} \mathcal{B} \psi_{k,R}$$

Following Catà et al, in the broken phase, we would compute:



Which means asking for the conservation of:

$$\tilde{J}^B_{\mu} = 2q_{\varphi}^B \left(\frac{c_{L,k}}{\Lambda^2} |\varphi|^2 \overline{\psi}_{k,L} \gamma_{\mu} \psi_{k,L} + \frac{c_{R,k}}{\Lambda^2} |\varphi|^2 \overline{\psi}_{k,R} \gamma_{\mu} \psi_{k,R} \right) + q_k^B \overline{\psi}_k \gamma_{\mu} \gamma_5 \psi_k$$

$$\begin{split} \mathbf{A} \text{ toy model: even more currents} \\ \tilde{J}^B_{\mu} &= 2q^B_{\varphi} \left(\frac{c_{L,k}}{\Lambda^2} |\varphi|^2 \overline{\psi}_{k,L} \gamma_{\mu} \psi_{k,L} + \frac{c_{R,k}}{\Lambda^2} |\varphi|^2 \overline{\psi}_{k,R} \gamma_{\mu} \psi_{k,R} \right) + q^B_k \overline{\psi}_k \gamma_{\mu} \gamma_5 \psi_k \\ \bullet \text{ Leading to:} \\ & U(1)^2_A \times \tilde{J}^B_{\mu} : (q^A_k)^2 q^B_{\varphi}(c_{L,k} - c_{R,k}) = 0, \\ & U(1)_A \times U(1)_B \times \tilde{J}^B_{\mu} : q^A_k q^B_k q^B_{\varphi}(c_{L,k} + c_{R,k}) = 0, \\ & U(1)^2_B \tilde{J}^B_{\mu} : (q^B_k)^2 q^B_{\varphi}(c_{L,k} - c_{R,k}) = 0. \end{split}$$

But \tilde{J}^B_{μ} is not conserved even at classical level!

The classically conserved current is:

$$J^B_{\mu} = i \, q^B_{\varphi} \, \varphi^{\dagger} \overleftrightarrow{\partial}_{\mu} \varphi + \tilde{J}^B_{\mu}$$

Forgotten piece.

Forgotten diagrams! Which ones?

A toy model: diagrams with GBs Let's compute: $\partial^{\mu}\langle 0|J_{\mu}^{B}(x)J_{\nu}^{A}(y)J_{\rho}^{A}(z)|0\rangle$ Broken phase: There are diagrams with Goldstone bosons (GBs)! $-\frac{vc_{L,k}}{\Lambda^{2}}\partial_{\mu}\theta\overline{\psi}_{k,L}\gamma^{\mu}\psi_{k,L} + \underbrace{-i(p+q)^{\mu}}_{i} \underbrace{\frac{-i(p+q)^{\mu}}{\Lambda^{2}}\gamma^{\alpha}P_{L}}_{(p+q)^{2}} + \underbrace{\frac{ic_{L}v^{2}}{\Lambda^{2}}\gamma^{\mu}P_{L}}_{q_{\psi}^{A}}\gamma^{\rho} + \underbrace{\frac{ic_{L}v^{2}}{\Lambda^{2}}\gamma^{\mu}P_{L}}_{q_{\psi}^{A}}\gamma^{\rho} + \ldots$ **GB propagator** $J^B_{\mu} = -iq^B_{\varphi} \left(\varphi^{\dagger} \overleftrightarrow{\partial}_{\mu} \varphi + 2i \frac{c_{R,k}}{\Lambda^2} \left| \varphi \right|^2 \overline{\psi}_{k,R} \gamma_{\mu} \psi_{k,R} + 2i \frac{c_{L,k}}{\Lambda^2} \left| \varphi \right|^2 \overline{\psi}_{k,L} \gamma_{\mu} \psi_{k,L} \right) + q^B_k \overline{\psi}_k \gamma_{\mu} \gamma_5 \psi_k$ The diagrams with GBs cancel the ones with dim-6 vertices (After contracting with the momentum from the divergence) No constraints on the WCs from triangle diagrams

A toy model: bosonic EFT

- Add Yukawa terms to the toy model: $\delta \mathcal{L} = -y_k \varphi \overline{\psi}_{k,L} \psi_{k,R} + h.c.$
- In the broken phase, the fermions can be integrated out to get a bosonic EFT
- In the bosonic EFT, anomalies are carried by the Wess-Zumino terms.
 Will the dim.-6 operators contribute to the WC of the WZ terms?
- And the Wess-Zumino terms in the EFT are:

$$\mathcal{L}_{EFT} \supset -\frac{\left(q_k^A\right)^2}{16\pi^2} \frac{\theta}{v} F_A \tilde{F}_A - \frac{0}{16\pi^2} \frac{\theta}{v} F_A \tilde{F}_B - \frac{\left(q_k^B\right)^2}{24\pi^2} \frac{\theta}{v} F_B \tilde{F}_B - \frac{\left(q_k^A\right)^2 q_k^B}{6\pi^2} A_\mu B_\nu \tilde{F}_A^{\mu\nu} - \frac{0}{8\pi^2} A_\mu B_\nu \tilde{F}_B^{\mu\nu}$$
Axionic terms
Generalized
Chern-Simons terms

No constraints on the WCs from triangle diagrams

SMEFT: extending the EFT technique

- Anomalies are independent of fermion masses.
- Integrate out all fermions and the Higgs, keep only gauge bosons.
- With only dim.-4 operators:

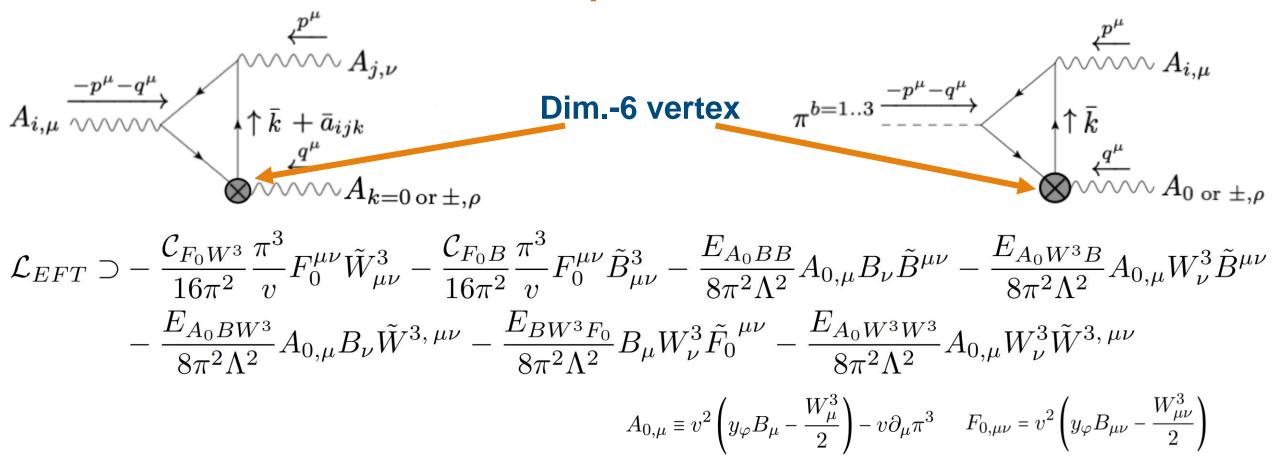
$$\mathcal{L}_{\rm EFT} \supset -\frac{1}{16\pi^2} \frac{\pi^3}{v} B\tilde{B} \left(3 \left[y_u^2 + y_Q y_u - y_d^2 - y_Q y_d \right] + y_\nu^2 + y_L y_\nu - y_e^2 - y_e y_L \right) - \frac{1}{16\pi^2} \frac{\pi^3}{v} B\tilde{W}^3 \left(\frac{3(y_d + 4y_Q + y_u)}{2} + \frac{y_e + 4y_L + y_\nu}{2} \right) - \frac{1}{8\pi^2} B_\mu W_\nu^3 \tilde{B}^{\mu\nu} \frac{(y_\nu - y_e)(y_e + y_L + y_\nu) + 3(y_u - y_d)(y_d + y_Q + y_u)}{2} - \frac{1}{8\pi^2} B_\mu W_\nu^3 \tilde{W}^{3,\mu\nu} \frac{3(y_u + y_d) + y_e + y_\nu}{4} ,$$

$$\delta \mathcal{L}_{\rm EFT} = -\frac{\epsilon_Y}{16\pi^2} \left[\left(6y_Q^3 + 2y_L^3 - 3y_u^3 - 3y_d^3 - y_e^3 - y_\nu^3 \right) B\tilde{B} + \frac{3y_Q + y_L}{2} W^3 \tilde{W}^3 \right] - \frac{\epsilon_3}{16\pi^2} \left(3y_Q + y_L \right) B\tilde{W}^3$$

Usual gauge anomaly cancellation conditions on the hypercharges

SMEFT: extending the EFT technique

And the dim.-6 operators contribution?



Compute all the terms, rearrange, integrate by parts and... Ok, let's go slowly

SMEFT: extending the EFT technique

Gather all the terms proportional to $\pi^3 B\widetilde{B}$

$$\mathcal{L}_{EFT} \supset -\frac{c_{F_{0}B}}{16\pi^{2}} \frac{\pi^{3}}{v} F_{0,\mu\nu} \tilde{B}^{\mu\nu} - \frac{c_{F_{0}W}}{16\pi^{2}} \frac{\pi^{3}}{v} F_{0,\mu\nu} \tilde{W}^{3}^{\mu\nu} - \frac{E_{A_{0}BB}}{8\pi^{2}\Lambda^{2}} A_{0,\mu} B_{\nu} \tilde{B}^{\mu\nu} - \frac{E_{BW} s_{F_{0}}}{8\pi^{2}\Lambda^{2}} B_{\mu} W_{\nu}^{3} \tilde{F}_{0}^{\mu\nu} - \frac{E_{A_{0}BW}}{8\pi^{2}\Lambda^{2}} A_{0,\mu} B_{\nu} \tilde{W}^{3}^{\mu\nu} - \frac{E_{A_{0}BB}}{8\pi^{2}\Lambda^{2}} A_{0,\mu} B_{\nu} \tilde{B}^{\mu\nu} - \frac{E_{A_{0}BB}}{8\pi^{2}\Lambda^{2}} B_{\mu} W_{\nu}^{3} \tilde{F}_{0}^{\mu\nu} - \frac{E_{A_{0}BW}}{8\pi^{2}\Lambda^{2}} A_{0,\mu} B_{\nu} \tilde{B}^{\mu\nu} - \frac{E_{A_{0}BB}}{8\pi^{2}\Lambda^{2}} A_{0,\mu} B_{\nu} \tilde{B}^{\mu\nu} - \frac{E_{A_{0}BB}}{8\pi^{2}\Lambda^{2}} \partial_{\mu} (\pi^{3}) B_{\nu} \tilde{B}^{\mu\nu} - \frac{E_{A_{0}BW}}{8\pi^{2}\Lambda^{2}} A_{0,\mu} B_{\nu} \tilde{B}^{\mu\nu} + v \frac{E_{A_{0}BB}}{8\pi^{2}\Lambda^{2}} A_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}} \pi^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}} \pi^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}\Lambda^{2}} \pi^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}\Lambda^{2}} \pi^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}} \pi^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}\Lambda^{2}} \pi^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}\Lambda^{2}} \eta^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}BB}}{16\pi^{2}} \eta^{3} B_{\mu\nu} \tilde{B}^{\mu\nu} - v \frac{E_{A_{0}$$

SMEFT: extending the EFT technique Is that a zero?

$$y_{\varphi}\mathcal{C}_{F_{0}B} + \frac{E_{A_{0}BB}}{\Lambda^{2}}$$

$$\mathcal{C}_{F_{0}B} = -\frac{1}{3\Lambda^{2}} \left[3 \left(c_{\varphi d} \left(y_{q} + 2y_{d} \right) - c_{\varphi u} \left(y_{q} + 2y_{u} \right) + c_{\varphi q}^{(1)} \left(y_{d} - y_{u} \right) + c_{\varphi q}^{(3)} \left(y_{d} + 4y_{q} + y_{u} \right) \right) \right.$$

$$\left. + c_{\varphi e} \left(y_{l} + 2y_{e} \right) + c_{\varphi l}^{(1)} \left(y_{e} - y_{\nu} \right) + c_{\varphi l}^{(3)} \left(y_{e} + 4y_{l} + y_{\nu} \right) \right] \right]$$

$$E_{A_{0}BB} = \frac{c_{\varphi d} \left(y_{q} - y_{d} \right) \left(y_{q} + 2y_{d} \right) + c_{\varphi u} \left(y_{q} - y_{u} \right) \left(y_{q} + 2y_{u} \right) - c_{\varphi q}^{(1)} \left(y_{d}^{2} + y_{d}y_{q} - 4y_{q}^{2} + y_{q}y_{u} + y_{u}^{2} \right) \right.}{\left. - c_{\varphi q}^{(3)} \left(y_{d} - y_{u} \right) \left(y_{d} + y_{q} + y_{u} \right) + \frac{1}{3} c_{\varphi e} \left(y_{l} - y_{e} \right) \left(y_{l} + 2y_{e} \right) \right.}{\left. - \frac{1}{3} c_{\varphi l}^{(1)} \left(y_{e}^{2} + y_{e}y_{l} - y_{l}^{2} + y_{l}y_{\nu} + y_{\nu}^{2} \right) - \frac{1}{3} c_{\varphi l}^{(3)} \left(y_{e} - y_{\nu} \right) \left(y_{e} + y_{l} + y_{\nu} \right) \right.}$$

$$y_q - y_d = y_{\varphi}$$

See also F. Feruglio, arXiv: 2012.13989, JHEP 03 (2021) 128

SMEFT: extending the EFT technique Is that a zero?

$$y_{\varphi}\mathcal{C}_{F_{0}B} + \frac{E_{A_{0}BB}}{\Lambda^{2}} \longrightarrow 0$$

$$\mathcal{C}_{F_{0}B} = -\frac{1}{3\Lambda^{2}} \left[3 \left(c_{\varphi d} \left(y_{q} + 2y_{d} \right) - c_{\varphi u} \left(y_{q} + 2y_{u} \right) + c_{\varphi q}^{(1)} \left(y_{d} - y_{u} \right) + c_{\varphi q}^{(3)} \left(y_{d} + 4y_{q} + y_{u} \right) \right) \right. \\ \left. + c_{\varphi e} \left(y_{l} + 2y_{e} \right) + c_{\varphi l}^{(1)} \left(y_{e} - y_{\nu} \right) + c_{\varphi l}^{(3)} \left(y_{e} + 4y_{l} + y_{\nu} \right) \right] \right] \\ E_{A_{0}BB} = \left[c_{\varphi d} \left(y_{q} - y_{d} \right) \left(y_{q} + 2y_{d} \right) + c_{\varphi u} \left(y_{q} - y_{u} \right) \left(y_{q} + 2y_{u} \right) - c_{\varphi q}^{(1)} \left(y_{d}^{2} + y_{d}y_{q} - 4y_{q}^{2} + y_{q}y_{u} + y_{u}^{2} \right) \right. \\ \left. - c_{\varphi q}^{(3)} \left(y_{d} - y_{u} \right) \left(y_{d} + y_{q} + y_{u} \right) + \frac{1}{3} c_{\varphi e} \left(y_{l} - y_{e} \right) \left(y_{l} + 2y_{e} \right) \right. \\ \left. - \frac{1}{3} c_{\varphi l}^{(1)} \left(y_{e}^{2} + y_{e}y_{l} - y_{l}^{2} + y_{l}y_{\nu} + y_{\nu}^{2} \right) - \frac{1}{3} c_{\varphi l}^{(3)} \left(y_{e} - y_{\nu} \right) \left(y_{e} + y_{l} + y_{\nu} \right) \right.$$

$$y_q - y_d = y_{\varphi}$$

See also F. Feruglio, arXiv: 2012.13989, JHEP 03 (2021) 128

SMEFT: extending the EFT technique Is that a zero? $y_{\varphi}C_{F_0B} + \frac{E_{A_0BB}}{A^2} = 0$

$$\mathcal{C}_{F_0B} = -\frac{1}{3\Lambda^2} \left[3 \left[\left(c_{\varphi d} \left(y_q + 2y_d \right) - c_{\varphi u} \left(y_q + 2y_u \right) + c_{\varphi q}^{(1)} \left(y_d - y_u \right) + c_{\varphi q}^{(3)} \left(y_d + 4y_q + y_u \right) \right) \right. \\ \left. + c_{\varphi e} \left(y_l + 2y_e \right) + c_{\varphi l}^{(1)} \left(y_e - y_\nu \right) + c_{\varphi l}^{(3)} \left(y_e + 4y_l + y_\nu \right) \right] \\ \left. E_{A_0BB} = \left[c_{\varphi d} \left(y_q - y_d \right) \left(y_q + 2y_d \right) + c_{\varphi u} \left(y_q - y_u \right) \left(y_q + 2y_u \right) - c_{\varphi q}^{(1)} \left(y_d^2 + y_d y_q - 4y_q^2 + y_q y_u + y_u^2 \right) \right. \\ \left. - c_{\varphi q}^{(3)} \left(y_d - y_u \right) \left(y_d + y_q + y_u \right) + \frac{1}{3} c_{\varphi e} \left(y_l - y_e \right) \left(y_l + 2y_e \right) \right] \right]$$

The same cancellation happens with all the other terms.

All the dim-6 contributions cancel out! No constraints on the WCs from triangles.

See also F. Feruglio, arXiv: 2012.13989, JHEP 03 (2021) 128

Conclusions

- Dim-6 chiral operators in triangles do not generate gauge anomalies.
- SMEFT at dim-6 is free of gauge anomalies coming from triangles.
- The same conclusion was obtained via different techniques by F. Feruglio in 2012.13989 (JHEP 03 (2021) 128).
- Our technique is easy to extend to higher-dimensional operators that modify the gauge couplings in a similar way.
- We use similar techniques to analyse relations between WCs and anomalies in axion (ALP) EFTs and connections to chiral extensions of the SM (see arXiv:2011.10025).

Thank you for your attention

And keep using SMEFT!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Alejo N. Rossia DESY Theory Group E-mail: alejo.rossia at desy dot de https://theory-hamburg.desy.de/

Appendix A: Counterexample to Catà et al results

Simple counterexample

Add to the SM a singlet Weyl fermion (type 1 see-saw).

$$\mathcal{L}_{BSM}^{\text{Int}} = -(\lambda_N)_i \bar{N} \tilde{\varphi}^{\dagger} \ell_{L,i}$$

Matching onto SMEFT:

$$\frac{1}{\Lambda^2} \left(c_{\varphi \ell}^{(1)} \right)_{ij} = \frac{(\lambda_N)_i^* (\lambda_N)_j}{4M_N^2}, \qquad \qquad \frac{1}{\Lambda^2} \left(c_{\varphi q}^{(1)} \right)_{ij} = 0$$
$$\frac{1}{\Lambda^2} \left(c_{\varphi \ell}^{(3)} \right)_{ij} = -\frac{(\lambda_N)_i^* (\lambda_N)_j}{4M_N^2} \qquad \qquad \frac{1}{\Lambda^2} \left(c_{\varphi q}^{(3)} \right)_{ij} = 0$$

 $c_{\varphi q}^{(3)} \neq c_{\varphi l}^{(3)} \quad c_{\varphi q}^{(1)} \neq \frac{y_q}{y_l} c_{\varphi l}^{(1)}$

Appendix B: All WZ terms for the neutral sector of SMEFT

$$\mathcal{L}_{EFT} \supset -\frac{1}{16\pi^2} \mathcal{C}_{F_0 B} \frac{\pi^3}{v} F_0 \tilde{B} - \frac{1}{16\pi^2} \mathcal{C}_{F_0 W^3} \frac{\pi^3}{v} F_0 \tilde{W}^3$$

$$\mathcal{L}_{EFT} \supset -\frac{E_{A_0 BB}}{8\pi^2 \Lambda^2} A_{0,\mu} B_{\nu} \tilde{B}^{\mu\nu} - \frac{E_{A_0 W^3 B}}{8\pi^2 \Lambda^2} A_{0,\mu} W_{\nu}^3 \tilde{B}^{\mu\nu} - \frac{E_{A_0 BW^3}}{8\pi^2 \Lambda^2} A_{0,\mu} B_{\nu} \tilde{W}^{3,\mu\nu}$$

$$-\frac{E_{BW^3 F_0}}{8\pi^2 \Lambda^2} B_{\mu} W_{\nu}^3 \tilde{F}_0^{\mu\nu} - \frac{E_{A_0 W^3 W^3}}{8\pi^2 \Lambda^2} A_{0,\mu} W_{\nu}^3 \tilde{W}^{3,\mu\nu}$$

 $\begin{aligned} \mathcal{C}_{F_0B} &= -\frac{1}{3\Lambda^2} \Big[3 \left(c_{\varphi d}^{(1)}(2y_d + y_Q) - c_{\varphi u}^{(1)}(y_Q + 2y_u) + c_{\varphi Q}^{(1)}(y_d - y_u) + c_{\varphi Q}^{(3)}(y_d + 4y_Q + y_u) \right) \\ &\quad + c_{\varphi e}^{(1)}(2y_e + y_L) + c_{\varphi L}^{(1)}(y_e - y_\nu) + c_{\varphi L}^{(3)}(y_e + 4y_L + y_\nu) \Big] \\ \mathcal{C}_{F_0W^3} &= \frac{1}{6\Lambda^2} \Big[3 c_{\varphi d}^{(1)} + 3 c_{\varphi u}^{(1)} + 12 c_{\varphi Q}^{(1)} + c_{\varphi e}^{(1)} + 4 c_{\varphi L}^{(1)} \Big] \end{aligned}$

$$\begin{split} E_{A_0BB} = & c^{(1)}_{\varphi u} (y_Q - y_u) (y_Q + 2y_u) + c^{(1)}_{\varphi d} (y_Q - y_d) (y_Q + 2y_d) - c^{(1)}_{\varphi Q} \left(y_d^2 + y_d y_Q - 4y_Q^2 + y_Q y_u + y_u^2 \right) \\ & - c^{(3)}_{\varphi Q} (y_d - y_u) (y_d + y_Q + y_u) + \frac{1}{3} c^{(1)}_{\varphi e} (y_L - y_e) (y_L + 2y_e) \\ & - \frac{1}{3} c^{(1)}_{\varphi L} \left(y_e^2 + y_e y_L - 4y_L^2 + y_L y_\nu + y_\nu^2 \right) - \frac{1}{3} c^{(3)}_{\varphi L} (y_e - y_\nu) (y_e + y_L + y_\nu) \\ E_{A_0W^3B} = \frac{1}{2} c^{(1)}_{\varphi u} (y_Q - y_u) + \frac{1}{2} c^{(1)}_{\varphi d} (y_d - y_Q) + c^{(1)}_{\varphi Q} (y_d - y_u) + c^{(3)}_{\varphi Q} (y_d - 2y_Q + y_u) \\ & + \frac{1}{6} c^{(1)}_{\varphi e} (y_e - y_L) + \frac{1}{3} c^{(1)}_{\varphi L} (y_e - y_\nu) + \frac{1}{3} c^{(3)}_{\varphi L} (y_e - 2y_L + y_\nu) \\ E_{A_0BW^3} = \frac{1}{2} c^{(1)}_{\varphi u} (y_Q + 2y_u) - \frac{1}{2} c^{(1)}_{\varphi d} (y_Q + 2y_d) - \frac{1}{2} c^{(1)}_{\varphi Q} (y_d - y_u) - \frac{1}{2} c^{(3)}_{\varphi Q} (y_d + 4y_Q + y_u) \\ & - \frac{1}{6} c^{(1)}_{\varphi e} (y_L + 2y_e) - \frac{1}{6} c^{(1)}_{\varphi L} (y_e - y_\nu) - \frac{1}{6} c^{(3)}_{\varphi L} (y_e + 4y_L + y_\nu) \\ E_{BW^3F_0} = \frac{3}{2} c^{(1)}_{\varphi u} y_u - \frac{3}{2} c^{(1)}_{\varphi d} y_d - \frac{3}{2} c^{(1)}_{\varphi Q} (y_d - y_u) - \frac{3}{2} c^{(3)}_{\varphi Q} (y_d + y_u) \\ & - \frac{1}{2} c^{(2)}_{\varphi e} y_e - \frac{1}{2} c^{(1)}_{\varphi L} (y_e - y_\nu) - \frac{1}{2} c^{(3)}_{\varphi L} (y_e + y_\nu) \\ E_{A_0W^3W^3} = \frac{1}{12} \left(3 c^{(1)}_{\varphi u} + 3 c^{(1)}_{\varphi d} + 12 c^{(1)}_{\varphi Q} + c^{(1)}_{\varphi e} + 4 c^{(1)}_{\varphi L} \right) \end{split}$$