Effective Field Theories and Positivity Bounds

Andrew J. Tolley Imperial College London

Are all EFTs allowed? - SWAMPLAND

With typical assumption that: UV completion is <u>Local, Causal, Poincare Invariant and Unitary</u>

Answer: NO! Certain low energy effective theories do not admit well defined UV completions

Kallen-Lehmann Spectral Representation

Together with Poincare invariance these imply:

$$i\langle 0|\hat{T}\hat{O}(x)\hat{O}(y)|0\rangle = \int \frac{d^d k}{(2\pi)^d} e^{ik.(x-y)}G_O(k)$$

$$G_O(k) = \frac{Z}{k^2 + m^2 - i\epsilon} + S(-k^2) + (-k^2)^N \int_{4m^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^N(k^2 + \mu - i\epsilon)}$$

$$S(-k^2) = \sum_{k=0}^{N-1} c_k (-k^2)^k \quad \lim_{\mu \to \infty} \rho(\mu) \sim \mu^{\Delta - d/2} \quad N = [\Delta - d/2 + 1]$$

 Δ UV Conformal weight

 $\rho(\mu) \geq 0$

Positive Spectral Density as a result of Unitarity

Analytic Structure

Define complex momenta squared $z = -k^2 + i\epsilon$

EFT valid here, can calculate pole and 'low energy' part of cut

UV completion - unknown?

Linear (Improved) Positivity Bounds

$$G'_O(z) = S(z) + z^N \int_{\Lambda^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^N(\mu - z)}$$

$$D_M(0) = \int_{\Lambda^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^{M+1}}$$

 $D_M(0) > 0 \qquad \qquad D_M(0) \ge \Lambda^2 D_{M+1}(0)$

Positivity of these integrals enforces positivity of combinations of Wilson coefficients for Irrelevant operators

Nonlinear (Improved) Positivity Bounds

Maths by Stieltjes in 1890s, applied to amplitudes positivity in 1970s!! Recently rediscovered ..

$$D_M(0) = \int_{\Lambda^2}^{\infty} d\mu \frac{\rho(\mu)}{\mu^{M+1}} = \left\langle \frac{1}{\mu^M} \right\rangle$$

Arkani-Hamed, Huang, Huang EFT-Hedron 2020 see also Bellazzini et al, Positive Moments ..., 2020

Simply example Cauchy-Schwarz:

$$\langle (\mu^{-M} + \lambda \mu^{-N})^2 \rangle \ge 0$$

 $D_{2M} D_{2N} \ge (D_{N+M})^2$

$$\left(\begin{array}{cc} D_{2N} & D_{N+M} \\ D_{N+M} & D_{2M} \end{array}\right)$$

'positivity of 2 x 2 Hankel matrix'

What does this tell us about EFT?

e.g. Suppose scalar field in EFT with tree level action

$$S = \int d^4x \hat{O}(x) [\Box + a_1 \frac{\Box^2}{\Lambda^2} + a_2 \frac{\Box^3}{\Lambda^4} + \dots] \hat{O}(x)$$

Tree level Feynman propagator is

$$G_O(z) = -\frac{1}{z + a_1 \frac{z^2}{\Lambda^2} + a_2 \frac{z^3}{\Lambda^4} + a_3 \frac{z^4}{\Lambda^6} + a_4 \frac{z^5}{\Lambda^8} \dots}$$
Assume no subtractions needed

$$G'_O(z) = \frac{a_1}{\Lambda^2} + \frac{(a_2 - a_1^2)}{\Lambda^4}z + \frac{a_1^3 - 2a_1a_2 + a_3}{\Lambda^6}z^2 + \frac{a_4 - 2a_1a_3 - a_2^2 + 3a_1^2a_2 - a_1^4}{\Lambda^8}z^3 + \mathcal{O}(z^4)$$

What does this tell us about EFT?

 $G'_O(z) = \frac{a_1}{\Lambda^2} + \frac{(a_2 - a_1^2)}{\Lambda^4}z + \frac{a_1^3 - 2a_1a_2 + a_3}{\Lambda^6}z^2 + \frac{a_4 - 2a_1a_3 - a_2^2 + 3a_1^2a_2 - a_1^4}{\Lambda^8}z^3 + \mathcal{O}(z^4)$ N = 0assuming no $D_2 D_0 > D_1^2$ subtractions NonLinear (Improved) Positivity Bounds: $(a_1^3 - 2a_1a_2 + a_3)a_1 - (a_2 - a_1^2)^2 > 0$ $a_1 a_3 - a_2^2 > 0$ $D_3 D_0^2 - D_1^3 + 2D_0^2 (D_2 D_0 - D_1^2) > 0$ Linear (Improved) **Positivity Bound** $a_A a_1^2 - a_2^3 > 0$

Scattering Amplitude Analyticity

$$\mathcal{A}_{s}(s,t) = \frac{\lambda_{s}(t)}{m^{2}-s} + \frac{\lambda_{u}(t)}{m^{2}-u} + (c_{0}(t)+c_{1}(t)s) + \frac{s^{2}}{\pi} \int_{4m^{2}}^{\infty} d\mu \frac{Im(A_{s}(\mu,t))}{\mu^{2}(\mu-s)} + \frac{u^{2}}{\pi} \int_{4m^{2}}^{\infty} d\mu \frac{Im(A_{u}(\mu,t))}{\mu^{2}(\mu-u)}$$
Poles Subtractions Branch cuts

'Improved' Scattering Amplitude Analyticity Removes IR loop effects!!!!

Fixed t (improved) linear Positivity Bounds

Fixed t (improved) 'Stieltjes' Positivity Bounds

$$\frac{1}{M!} \frac{d^M}{ds^M} \mathcal{A}'_s(2m^2 - t/2, t) = \frac{1}{\pi} \int_{\Lambda^2}^{\infty} d\mu \frac{Im\mathcal{A}_s(\mu, t) + Im\mathcal{A}_s(\mu, t)}{(\mu - 2m^2 + t/2)^{M+1}} > 0$$
$$0 \le t < 4m^2$$

$$\det_{pq} \left(\frac{1}{(M+p+q)!} \frac{d^{M+p+q}}{ds^{M+p+q}} \mathcal{A}'_s(2m^2 - t/2, t) \right) > 0$$

$$0 \le t < 4m^2$$

Even M+p+q

Crossing is Simple!!

Dispersion Relation with Positivity along <u>BOTH</u> cuts

de Rham, Melville, AJT, Zhou 1706.02712

Punch line: The specific combinations:

 $\operatorname{Im}(s)$

$$\mathcal{T}^+_{\tau_1\tau_2\tau_3\tau_4}(s,\theta) = \left(\sqrt{-su}\right)^{\xi} \mathcal{S}^{S_1+S_2} \left(\mathcal{T}_{\tau_1\tau_2\tau_3\tau_4}(s,\theta) + \mathcal{T}_{\tau_1\tau_2\tau_3\tau_4}(s,-\theta)\right)$$

have the same analyticity structure as scalar scattering amplitudes!!!!!!!

 $m^{2} \quad 3m^{2} \quad 4m^{2}$ $f_{\tau_{1}\tau_{2}}(s,t) = \frac{1}{N_{S}!} \frac{\mathrm{d}^{N_{S}}}{\mathrm{d}s^{N_{S}}} \tilde{\mathcal{T}}_{\tau_{1}\tau_{2}\tau_{1}\tau_{2}}^{+}(s,t)$ $f_{\tau_{1}\tau_{2}}(v,t) = \frac{1}{\pi} \int_{4m^{2}}^{\infty} \mathrm{d}\mu \frac{\mathrm{Abs}_{s} \mathcal{T}_{\tau_{1}\tau_{2}\tau_{1}\tau_{2}}^{+}(\mu,t)}{(\mu - 2m^{2} + t/2 - v)^{N_{S}+1}} + \frac{1}{\pi} \int_{4m^{2}}^{\infty} \mathrm{d}\mu \frac{\mathrm{Abs}_{u} \mathcal{T}_{\tau_{1}\tau_{2}\tau_{1}\tau_{2}}^{+}(4m^{2} - t - \mu, t)}{(\mu - 2m^{2} + t/2 + v)^{N_{S}+1}}$

Positive partial wave Moments

Partial wave expansion:

$$A(s,t) = F(\alpha) \frac{s^{1/2}}{(s-4m^2)^{\alpha}} \sum_{\ell=0}^{\infty} (2\ell+2\alpha) C_{\ell}^{(\alpha)}(\cos\theta) a_{\ell}(s), \quad \alpha = \frac{D-3}{2}$$

Define
$$\rho_{\ell,\alpha}(\mu) = \frac{F(\alpha)}{(\mu - \mu_p)^3} \frac{\mu^{1/2}}{(\mu - 4m^2)^{\alpha}} (2\ell + 2\alpha) \operatorname{Im} a_{\ell}(\mu) C_{\ell}^{(\alpha)}(1)$$

$$\frac{1}{2}\partial_s^2 \mathcal{A}'(s,t) = \sum_{\ell} \int_0^\infty d\mu \left[\frac{1}{(\mu-s)^3} + \frac{1}{(\mu-s-t)^3} \right] \frac{\mu^3 \rho_{\ell,\alpha}(\mu)}{C_{\ell}^{(\alpha)}(1)} C_{\ell}^{(\alpha)} \left(1 + \frac{2t}{\mu} \right)$$

$$f^{(2N,M)} \equiv \frac{1}{2(2N+2)!} \partial_t^M \partial_s^{2N+2} \mathcal{A}'(s,t) \qquad f^{(2N,0)} = \sum_{\ell} \int \mathrm{d}\mu \rho_{\ell,\alpha}(\mu) \frac{1}{\mu^{2N}} > 0, \quad N = 0, 1, 2, ...,$$

$$\langle\!\langle X(\mu,l)\rangle\!\rangle = \frac{\sum_{\ell} \int \mathrm{d}\mu \rho_{\ell,\alpha}(\mu) X(\mu,l)}{\sum_{\ell} \int \mathrm{d}\mu \rho_{\ell,\alpha}(\mu)}$$

$$f^{(2N,0)} = \langle \langle \frac{1}{\mu^{2N}} \rangle \rangle$$

Crossing Symmetry

AJT, Zi-Yue Wang, Shuang-Yong Zhou arXiv:2011.02400

Simon Caron-Huot, Vincent Van Duong arXiv:2011.02957

> Aninda Sinha, Ahmadullah Zahed arXiv:2012.04877

Null-constraints

$$0 = \mathcal{A}(s,t) - \mathcal{A}(t,s) = \sum_{\ell} \int d\mu \rho_{\ell,\alpha}(\mu) \left[\frac{2H_{D,\ell}st(s^2 - t^2)}{(D-2)D\mu^2} + \dots \right]$$
$$\sum_{\ell} \int d\mu \rho_{\ell,\alpha}(\mu) \frac{H_{D,\ell}}{\mu^2} = 0$$
$$H_{D,\ell} = \ell(\ell + D - 3)[4 - 5D - 2(3 - D)\ell + 2\ell^2]$$

 $\langle \langle -\underline{\mu^2} \rangle \rangle =$

Key Idea

 $\left\langle \left\langle \frac{H_{D,\ell}}{\mu^2} \right\rangle \right\rangle = 0$

Make Maximal use of null constraints to strengthen positivity bounds

$$H_{D,\ell} = \ell(\ell + D - 3)[4 - 5D - 2(3 - D)\ell + 2\ell^2]$$

$$\langle\!\langle X(\mu,l)\rangle\!\rangle = \frac{\sum_{\ell} \int \mathrm{d}\mu \rho_{\ell,\alpha}(\mu) X(\mu,l)}{\sum_{\ell} \int \mathrm{d}\mu \rho_{\ell,\alpha}(\mu)}$$

Example
$$f^{(2N,M)} \equiv \frac{1}{2(2N+2)!} \partial_t^M \partial_s^{2N+2} \mathcal{A}'(s,t)|_{s,t\to 0}$$

$$\frac{f^{(0,1)}}{f^{(0,0)}} + \left\langle\!\!\left\langle\frac{3}{2\mu}\right\rangle\!\!\right\rangle = \left\langle\!\!\left\langle\frac{2(-3+D)\ell + 2\ell^2}{(D-2)\mu}\right\rangle\!\!\right\rangle$$

Cauchy-Schwarz

 $\langle\!\langle X(\mu,l) \rangle\!\rangle^2 \le \langle\!\langle X(\mu,l)^2 \rangle\!\rangle$

$$\left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left\langle\!\!\left\langle\frac{3}{2\mu}\right\rangle\!\!\right\rangle^2 = \left\langle\!\!\left\langle\frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu}\right\rangle\!\!\right\rangle^2 \le \left\langle\!\!\left\langle\!\left(\frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu}\right)^2\right\rangle\!\!\right\rangle\!\!\right\rangle$$

ZERO!!!

BUT!!! $(2(D-3)\ell + 2\ell^2)^2 = (5D-4) [2(D-3)\ell + 2\ell^2] + 2H_{D,\ell}$

hence:

$$\left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left<\!\!\left<\frac{3}{2\mu}\right>\!\!\right>\right)^2 \le \frac{5D-4}{D-2} \left<\!\!\left<\!\!\left<\frac{2(D-3)\ell + 2\ell^2}{(D-2)\mu^2}\right>\!\!\right>\!\!\right>$$

AJT, <u>Zi-Yue Wang</u>, <u>Shuang-Yong Zhou</u> arXiv:2011.02400

Upper and Lower Bound

given:

$$\left<\!\!\left<\frac{2(D-3)\ell+2\ell^2}{(D-2)\mu^2}\right>\!\!\right> < \frac{1}{\Lambda^2} \left<\!\!\left<\frac{2(D-3)\ell+2\ell^2}{(D-2)\mu}\right>\!\!\right>$$

then:

$$\left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left<\!\!\left<\frac{3}{2\mu}\right>\!\!\right>\right)^2 < \frac{5D-4}{(D-2)\Lambda^2} \left(\frac{f^{(0,1)}}{f^{(0,0)}} + \left<\!\!\left<\frac{3}{2\mu}\right>\!\!\right>\right)$$

$$-\frac{3}{2\Lambda^2}f^{(0,0)} < f^{(0,1)} < \frac{5D-4}{(D-2)\Lambda^2}f^{(0,0)}$$

Weakly Broken Galileon

$$\Lambda_{3}^{4-D}\mathcal{L}_{mg} = -\frac{1}{2}\partial_{\mu}\pi\partial^{\mu}\pi \left[-\frac{1}{2}m^{2}\pi^{2} + \sum_{n=3}^{D+1}\frac{g_{n}}{\Lambda_{3}^{3n-3}}\pi\partial^{\mu_{1}}\partial_{[\mu_{1}}\pi\partial^{\mu_{2}}\partial_{\mu_{2}}\pi\cdots\partial^{\mu_{n}}\partial_{\mu_{n}}]\pi + \sum_{i}\mathcal{O}_{i}\left(\frac{\partial^{2}\pi}{\Lambda_{3}^{3}}, \frac{\partial^{3}\pi}{\Lambda_{4}^{4}}, \frac{\partial^{4}\pi}{\Lambda_{3}^{5}}, \ldots\right),$$

$$\begin{split} \Lambda_3^{4-D} \mathcal{L}_{wbg} &= -\frac{1}{2} \partial_\mu \pi \partial^\mu \pi - \frac{\alpha}{\Lambda_3^4} (\partial \pi)^4 + \sum_{n=3}^{D+1} \frac{g_n}{\Lambda_3^{3n-3}} \pi \partial^{\mu_1} \partial_{[\mu_1} \pi \partial^{\mu_2} \partial_{\mu_2} \pi \cdots \partial^{\mu_n} \partial_{\mu_n]} \pi \\ &+ \sum_i \mathcal{O}_i \left(\frac{\partial^2 \pi}{\Lambda_3^3}, \frac{\partial^3 \pi}{\Lambda_3^4}, \frac{\partial^4 \pi}{\Lambda_3^5}, \dots \right), \end{split}$$

AJT, <u>Zi-Yue Wang</u>, <u>Shuang-Yong Zhou</u> arXiv:2011.02400

see also Bellazzini et al, Positive Moments ..., 2020

Extended bounds

$$\mathcal{A}'(s,t) = \sum_{p,q=0}^{\infty} c_{p,q} w^p t^q$$

$$w = -(s - 2m^2)(u - 2m^2)$$

General Idea:

I: Given a polynomial Poly(l) whose highest power is positive

$$\langle \mu^{-M} Poly(l) \rangle \ge \langle \mu^{-M} Min(Poly(l)) \rangle$$

Low orders in $l \longrightarrow Lower t$ derivatives

II: Use null constraints to define new polynomials

 $\pm \langle \mu^{-M} Poly(l) \rangle + \frac{\langle \mu^{-M} Null Poly(l) \rangle}{0!} = \langle \mu^{-M} Poly'(l) \rangle \ge \langle \mu^{-M} Min(Poly'(l)) \rangle$

Extended bounds

$$\mathcal{A}'(s,t) = \sum_{p,q=0}^{\infty} c_{p,q} w^p t^q$$
$$w = -(s - 2m^2)(u - 2m^2)$$

(m,n)	$D_{m,n}^{\mathrm{stu}}$ bound	$\bar{D}_{m,n}^{\mathrm{stu}}$ bound
(1,1)	$c_{1,1} > -\frac{3}{2}\sqrt{c_{1,0}c_{2,0}}$	$c_{1,1} < 8\sqrt{c_{1,0}c_{2,0}}$
(2,1)	$c_{2,1} > -\frac{5}{2}\sqrt{c_{2,0}c_{3,0}}$	$c_{2,1} < \frac{465}{38}\sqrt{c_{2,0}c_{3,0}}$
(2,2)	$c_{2,2} > -\frac{9}{2}c_{3,0}$	$c_{2,2} < \frac{2961}{58}c_{3,0}$
(3, 1)	$c_{3,1} > -\frac{7}{2}\sqrt{c_{3,0}c_{4,0}}$	$c_{3,1} < \frac{1097}{58} \sqrt{c_{3,0} c_{4,0}}$
(3, 2)	$c_{3,2} > -7c_{4,0}$	$c_{3,2} < \frac{10027}{59}c_{4,0}$
(3,3)	$c_{3,3} + \frac{3}{4}c_{4,1} > -\frac{147}{8}\sqrt{c_{4,0}c_{5,0}},$	$c_{3,3} - \frac{650}{41}c_{4,1} < \frac{2310}{41}\sqrt{c_{4,0}c_{5,0}}$
	$c_{3,3} - 8c_{4,1} > -154\sqrt{c_{4,0}c_{5,0}},$	
	$c_{3,3} - \frac{481}{12}c_{4,1} > -\frac{7777}{8}\sqrt{c_{4,0}c_{5,0}},$	
	$c_{3,3} - 104c_{4,1} > -3369\sqrt{c_{4,0}c_{5,0}}$	
(4, 2)	$c_{4,2} > -\frac{17}{2}c_{5,0}$	$c_{4,2} < \frac{3923}{12}c_{5,0}$
(4, 3)	$c_{4,3} + \frac{3}{4}c_{5,1} > -\frac{253}{8}\sqrt{c_{5,0}c_{6,0}},$	$c_{4,3} - \frac{73153}{1748}c_{5,1} < \frac{708543}{3496}\sqrt{c_{5,0}c_{6,0}}$
	100 0505	
	$c_{4,3} - \frac{180}{41}c_{5,1} > -\frac{8705}{82}\sqrt{c_{5,0}c_{6,0}},$	
	$c_{4,3} - \frac{180}{41}c_{5,1} > -\frac{8705}{82}\sqrt{c_{5,0}c_{6,0}},$ $c_{4,3} - \frac{325}{12}c_{5,1} > -\frac{16825}{24}\sqrt{c_{5,0}c_{6,0}},$	
	, <u>11</u> , <u>02</u> , , , ,	
	$c_{4,3} - \frac{325}{12}c_{5,1} > -\frac{16825}{24}\sqrt{c_{5,0}c_{6,0}},$	
(4,4)	$c_{4,3} - \frac{325}{12}c_{5,1} > -\frac{16825}{24}\sqrt{c_{5,0}c_{6,0}},$ $c_{4,3} - \frac{169}{2}c_{5,1} > -\frac{11187}{4}\sqrt{c_{5,0}c_{6,0}}$	$c_{4,4} - 15c_{5,2} < \frac{195}{2}c_{6,0},$
(4,4)	$c_{4,3} - \frac{325}{12}c_{5,1} > -\frac{16825}{24}\sqrt{c_{5,0}c_{6,0}},$ $c_{4,3} - \frac{169}{2}c_{5,1} > -\frac{11187}{4}\sqrt{c_{5,0}c_{6,0}},$ $c_{4,3} - \frac{743}{4}c_{5,1} > -\frac{63279}{8}\sqrt{c_{5,0}c_{6,0}}$	$c_{4,4} - 15c_{5,2} < \frac{195}{2}c_{6,0},$ $c_{4,4} + \frac{368085}{36544}c_{5,2} < \frac{2365845}{18272}c_{6,0}$
(4,4)	$c_{4,3} - \frac{325}{12}c_{5,1} > -\frac{16825}{24}\sqrt{c_{5,0}c_{6,0}},$ $c_{4,3} - \frac{169}{2}c_{5,1} > -\frac{11187}{4}\sqrt{c_{5,0}c_{6,0}},$ $c_{4,3} - \frac{743}{4}c_{5,1} > -\frac{63279}{8}\sqrt{c_{5,0}c_{6,0}},$ $c_{4,4} + \frac{25}{24}c_{5,2} > -\frac{147}{8}c_{6,0},$) <u> </u>

AJT, <u>Zi-Yue Wang</u>, <u>Shuang-Yong Zhou</u> arXiv:2011.02400 See also Simon Caron-Huot, Vincent Van Duong arXiv:2011.02957 Bellazzini et al, Positive Moments ..., 2020 40 30 C4,0 C5,0 C4,1 20 200 400 600 C_{3,3} $\sqrt{c_{4,0} c_{5,0}}$ 120 1000 800 600 C5,2 C6,0 400 200 2000 6000 8000 0 4000 10000 C_{4,4} *C*_{6.0}

What about coupling to gravity?

gravitational Euler-Heisenberg

$$\mathcal{L}_{\text{QED}} = \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \bar{\psi} (i \nabla \!\!\!/ + m) \psi - e A_\mu \bar{\psi} \gamma^\mu \psi \right]$$

$$S_{\text{Eul-Heis},1} = \int d^4x \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{a_1}{m^4} (F_{\mu\nu} F^{\mu\nu})^2 + \frac{a_2}{m^4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 \right]$$
$$\frac{b_1}{m^2} RF_{\mu\nu} F^{\mu\nu} + \frac{b_2}{m^2} R_{\mu\nu} F^{\mu\lambda} F^{\nu}{}_{\lambda} + \frac{b_3}{m^2} R_{\mu\nu\lambda\rho} F^{\mu\nu} F^{\lambda\rho} + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \cdots \right],$$
$$\mathcal{L}_{\text{Eul-Heis},2} = \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{a_1'}{m^4} (F_{\mu\nu} F^{\mu\nu})^2 + \frac{a_2'}{m^4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \frac{b_3}{m^2} F_{\mu\nu} F_{\rho\sigma} C^{\mu\nu\rho\sigma} \right]$$

$$a_1' = a_1 + \frac{1}{4} \frac{m^2}{M_{\text{Pl}}^2} b_2 + \frac{1}{2} \frac{m^2}{M_{\text{Pl}}^2} b_3, \qquad a_2' = a_2 + \frac{1}{4} \frac{m^2}{M_{\text{Pl}}^2} b_2 + \frac{1}{2} \frac{m^2}{M_{\text{Pl}}^2} b_3$$

Relevant for discussions of Weak Gravity Conjecture

Hamada, Noumi, Shui 1909.01352 Bellazzini et al 1902.03250

Positivity (t-channel pole removed)

Cheung, Remmen 1407.7865

$$\mathcal{A}_{\text{Eul-Heis}}(++--) = \mathcal{A}_{\text{Eul-Heis}}(--++) = \frac{s^4}{M_{\text{Pl}}^2 stu} + \frac{8(a_1'+a_2')}{m^4}s^2$$

For spinor QED For scalar QED

$$\begin{aligned} a_1' + a_2' &> 0\\ \frac{e^4}{5760M_{\rm Pl}^2\pi^2} \left(-24\frac{m^2}{e^2} + 11M_{\rm Pl}^2 \right) > 0\\ \frac{e^4}{2880M_{\rm Pl}^2\pi^2} \left(-2\frac{m^2}{e^2} + M_{\rm Pl}^2 \right) > 0 \end{aligned}$$

 $e/m \gtrsim \sqrt{2}/M_{\rm Pl}$

Weak Gravity Conjecture!!!

Problem!

'Known' contribution from electron loops

This contribution can be **removed**, by applying (improved) positivity bounds directly to gravitational QED EFT!!

 $\epsilon \Lambda_c \lesssim (em M_{\rm Pl})^{1/2}$

Higher order gravitational contributions

$$\gamma(\mu) = \gamma_m - B \ln(\mu/m)$$

Coefficient of R squared terms

Noted in 3D in

Chen et al. 1901.11480

$$\frac{e^4}{\pi^2 \Lambda^4} \left(\ln \frac{\Lambda}{m} - \frac{1}{4} \right) - \frac{11e^2}{360\pi^2 m^2 M_{\rm Pl}^2} - \frac{B}{M_{\rm Pl}^4} \ln \left(\frac{\Lambda}{m} \right) + \frac{\gamma_m}{M_{\rm Pl}^4} > 0$$

$$-\frac{11e^2}{360\pi^2 m^2 M_{\rm Pl}^2} + \frac{\gamma_{\Lambda}}{M_{\rm Pl}^4} > 0$$

Alternative Explanation - mild negativity allowed

Decoupling limits consistent with

$$c > -\frac{O(1)}{M^2 M_{\rm Pl}^2}$$
 Alberte et al. 2007.12667
Tokuda et al. 2007.15009
Herrero-Valea et al. 2011.11652

Conjecture

Positivity Bounds and the Massless Spin-2 Pole Lasma Alberte, Claudia de Rham, Sumer Jaitly, Andrew J. Tolley arXiv:2007.12667

For a weakly coupled (tree level) UV completion, given

$$A(s,t) = -\frac{s^2}{M_{\rm Pl}^2 t} + \frac{\tilde{c}}{M^4} s^2 + \dots$$

Conjecture!
$$\tilde{c} > -\frac{M^2}{M_{\rm Pl}^2} \times \mathcal{O}(1)$$

Recently 'Proven'!

$$\tilde{c} > -\frac{M^2}{M_{\rm Pl}^2} 17 \log(1.7Mb_{\rm max})$$

Sharp Boundaries for the Swampland Simon Caron-Huot, Dalimil Mazac, Leonardo Rastelli, David Simmons-Duffin

arXiv:2102.08951

Conclusions

- * <u>Positivity Bounds</u> are <u>very powerful</u> at constraining irrelevant operators in a low energy EFT
- * Full crossing symmetry implies upper and lower bounds on Wilson coefficients
- * Strong constraints on interacting massive spin theories and supersoft theories
- * Full understanding of extension to massless gravity (no mass gap) unclear, although recent exciting progress
- * Small amount of *'negativity'* allowed with gravity, without contradicting unitarity and causality