Effective Field Theories and Positivity Bounds

Andrew J. Tolley
Imperial College London

Are all EFTs allowed? - SWAMPLAND

With typical assumption that:
UV completion is Local, Causal, Poincare Invariant and Unitary
Answer: NO! Certain low energy effective theories do not admit well defined UV completions

Kallen-Lehmann Spectral Representation

Together with Poincare invariance these imply:

$$
i\langle 0| \hat{T} \hat{O}(x) \hat{O}(y)|0\rangle=\int \frac{d^{d} k}{(2 \pi)^{d}} e^{i k .(x-y)} G_{O}(k)
$$

$$
G_{O}(k)=\frac{Z}{k^{2}+m^{2}-i \epsilon}+S\left(-k^{2}\right)+\left(-k^{2}\right)^{N} \int_{4 m^{2}}^{\infty} d \mu \frac{\rho(\mu)}{\mu^{N}\left(k^{2}+\mu-i \epsilon\right)}
$$

$$
S\left(-k^{2}\right)=\sum_{k=0}^{N-1} c_{k}\left(-k^{2}\right)^{k} \quad \lim _{\mu \rightarrow \infty} \rho(\mu) \sim \mu^{\Delta-d / 2} \quad N=[\Delta-d / 2+1]
$$

Δ UV Conformal weight
Positive Spectral Density as a result of Unitarity

$$
\rho(\mu) \geq 0
$$

Analytic Structure

Define complex momenta squared $\quad z=-k^{2}+i \epsilon$

$$
G_{O}(z)=\frac{\text { Pole }}{\frac{Z}{m^{2}-z}}+S(z)+z^{N} \int_{4 m^{2}}^{\infty} d \mu \frac{\rho(\mu)}{\mu^{N}(\mu-z)}
$$

Physical region

Region of Validity of EFT

EFT valid here, can calculate pole and 'low energy' part of cut

UV completion

- unknown?

Analytic Structure 2: Move the branch cut!

de Rham, Melville, AJT, Zhou I702.08577 Bellazzini et al ifio. 02539
de Rham, Melville, AJT i710.096ir

Physical region
Removes IR loop effects!!!!

$$
G_{O}^{\prime}(z)=G_{O}(z)-\frac{Z}{m^{2}-z}-z^{N} \int_{4 m^{2}}^{\Lambda^{2}} d \mu \frac{\rho(\mu)}{\mu^{N}(\mu-z)}
$$

$$
G_{O}^{\prime}(z)=S(z)+z^{N} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\rho(\mu)}{\mu^{N}(\mu-z)}
$$

Calculable in EFT

Linear (Improved) Positivity Bounds

$$
G_{O}^{\prime}(z)=S(z)+z^{N} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\rho(\mu)}{\mu^{N}(\mu-z)}
$$

$$
\begin{aligned}
& M \geq N \\
& D_{M}(z)=\frac{1}{M!} \frac{d^{M}}{d z^{M}} G_{O}^{\prime}(z)=\int_{\Lambda^{2}}^{\infty} d \mu \frac{\rho(\mu)}{(\mu-z)^{M+1}}
\end{aligned}
$$

$$
D_{M}(0)=\int_{\Lambda^{2}}^{\infty} d \mu \frac{\rho(\mu)}{\mu^{M+1}}
$$

$$
D_{M}(0)>0 \quad D_{M}(0) \geq \Lambda^{2} D_{M+1}(0)
$$

Positivity of these integrals enforces positivity of combinations of Wilson coefficients for Irrelevant operators

Nonlinear (Improved) Positivity Bounds

Maths by Stieltjes in 1890s, applied to amplitudes positivity in I970s!! Recently rediscovered

$$
D_{M}(0)=\int_{\Lambda^{2}}^{\infty} d \mu \frac{\rho(\mu)}{\mu^{M+1}}=\left\langle\frac{1}{\mu^{M}}\right\rangle
$$

Arkani-Hamed, Huang, Huang EFT-Hedron 2020 see also Bellazzini et al, Positive Moments .., 2020

$$
\begin{aligned}
y^{T} D_{M} y= & \sum_{p, q=0}^{N} D_{M+p+q} y^{p} y^{q}=\left\langle\mu^{-M}\left(\sum_{p=0}^{N} y^{p} \mu^{-p}\right)^{2}\right\rangle>0 \\
& \operatorname{det}\left(D_{M}\right)>0
\end{aligned} \quad \begin{array}{cc}
\text { 'positivity of N x N Hankel matrix' } \\
\left(D_{M}\right)_{p q}=D_{M+p+q}
\end{array}
$$

Simply example Cauchy-Schwarz:

$$
\begin{aligned}
& \text { example Cauchy-schwarz: } \\
& \left\langle\left(\mu^{-M}+\lambda \mu^{-N}\right)^{2}\right\rangle \geq 0
\end{aligned} \quad\left(\begin{array}{cc}
D_{2 N} & D_{N+M} \\
D_{N+M} & D_{2 M}
\end{array}\right)
$$

$$
D_{2 M} D_{2 N} \geq\left(D_{N+M}\right)^{2}
$$

'positivity of 2×2 Hanker matrix'

What does this tell us about EFT?

e.g. Suppose scalar field in EFT with tree level action

$$
S=\int d^{4} x \hat{O}(x)\left[\square+a_{1} \frac{\square^{2}}{\Lambda^{2}}+a_{2} \frac{\square^{3}}{\Lambda^{4}}+\ldots\right] \hat{O}(x)
$$

Tree level Feynman propagator is

$$
G_{O}(z)=-\frac{1}{z+a_{1} \frac{z^{2}}{\Lambda^{2}}+a_{2} \frac{z^{3}}{\Lambda^{4}}+a_{3} \frac{z^{4}}{\Lambda^{6}}+a_{4} \frac{z^{5}}{\Lambda^{8}} \ldots}
$$

Assume no subtractions needed
$G_{O}^{\prime}(z)=\frac{a_{1}}{\Lambda^{2}}+\frac{\left(a_{2}-a_{1}^{2}\right)}{\Lambda^{4}} z+\frac{a_{1}^{3}-2 a_{1} a_{2}+a_{3}}{\Lambda^{6}} z^{2}+\frac{a_{4}-2 a_{1} a_{3}-a_{2}^{2}+3 a_{1}^{2} a_{2}-a_{1}^{4}}{\Lambda^{8}} z^{3}+\mathcal{O}\left(z^{4}\right)$

What does this tell us about EFT?

$G_{O}^{\prime}(z)=\frac{a_{1}}{\Lambda^{2}}+\frac{\left(a_{2}-a_{1}^{2}\right)}{\Lambda^{4}} z+\frac{a_{1}^{3}-2 a_{1} a_{2}+a_{3}}{\Lambda^{6}} z^{2}+\frac{a_{4}-2 a_{1} a_{3}-a_{2}^{2}+3 a_{1}^{2} a_{2}-a_{1}^{4}}{\Lambda^{8}} z^{3}+\mathcal{O}\left(z^{4}\right)$
assuming no $\quad N=0$
subtractions

$$
D_{2} D_{0}>D_{1}^{2}
$$

NonLinear (Improved)
Positivity Bounds: $\quad\left(a_{1}^{3}-2 a_{1} a_{2}+a_{3}\right) a_{1}-\left(a_{2}-a_{1}^{2}\right)^{2}>0$

$$
a_{1} a_{3} \stackrel{\downarrow}{-} a_{2}^{2}>0
$$

$$
D_{3} D_{0}^{2}-D_{1}^{3}+2 D_{0}^{2}\left(D_{2} D_{0}-D_{1}^{2}\right)>0
$$

Scattering Amplitude Analyticity

Physical scattering region is $s \geq 4 m^{2}$
crossing: $\quad u=4 m^{2}-s-t$
$\mathcal{A}_{s}(s, t)=\frac{\lambda_{s}(t)}{m^{2}-s}+\frac{\lambda_{u}(t)}{m^{2}-u}+\left(c_{0}(t)+c_{1}(t) s\right)+\frac{s^{2}}{\pi} \int_{4 m^{2}}^{\infty} d \mu \frac{\operatorname{Im}\left(A_{s}(\mu, t)\right)}{\mu^{2}(\mu-s)}+\frac{u^{2}}{\pi} \int_{4 m^{2}}^{\infty} d \mu \frac{\operatorname{Im}\left(A_{u}(\mu, t)\right)}{\mu^{2}(\mu-u)}$

‘Improved' Scattering Amplitude Analyticity Removes IR loop effects!!!!

Complex splane | Physical scattering |
| :--- |
| region is $s \geq 4 m^{2}$ |

crossing: $u=4 m^{2}-s-t$
$\mathcal{A}_{s}^{\prime}(s, t)=c_{0}(t)+c_{1}(t) s+\frac{s^{2}}{\pi} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\operatorname{Im}\left(\mathcal{A}_{s}(\mu, t)\right)}{\mu^{2}(\mu-s)}+\frac{u^{2}}{\pi} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\operatorname{Im}\left(\mathcal{A}_{u}(\mu, t)\right)}{\mu^{2}(\mu-u)}$

Fixed t (improved) linear Positivity Bounds

$$
\mathcal{A}_{s}^{\prime}(s, t)=c_{0}(t)+c_{1}(t) s+\frac{s^{2}}{\pi} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\operatorname{Im}\left(\mathcal{A}_{s}(\mu, t)\right)}{\mu^{2}(\mu-s)}+\frac{u^{2}}{\pi} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\operatorname{Im}\left(\mathcal{A}_{u}(\mu, t)\right)}{\mu^{2}(\mu-u)}
$$

$$
\frac{1}{M!} \frac{d^{M}}{d s^{M}} \mathcal{A}_{s}^{\prime}\left(2 m^{2}-t / 2, t\right)=\frac{1}{\pi} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\operatorname{Im} \mathcal{A}_{s}(\mu, t)+\operatorname{Im} \mathcal{A}_{s}(\mu, t)}{\left(\mu-2 m^{2}+t / 2\right)^{M+1}}>0
$$

$M \geq 2 \quad 0 \leq t<4 m^{2}$
Even M

RH Cut
LH Cut

Fixed t (improved) 'Stieltjes' Positivity Bounds

$$
\begin{array}{r}
\frac{1}{M!} \frac{d^{M}}{d s^{M}} \mathcal{A}_{s}^{\prime}\left(2 m^{2}-t / 2, t\right)=\frac{1}{\pi} \int_{\Lambda^{2}}^{\infty} d \mu \frac{\operatorname{Im} \mathcal{A}_{s}(\mu, t)+\operatorname{Im} \mathcal{A}_{s}(\mu, t)}{\left(\mu-2 m^{2}+t / 2\right)^{M+1}}>0 \\
0 \leq t<4 m^{2}
\end{array}
$$

$$
\operatorname{det}_{p q}\left(\frac{1}{(M+p+q)!} \frac{d^{M+p+q}}{d s^{M+p+q}} \mathcal{A}_{s}^{\prime}\left(2 m^{2}-t / 2, t\right)\right)>0
$$

Even $M+p+q$

$$
0 \leq t<4 m^{2}
$$

Scattering of all spins

Helicity

Kotanski, 1965
Transversity

$$
\mathcal{T}_{\tau_{1} \tau_{2} \tau_{3} \tau_{4}}=\sum_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}} u_{\lambda_{1} \tau_{1}}^{S_{1}} u_{\lambda_{2} \tau_{2}}^{S_{2}} u_{\tau_{3} \lambda_{3}}^{S_{1} *} u_{\tau_{4} \lambda_{4}}^{S_{2} *} \mathcal{H}_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}
$$

Change of Basis $u_{\lambda \tau}^{S}=\langle S, \lambda| e^{-i \frac{\pi}{2} \hat{J}_{z}} e^{-i \frac{\pi}{2} \hat{J}_{y}} e^{i \frac{\pi}{2} \hat{J}_{z}}|S, \tau\rangle$

$$
T_{\tau_{1} \tau_{2} \tau_{3} \tau_{4}}^{s}(s, t, u)=e^{-i \sum_{i} \tau_{i} \chi_{-\tau_{1}}^{u} T_{\tau_{4}-\tau_{3}-\tau_{2}}^{u}(u, t, s) .}
$$

Crossing is Simple!!

Dispersion Relation with Positivity along BOTH cuts

de Rham, Melville, AJT, Zhou 1706.02712
Punch line: The specific combinations:

$$
\mathcal{T}_{\tau_{1} \tau_{2} \tau_{3} \tau_{4}}^{+}(s, \theta)=(\sqrt{-s u})^{\xi} \mathcal{S}^{S_{1}+S_{2}}\left(\mathcal{T}_{\tau_{1} \tau_{2} \tau_{3} \tau_{4}}(s, \theta)+\mathcal{T}_{\tau_{1} \tau_{2} \tau_{3} \tau_{4}}(s,-\theta)\right)
$$

$\operatorname{Im}(s)$
have the same analyticity structure
as scalar scattering amplitudes!!!!!!!
Implies Dispersion Relation
$m^{2} 3 m^{2} 4 m^{2}$

$$
f_{\tau_{1} \tau_{2}}(s, t)=\frac{1}{N_{S}!} \frac{\mathrm{d}^{N_{S}}}{\mathrm{~d} s^{N_{S}}} \tilde{\mathcal{T}}_{\tau_{1} \tau_{2} \tau_{1} \tau_{2}}^{+}(s, t)
$$

$$
f_{\tau_{1} \tau_{2}}(v, t)=\frac{1}{\pi} \int_{4 m^{2}}^{\infty} \mathrm{d} \mu \frac{\operatorname{Abs}_{s} \mathcal{T}_{\tau_{1} \tau_{2} \tau_{1} \tau_{2}}^{+}(\mu, t)}{\left(\mu-2 m^{2}+t / 2-v\right)^{N_{S}+1}}+\frac{1}{\pi} \int_{4 m^{2}}^{\infty} \mathrm{d} \mu \frac{\operatorname{Abs}_{u} \mathcal{T}_{\tau_{1} \tau_{2} \tau_{1} \tau_{2}}^{+}\left(4 m^{2}-t-\mu, t\right)}{\left(\mu-2 m^{2}+t / 2+v\right)^{N_{S}+1}}
$$

Positive partial wave Moments

Partial wave expansion:

$$
A(s, t)=F(\alpha) \frac{s^{1 / 2}}{\left(s-4 m^{2}\right)^{\alpha}} \sum_{\ell=0}^{\infty}(2 \ell+2 \alpha) C_{\ell}^{(\alpha)}(\cos \theta) a_{\ell}(s), \quad \alpha=\frac{D-3}{2}
$$

Define

$$
\left.\rho_{\ell, \alpha}(\mu)=\frac{F(\alpha)}{\left(\mu-\mu_{\rho}\right)^{\frac{1}{3}}} \frac{\mu^{1 / 2}}{\left(\mu-4 m^{2}\right)^{\alpha}}(2 \ell+2 \alpha) \operatorname{Im} a_{\ell}(\mu)\right)_{\ell}^{(\alpha)}(1)
$$

$$
\frac{1}{2} \partial_{s}^{2} \mathcal{A}^{\prime}(s, t)=\sum_{\ell} \int_{0}^{\infty} d \mu\left[\frac{1}{(\mu-s)^{3}}+\frac{1}{(\mu-s-t)^{3}}\right] \frac{\mu^{3} \rho_{\ell, \alpha}(\mu)}{C_{\ell}^{(\alpha)}(1)} C_{\ell}^{(\alpha)}\left(1+\frac{2 t}{\mu}\right)
$$

$$
f^{(2 N, M)} \equiv \frac{1}{2(2 N+2)!} \partial_{t}^{M} \partial_{s}^{2 N+2} \mathcal{A}^{\prime}(s, t) \quad f^{(2 N, 0)}=\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu) \frac{1}{\mu^{2 N}}>0, \quad N=0,1,2, \ldots,
$$

$$
\langle\langle X(\mu, l)\rangle\rangle=\frac{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu) X(\mu, l)}{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu)}
$$

$$
f^{(2 N, 0)}=\left\langle\left\langle\frac{1}{\mu^{2 N}}\right\rangle\right\rangle
$$

Crossing Symmetry

AJT, Zi-Yue Wang, Shuang-Yong Zhou arXiv:2011.02400
Simon Caron-Huot, Vincent Van Duong arXiv:2011.02957

$$
A_{s}(s, t, u)=A_{t}(t, s, u)
$$

Null-constraints

$$
\begin{gathered}
0=\mathcal{A}(s, t)-\mathcal{A}(t, s)=\sum_{\ell} \int d \mu \rho_{\ell, \alpha}(\mu)\left[\frac{2 H_{D, \ell s t}\left(s^{2}-t^{2}\right)}{(D-2) D \mu^{2}}+\ldots\right] \\
\sum_{\ell} \int d \mu \rho_{\ell, \alpha}(\mu) \frac{H_{D, \ell}}{\mu^{2}}=0 \\
H_{D, \ell}=\ell(\ell+D-3)\left[4-5 D-2(3-D) \ell+2 \ell^{2}\right] \\
\left\langle\left\langle\frac{H_{D, \ell}}{\mu^{2}}\right\rangle\right\rangle=0
\end{gathered}
$$

Key Idea

Make Maximal use of null constraints

 to strengthen positivity bounds$$
\begin{aligned}
& \left\langle\left\langle\frac{H_{D, \ell}}{\mu^{2}}\right\rangle\right\rangle=0 \quad{ }_{n=0} \\
& \langle\langle X(\mu, l)\rangle\rangle=\frac{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu) X(\mu, l)}{\sum_{\ell} \int \mathrm{d} \mu \rho_{\ell, \alpha}(\mu)}
\end{aligned}
$$

Example

$$
\left.f^{(2 N, M)} \equiv \frac{1}{2(2 N+2)!} \partial_{t}^{M} \partial_{s}^{2 N+2} \mathcal{A}^{\prime}(s, t)\right|_{s, t \rightarrow 0}
$$

$$
\frac{f^{(0,1)}}{f^{(0,0)}}+\left\langle\left\langle\frac{3}{2 \mu}\right\rangle\right\rangle=\left\langle\left\langle\frac{2(-3+D) \ell+2 \ell^{2}}{(D-2) \mu}\right\rangle\right\rangle
$$

Cauchy-Schwarz

$$
\langle\langle X(\mu, l)\rangle\rangle^{2} \leq\left\langle\left\langle X(\mu, l)^{2}\right\rangle\right\rangle
$$

$$
\left(\frac{f^{(0,1)}}{f^{(0,0)}}+\left\langle\left\langle\frac{3}{2 \mu}\right\rangle\right)^{2}=\left\langle\left\langle\frac{2(D-3) \ell+2 \ell^{2}}{(D-2) \mu}\right\rangle\right\rangle^{2} \leq\left\langle\left\langle\frac{2(D-3) \ell+2 \ell^{2}}{(D-2) \mu}\right)^{2}\right\rangle\right\rangle
$$

ZERO!!!

BUT!!!

$$
\left(2(D-3) \ell+2 \ell^{2}\right)^{2}=(5 D-4)\left[2(D-3) \ell+2 \ell^{2}\right]+2 H_{D, \ell}
$$

hence:

Upper and Lower Bound

given:

$$
\left\langle\left\langle\frac{2(D-3) \ell+2 \ell^{2}}{(D-2) \mu^{2}}\right\rangle\right\rangle<\frac{1}{\Lambda^{2}}\left\langle\left\langle\frac{2(D-3) \ell+2 \ell^{2}}{(D-2) \mu}\right\rangle\right\rangle
$$

then:

$$
\left(\frac{f^{(0,1)}}{f^{(0,0)}}+\left\langle\left\langle\frac{3}{2 \mu}\right\rangle\right\rangle\right)^{2}<\frac{5 D-4}{(D-2) \Lambda^{2}}\left(\frac{f^{(0,1)}}{f^{(0,0)}}+\left\langle\left\langle\frac{3}{2 \mu}\right\rangle\right\rangle\right)
$$

$$
-\frac{3}{2 \Lambda^{2}} f^{(0,0)}<f^{(0,1)}<\frac{5 D-4}{(D-2) \Lambda^{2}} f^{(0,0)}
$$

Weakly Broken Galileon

$$
\begin{aligned}
\Lambda_{3}^{4-D} \mathcal{L}_{\mathrm{mg}}= & -\frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi-\frac{1}{2} m^{2} \pi^{2}+\sum_{n=3}^{D+1} \frac{g_{n}}{\Lambda_{3}^{3 n-3}} \pi \partial^{\mu_{1}} \partial_{\left[\mu_{1}\right.} \pi \partial^{\mu_{2}} \partial_{\mu_{2}} \pi \cdots \partial^{\mu_{n}} \partial_{\left.\mu_{n}\right]} \pi \\
& +\sum_{i} \mathcal{O}_{i}\left(\frac{\partial^{2} \pi}{\Lambda_{3}^{3}}, \frac{\partial^{3} \pi}{\Lambda_{3}^{4}}, \frac{\partial^{4} \pi}{\Lambda_{3}^{5}}, \ldots\right),
\end{aligned}
$$

$$
\Lambda_{3}^{4-D} \mathcal{L}_{\mathrm{wbg}}=-\frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi-\frac{\alpha}{\Lambda_{3}^{4}}(\partial \pi)^{4}+\sum_{n=3}^{D+1} \frac{g_{n}}{\Lambda_{3}^{n-3}} \pi \partial^{\mu_{1}} \partial_{\left[\mu_{1}\right.} \pi \partial^{\mu_{2}} \partial_{\mu_{2}} \pi \cdots \partial^{\mu_{n}} \partial_{\left.\mu_{n}\right]} \pi
$$

$$
+\sum_{i} \mathcal{O}_{i}\left(\frac{\partial^{2} \pi}{\Lambda_{3}^{3}}, \frac{\partial^{3} \pi}{\Lambda_{3}^{4}}, \frac{\partial^{4} \pi}{\Lambda_{3}^{5}}, \ldots\right),
$$

$$
\mathcal{A}^{\prime}(s, t) \sim \frac{1}{\Lambda_{3}^{D-4}}\left(\frac{m^{2}}{\Lambda_{3}^{6}} x+\frac{1}{\Lambda_{3}^{6}} y+\frac{1}{\Lambda_{3}^{8}} x^{2}+\ldots\right)
$$

Extended bounds

AJT, Zi-Yue Wang, Shuang-Yong Zhou arXiv:2011.02400
See also
Simon Caron-Huot, Vincent Van Duong arXiv:2011.02957

$$
\mathcal{A}^{\prime}(s, t)=\sum_{p . q=0}^{\infty} c_{p, q} w^{p} t^{q}
$$

$$
w=-\left(s-2 m^{2}\right)\left(u-2 m^{2}\right)
$$

General Idea:
I: Given a polynomial $\operatorname{Poly}(l)$ whose highest power is positive

$$
\left\langle\mu^{-M} \operatorname{Poly}(l)\right\rangle \geq\left\langle\mu^{-M} \operatorname{Min}(\operatorname{Poly}(l))\right\rangle
$$

Low orders in $l \longrightarrow$ Lower t derivatives
II: Use null constraints to define new polynomials

$$
\pm\left\langle\mu^{-M} \operatorname{Poly}(l)\right\rangle+\left\langle\mu^{-M} N u l l P o l y(l)\right\rangle=\left\langle\mu^{-M} \text { Poly }^{\prime}(l)\right\rangle \geq\left\langle\mu^{-M} \operatorname{Min}\left(\operatorname{Poly}^{\prime}(l)\right)\right\rangle
$$

Extended bounds ∞

$$
\begin{aligned}
\mathcal{A}^{\prime}(s, t)= & \sum_{p \cdot q=0} c_{p, q} w^{p} t^{q} \\
& w=-\left(s-2 m^{2}\right)\left(u-2 m^{2}\right)
\end{aligned}
$$

(m, n)	$D_{m, n}^{\text {stu bound }}$	$\bar{D}_{m, n}^{\text {stu }}$ bound
$(1,1)$	$c_{1,1}>-\frac{3}{2} \sqrt{c_{1,0} c_{2,0}}$	$c_{1,1}<8 \sqrt{c_{1,0} c_{2,0}}$
$(2,1)$	$c_{2,1}>-\frac{5}{2} \sqrt{c_{2,0} c_{3,0}}$	$c_{2,1}<\frac{465}{38} \sqrt{c_{2,0} c_{3,0}}$
$(2,2)$	$c_{2,2}>-\frac{9}{2} c_{3,0}$	$c_{2,2}<\frac{2961}{58} c_{3,0}$
$(3,1)$	$c_{3,1}>-\frac{7}{2} \sqrt{c_{3,0} c_{4,0}}$	$c_{3,1}<\frac{1097}{58} \sqrt{c_{3,0} c_{4,0}}$
$(3,2)$	$c_{3,2}>-7 c_{4,0}$	$c_{3,2}<\frac{10027}{59} c_{4,0}$
$(3,3)$	$c_{3,3}+\frac{3}{4} c_{4,1}>-\frac{147}{8} \sqrt{c_{4,0} c_{5,0}}$,	$c_{3,3}-\frac{650}{41} c_{4,1}<\frac{2310}{41} \sqrt{c_{4,0} c_{5,0}}$
	$c_{3,3}-8 c_{4,1}>-154 \sqrt{c_{4,0} c_{5,0}}$,	
$(4,2)$	$c_{3,3}-\frac{481}{12} c_{4,1}>-\frac{7777}{8} \sqrt{c_{4,0} c_{5,0}}$,	
$(4,3)$	$c_{4,3}+\frac{3}{4} c_{5,1}>-\frac{253}{8} \sqrt{c_{5,0} c_{6,0}}$,	$c_{4,3}-\frac{73153}{1748} c_{5,1}<\frac{708543}{3496} \sqrt{c_{5,0} c_{6,0}}$
	$c_{4,3}-\frac{180}{41} c_{5,1}>-\frac{8705}{82} \sqrt{c_{5,0} c_{6,0}}$,	
	$c_{4,3}-\frac{325}{12} c_{5,1}>-\frac{16825}{24} \sqrt{c_{5,0} c_{6,0}}$,	
	$c_{4,3}-\frac{169}{2} c_{5,1}>-\frac{11187}{4} \sqrt{c_{5,0} c_{6,0}}$	
$c_{4,3}-\frac{743}{4} c_{5,1}>-\frac{63279}{8} \sqrt{c_{5,0} c_{6,0}}$		
$(4,4)$	$c_{4,4}+\frac{25}{24} c_{5,2}>-\frac{147}{8} c_{6,0}$,	$c_{4,4}-15 c_{5,2}<\frac{195}{2} c_{6,0}$,
$c_{4,4}-\frac{125}{37} c_{5,2}>-\frac{71175}{74} c_{6,0}$,	$c_{4,4}+\frac{368085}{36544} c_{5,2}<\frac{2365845}{18272} c_{6,0}$	
$c_{4,4}-\frac{785}{52} c_{5,2}>-\frac{83490}{13} c_{6,0}$,		
$c_{4,4}-\frac{2485}{69} c_{5,2}>-\frac{1144125}{46} c_{6,0}$		

AJT, Zi-Yue Wang, Shuang-Yong Zhou arXiv:2011.02400
 See also
 Simon Caron-Huot, Vincent Van Duong arXiv:2011.02957

Bellazzini et al, Positive Moments .., 2020

What about coupling to gravity?

gravitational QED scales

gravitational Euler-Heisenberg

$$
\mathcal{L}_{\mathrm{QED}}=\sqrt{-g}\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\bar{\psi}(i \not \partial+m) \psi-e A_{\mu} \bar{\psi} \gamma^{\mu} \psi\right]
$$

$$
\begin{aligned}
S_{\mathrm{Eul}-\mathrm{Heis}, 1}=\int \mathrm{d}^{4} x \sqrt{-g} & {\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{a_{1}}{m^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\frac{a_{2}}{m^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}\right.} \\
& \frac{b_{1}}{m^{2}} R F_{\mu \nu} F^{\mu \nu}+\frac{b_{2}}{m^{2}} R_{\mu \nu} F^{\mu \lambda} F_{\lambda}^{\nu}+\frac{b_{3}}{m^{2}} R_{\mu \nu \lambda \rho} F^{\mu \nu} F^{\lambda \rho} \\
& \left.+c_{1} R^{2}+c_{2} R_{\mu \nu} R^{\mu \nu}+c_{3} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}+\cdots\right]
\end{aligned}
$$

$\mathcal{L}_{\text {Eul-Heis }, 2}=\sqrt{-g}\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{a_{1}^{\prime}}{m^{4}}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\frac{a_{2}^{\prime}}{m^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}+\frac{b_{3}}{m^{2}} F_{\mu \nu} F_{\rho \sigma} C^{\mu \nu \rho \sigma}\right]$

$$
a_{1}^{\prime}=a_{1}+\frac{1}{4} \frac{m^{2}}{M_{\mathrm{Pl}}^{2}} b_{2}+\frac{1}{2} \frac{m^{2}}{M_{\mathrm{Pl}}^{2}} b_{3}, \quad a_{2}^{\prime}=a_{2}+\frac{1}{4} \frac{m^{2}}{M_{\mathrm{Pl}}^{2}} b_{2}+\frac{1}{2} \frac{m^{2}}{M_{\mathrm{Pl}}^{2}} b_{3}
$$

Relevant for discussions of Weak Gravity Conjecture

Hamada, Noumi, Shui 1909.01352
Bellazzini et al 1902.03250

Positivity (t-channel pole removed)

Cheung, Remmen 1407.7865

$$
\mathcal{A}_{\text {Eul }-\mathrm{Heis}}(++--)=\mathcal{A}_{\text {Eul }-\mathrm{Heis}}(--++)=\frac{s^{4}}{M_{\mathrm{P} 1}^{2} s t u}+\frac{8\left(a_{1}^{\prime}+a_{2}^{\prime}\right)}{m^{4}} s^{2}
$$

For spinor QED

$$
\begin{aligned}
& \frac{a_{1}^{\prime}+a_{2}^{\prime}>0}{5760 M_{\mathrm{Pl}}^{2} \pi^{2}}\left(-24 \frac{m^{2}}{e^{2}}+11 M_{\mathrm{Pl}}^{2}\right)>0 \\
& \frac{e^{4}}{2880 M_{\mathrm{Pl}}^{2} \pi^{2}}\left(-2 \frac{m^{2}}{e^{2}}+M_{\mathrm{Pl}}^{2}\right)>0
\end{aligned}
$$

For scalar QED
$e / m \gtrsim \sqrt{2} / M_{\mathrm{Pl}} \quad$ Weak Gravity Conjecture!!!

Problem!

Non-Gravitational part positive
Gravitational part negative

'Known' contribution from electron loops

This contribution can be removed, by applying (improved) positivity bounds directly to gravitational QED EFT!!

Cutoff of gravitational QED

$$
\begin{aligned}
& 0<\partial_{s}^{2} \tilde{\mathcal{A}}^{\mathrm{I}}(0,0,0)-\frac{2}{\pi} \int_{0}^{\epsilon^{2} \Lambda_{c}^{2}} \mathrm{~d} s^{\prime} \frac{\operatorname{Disc}_{s} \mathcal{A}^{\mathrm{I}}\left(s^{\prime}, 0, u^{\prime}\right)}{s^{\prime 3}}-\frac{2}{\pi} \int_{0}^{\epsilon^{2} \Lambda_{c}^{2}} \mathrm{~d} u^{\prime} \frac{\operatorname{Disc}_{u} \mathcal{A}^{\mathrm{I}}\left(s^{\prime}, 0, u^{\prime}\right)}{u^{\prime 3}} \\
& 0<\frac{11 e^{4}}{360 \pi^{2} m^{4}}-\frac{11 e^{2}}{180 \pi^{2} m^{2} M_{\mathrm{Pl}}^{2}}-\frac{2}{\pi} \int_{0}^{\epsilon^{2} \Lambda_{c}^{2}}{\mathrm{~d} s^{\prime}}_{\operatorname{Disc}_{s} \mathcal{A}^{\mathrm{I}}\left(s^{\prime}, 0, u^{\prime}\right)}^{s^{\prime 3}}-\frac{2}{\pi} \int_{0}^{\epsilon^{2} \Lambda_{c}^{2}} \mathrm{~d} u^{\prime} \frac{\operatorname{Disc}_{u} \mathcal{A}^{\mathrm{I}}\left(s^{\prime}, 0, u^{\prime}\right)}{u^{\prime 3}} \\
& 0<-\frac{11 e^{2}}{360 \pi^{2} m^{2} M_{\mathrm{Pl}}^{2}}-\frac{e^{2}}{3 \pi^{2} \Lambda^{2} M_{\mathrm{Pl}}^{2}}-\frac{e^{4}}{4 \pi^{2} \Lambda^{4}}-\frac{e^{2} m^{2}}{4 \pi^{2} \Lambda^{4} M_{\mathrm{Pl}}^{2}}+\frac{e^{4}}{\pi^{2} \Lambda^{4}} \ln \frac{\Lambda}{m}+\frac{e^{2} m^{2}}{\pi^{2} \Lambda^{4} M_{\mathrm{Pl}}^{2}} \ln \frac{\Lambda}{m},
\end{aligned}
$$

$$
\frac{e^{4}}{\pi^{2} \Lambda^{4}}\left(\ln \frac{\Lambda}{m}-\frac{1}{4}\right)-\frac{11 e^{2}}{360 \pi^{2} m^{2} M_{\mathrm{Pl}}^{2}}>0
$$

$\epsilon \Lambda_{c} \lesssim\left(e m M_{\mathrm{Pl}}\right)^{1 / 2}$

Higher order gravitational contributions

$$
\gamma(\mu)=\gamma_{m}-B \ln (\mu / m)
$$

Coefficient of R squared terms

$$
\frac{e^{4}}{\pi^{2} \Lambda^{4}}\left(\ln \frac{\Lambda}{m}-\frac{1}{4}\right)-\frac{11 e^{2}}{360 \pi^{2} m^{2} M_{\mathrm{Pl}}^{2}}-\frac{B}{M_{\mathrm{Pl}}^{4}} \ln \left(\frac{\Lambda}{m}\right)+\frac{\gamma_{m}}{M_{\mathrm{Pl}}^{4}}>0
$$

$$
-\frac{11 e^{2}}{360 \pi^{2} m^{2} M_{\mathrm{Pl}}^{2}}+\frac{\gamma_{\Lambda}}{M_{\mathrm{Pl}}^{4}}>0
$$

$$
m \gtrsim \frac{e M_{\mathrm{Pl}}}{\sqrt{N_{*}}}
$$

Alternative Explanation - mild negativity allowed

Decoupling limits consistent with

$$
c>-\frac{\mathcal{O}(1)}{M^{2} M_{\mathrm{Pl}}^{2}}
$$

Alberte et al. 2007.12667
Conjecture
Positivity Bounds and the Massless Spin-2 Pole Lasma Alberte, Claudia de Rham, Sumer Jaitly, Andrew J. Tolley arXiv:2007.12667

For a weakly coupled (tree level) UV completion, given

$$
A(s, t)=-\frac{s^{2}}{M_{\mathrm{Pl}}^{2} t}+\frac{\tilde{c}}{M^{4}} s^{2}+\ldots
$$

Conjecture! $\quad \tilde{c}>-\frac{M^{2}}{M_{\mathrm{Pl}}^{2}} \times \mathcal{O}(1)$
Recently 'Proven'! $\quad \tilde{c}>-\frac{M^{2}}{M_{\mathrm{Pl}}^{2}} 17 \log \left(1.7 M b_{\max }\right)$
Sharp Boundaries for the Swampland
Simon Caron-Huot, Dalimil Mazac, Leonardo Rastelli, David Simmons-Duffin
arXiv:2102.08951

Conclusions

* Positivity Bounds are very powerful at constraining irrelevant operators in a low energy EFT
* Full crossing symmetry implies upper and lower bounds on Wilson coefficients
* Strong constraints on interacting massive spin theories and supersoft theories
* Full understanding of extension to massless gravity (no mass gap) unclear, although recent exciting progress
* Small amount of 'negativity' allowed with gravity, without contradicting unitarity and causality

