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Are all EFTs allowed? - SWAMPLAND

Answer:	NO!	Certain	low	energy	effective	theories	do	not	
admit	well	defined	UV	completions	

With typical assumption that:
 UV completion is Local, Causal, Poincare Invariant and Unitary



Kallen-Lehmann Spectral 
Representation

⇢(µ) � 0
Positive Spectral Density

as a result of Unitarity

Together with Poincare invariance these imply:
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Define complex momenta squared z = �k2 + i✏

Pole Branch cut

GO(z) =
Z

m2 � z
+ S(z) + zN

Z 1

4m2

dµ
⇢(µ)

µN (µ� z)

Physical region

	 	

Im(z)

Re(z)

Analytic Structure



Physical region

	 	

Im(z)

Re(z)

Region of  Validity of  EFT

⇤2

EFT valid here, can calculate pole 
and ‘low energy’ part of cut UV completion

- unknown?



Physical region
Im(z)

Re(z)

Analytic Structure 2:  
Move the branch cut!

⇤2

G0
O
(z) = S(z) + zN

Z 1

⇤2

dµ
⇢(µ)

µN (µ� z)

de Rham, Melville, AJT 1710.09611
Bellazzini et al 1710.02539

de Rham, Melville, AJT, Zhou 1702.08577

G0
O
(z) = GO(z)�

Z

m2 � z
� zN

Z ⇤2

4m2

dµ
⇢(µ)

µN (µ� z)

Calculable in 
EFT

Removes IR loop effects!!!!



Linear (Improved) Positivity Bounds

DM (z) =
1

M !

dM

dzM
G0

O
(z) =

Z 1

⇤2

dµ
⇢(µ)

(µ� z)M+1

M � N

DM (0) =

Z 1

⇤2

dµ
⇢(µ)

µM+1

DM (0) > 0 DM (0) � ⇤2DM+1(0)

Positivity of these integrals enforces positivity of combinations of 
Wilson coefficients for Irrelevant operators

G0
O
(z) = S(z) + zN

Z 1

⇤2

dµ
⇢(µ)

µN (µ� z)



Nonlinear (Improved) Positivity Bounds

Arkani-Hamed, Huang, Huang EFT-Hedron 2020

Simply example Cauchy-Schwarz:

DM (0) =

Z 1

⇤2

dµ
⇢(µ)

µM+1
= h 1

µM
i

D2MD2N � (DN+M )2

see also Bellazzini et al, Positive Moments .., 2020

‘positivity of 2 x 2 Hankel matrix’

✓
D2N DN+M

DN+M D2M

◆
h(µ�M + �µ�N )2i � 0

Maths by Stieltjes in 1890s, applied to amplitudes positivity in 1970s!! Recently rediscovered .. 

NX

p,q=0

DM+p+qy
pyq = hµ�M (

NX

p=0

ypµ�p)2i > 0

<latexit sha1_base64="HLkcH2wtC/EBH2GYTatjlikAk+k="></latexit>

‘positivity of N x N Hankel matrix’

yTDMy =
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det(DM ) > 0
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(DM )pq = DM+p+q



What does this tell us about EFT?
e.g. Suppose scalar field in EFT with tree level action …….

Tree level Feynman propagator is

S =

Z
d
4
xÔ(x)[⇤+ a1

⇤2

⇤2
+ a2

⇤3

⇤4
+ . . . ]Ô(x)

GO(z) = � 1

z + a1
z2

⇤2 + a2
z3

⇤4 + a3
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⇤6 + a4
z5

⇤8 . . .
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+
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⇤4
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⇤6

z2 +
a4 � 2a1a3 � a22 + 3a21a2 � a41

⇤8
z3 +O(z4)

Assume no subtractions needed …..



What does this tell us about EFT?

NonLinear (Improved) 
Positivity Bounds:

assuming no 
subtractions 

N = 0
D2D0 > D2

1

(a31 � 2a1a2 + a3)a1 � (a2 � a21)
2 > 0

a1a3 � a22 > 0

G0
O
(z) =

a1
⇤2

+
(a2 � a21)

⇤4
z +

a31 � 2a1a2 + a3
⇤6

z2 +
a4 � 2a1a3 � a22 + 3a21a2 � a41

⇤8
z3 +O(z4)

D3D
2
0 �D3

1 + 2D2
0(D2D0 �D2

1) > 0

a4a
2
1 � a32 > 0

Linear (Improved) 
Positivity Bound



Scattering Amplitude Analyticity

	 	 	

Complex s plane Physical scattering 
region is   s � 4m2

crossing: u = 4m2 � s� t

�t �t

Poles Branch cutsSubtractions



‘Improved’ Scattering Amplitude Analyticity

Complex s plane Physical scattering 
region is   s � 4m2

crossing: u = 4m2 � s� t

⇤2

A0
s(s, t) = c0(t) + c1(t)s+

s2

⇡

Z 1

⇤2

dµ
Im(As(µ, t))

µ2(µ� s)
+

u2

⇡

Z 1

⇤2

dµ
Im(Au(µ, t))

µ2(µ� u)

Removes IR loop effects!!!!



Fixed t (improved) linear Positivity Bounds

M � 2 RH Cut LH Cut

A0
s(s, t) = c0(t) + c1(t)s+

s2

⇡

Z 1
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dµ
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µ2(µ� s)
+
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⇡

Z 1
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dµ
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µ2(µ� u)
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dsM
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2 � t/2, t) =

1

⇡
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0  t < 4m2
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Even M



Fixed t (improved) ‘Stieltjes' Positivity Bounds

1
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Even M+p+q



Change of Basis 

T s
⌧1⌧2⌧3⌧4(s, t, u) = e�i

P
i ⌧i�Tu

�⌧1�⌧4�⌧3�⌧2(u, t, s)

Figure 1. The di↵erence between the helicity and transversity formalism. The horizontal plane (xz
plane) is the particle interaction plane. In the helicity formalism particle spins are projected onto the
direction of motion, while in the transversity formalism particle spins are projected in the vertical
direction, which is transverse to the interaction plane.

2.2 Transversity Formalism

Since H�1�2�3�4ps, t, uq contains a branch cut on the real axis of the complex s plane between

s “ 4m2 and 8, the crossing symmetry implies that there is a second branch cut in the real

axis between s “ ´t and ´8. However, this second branch cut has no obvious positivity

properties in the helicity formalism, due to the complicated crossing mixing of di↵erent he-

licity amplitudes as can be seen from Eq. (2.23) (unless �u “ 0, corresponding to the forward

scattering limit t “ 0, or unless all particles have zero spin). To go beyond the forward

scattering limit for non-zero spins, we first need to simplify the crossing relation by going to

the transversity basis, see Fig. 1.

Transversity Amplitudes: We define the transversity eigenstates [20, 26] as a particular

combination of the helicity eigenstates

|p, S, ⌧y ”
ÿ

�

u
S
�⌧ |p, S,�y , (2.26)

where the unitary matrix u
S
�⌧ is simply the Wigner D

S matrix associated with the rotation

R “ e
´i⇡{2Jze´i⇡{2Jyei⇡{2Jz ,

u
S
�⌧ “ D

S
�⌧

´
⇡

2
,
⇡

2
,´⇡

2

¯
. (2.27)

This unitary u
S matrix has the virtue of diagonalizing any of the Wigner d

S matrix, inde-

pendently of their angles. See Appendix F for properties of the u
S matrices.

The transversity amplitudes are thus related to the helicity amplitude via

T⌧1⌧2⌧3⌧4 “
ÿ

�1�2�3�4

u
S1
�1⌧1

u
S2
�2⌧2

u
S1˚
⌧3�3

u
S2˚
⌧4�4

H�1�2�3�4 . (2.28)

– 9 –

Kotanski, 1965

Crossing is Simple!!

Scattering of  all spins
de Rham, Melville, AJT, Zhou 1706.02712



Dispersion Relation with Positivity along 
BOTH cuts

Punch line: The specific combinations:

For elastic scattering T⌧1⌧2⌧1⌧2p´✓q “ T´⌧1´⌧2´⌧1´⌧2p✓q, and so in this case the sum

(2.35) and di↵erence (2.36) can also be written as

T⌧1⌧2⌧1⌧2ps, t, uq ` T´⌧1´⌧2´⌧1´⌧2ps, t, uq , (2.39)

or ?
stu pT⌧1⌧2⌧1⌧2ps, t, uq ´ T´⌧1´⌧2´⌧1´⌧2ps, t, uqq , (2.40)

and have trivial monodromy and carry no branch cut from stu “ 0.

In summary, we shall consider the regularized amplitudes7

T
`
⌧1⌧2⌧3⌧4ps, ✓q “

`?´su
˘⇠
S
S1`S2

`
T⌧1⌧2⌧3⌧4ps, ✓q ` T⌧1⌧2⌧3⌧4ps,´✓q

˘
, (2.41)

T
´
⌧1⌧2⌧3⌧4ps, ✓q “ ´i

?
stu

`?´su
˘⇠
S
S1`S2

`
T⌧1⌧2⌧3⌧4ps, ✓q ´ T⌧1⌧2⌧3⌧4ps,´✓q

˘
, (2.42)

where S “ sps ´ 4m2q as defined in (2.3), ⇠ “ 1 if S1 ` S2 is half integer and ⇠ “ 0

otherwise. These have nicer crossing relations than the helicity amplitudes, (see Eq. (2.30)

or even Eq. (2.31) in the elastic case) and are also free of all kinematical singularities (poles

and branch points).

3 Positivity Bounds

In this section, we make use of the transversity amplitudes to derive an infinite number of

positivity bounds for non-forward scattering amplitudes of arbitrary spins.

3.1 Unitarity and the Right Hand Cut

To begin with we consider the case of elastic scattering of particles of definite transversity, so

that

⌧3 “ ⌧1 and ⌧4 “ ⌧2. (3.1)

The partial wave expansion for transversity eigenstates is rather complicated [26, 30], in

essence because one cannot define a rotationally invariant notion of transversity in a state

with only two particles. Instead, we use the helicity partial wave expansion

T⌧1⌧2⌧1⌧2ps, ✓q “
ÿ

J�1�2�3�4

u
S1
�1⌧1

u
S2
�2⌧2

u
S1˚
⌧1�3

u
S2˚
⌧2�4

d
J
µ�p✓qT̄ J

�1�2�3�4
psq , (3.2)

where we have set the interaction plane to lie along � “ 0 and in analogy with (2.15), we

have defined

T̄
J
�1�2�3�4

“ 4⇡p2J ` 1q
c

s

pipf
T
J
�1�2�3�4

. (3.3)

7
The expressions (2.41) and (2.42) are the most convenient ones when dealing with elastic scattering. As

already emphasize, when dealing with inelastic scattering, the prefactor
`?´su

˘⇠SS1`S2 should instead be

replaced by
`?´u

˘⇠ `?
s ´ 4m2

˘| ∞
i ⌧i|

as determined in (2.33).

– 12 –

have the same analyticity structure 
as scalar scattering amplitudes!!!!!!!

Implies Dispersion Relation

the contributions from the LH and RH cut are not identical. Before getting to the general

case, we can get a feel for how the bounds work by considering the first t derivative of (3.41).

Defining new variables s “ 2m2 ´ t{2 ` v, so that

f⌧1⌧2pv, tq “ 1

⇡

ª 8

4m2
dµ

AbssT `
⌧1⌧2⌧1⌧2pµ, tq

pµ ´ 2m2 ` t{2 ´ vqNS`1
` 1

⇡

ª 8

4m2
dµ

AbsuT `
⌧1⌧2⌧1⌧2p4m2 ´ t ´ µ, tq

pµ ´ 2m2 ` t{2 ` vqNS`1
,

(3.45)

then di↵erentiating with respect to t gives

B
Btf⌧1⌧2pv, tq “ ´pNS ` 1q

2⇡

ª 8

4m2
dµ

AbssT `
⌧1⌧2⌧1⌧2pµ, tq

pµ ´ 2m2 ` t{2 ´ vqNS`2
(3.46)

´pNS ` 1q
2⇡

ª 8

4m2
dµ

AbsuT `
⌧1⌧2⌧1⌧2p4m2 ´ t ´ µ, tq

pµ ´ 2m2 ` t{2 ` vqNS`2

` 1

⇡

ª 8

4m2
dµ

BtAbssT `
⌧1⌧2⌧1⌧2pµ, tq

pµ ´ 2m2 ` t{2 ´ vqNS`1

` 1

⇡

ª 8

4m2
dµ

BtAbsuT `
⌧1⌧2⌧1⌧2p4m2 ´ t ´ µ, tq

pµ ´ 2m2 ` t{2 ` vqNS`1
.

Defining

M
2 “ Minµ•4m2rµ ´ 2m2 ` t{2s “ 2m2 ` t{2 , (3.47)

and using the integral inequality that for any positive definite function ⇢pµq ° 0

1

M2

ª 8

4m2

⇢pµq
pµ ´ 2m2 ` t{2qN dµ °

ª 8

4m2

⇢pµq
pµ ´ 2m2 ` t{2qN`1

dµ , (3.48)

and evaluating at v “ 0 we then infer that,

B
Btf⌧1⌧2p0, tq ` NS ` 1

2M2
f⌧1⌧2p0, tq ° 1

⇡

ª 8

4m2
dµ

BtAbssT⌧̀1⌧2⌧1⌧2pµ, tq
pµ ´ 2m2 ` t{2qNS`1

(3.49)

` 1

⇡

ª 8

4m2
dµ

BtAbsuT⌧̀1⌧2⌧1⌧2p4m2 ´ t ´ µ, tq
pµ ´ 2m2 ` t{2qNS`1

° 0 .

Thus our second non-trivial bound is

B
Btf⌧1⌧2p0, tq ` NS ` 1

2M2
f⌧1⌧2p0, tq ° 0 , 0 § t † m

2
. (3.50)

In practice, the above form of this bound is not so interesting since we have in mind M
2 „ m

2

and so this will be dominated by the second term. Since f⌧1⌧2p0, tq is already positive from the

lower bound, then there is little new content in this new bound. The situation is very di↵erent

however if we imagine that the EFT has a weakly coupled UV completion. In this case, we

expect the scattering amplitude already computed at tree level to satisfy all of the properties

that we have utilized, specifically the Froissart bound. Given this, the above bound can be

applied directly to the tree level scattering amplitudes. These amplitudes by definition do

– 21 –

general spins, such a subtraction would not be convenient since the residue of the t-channel

pole is itself a function of s, and subtracting it can modify the behaviour of the amplitude12

at large s.

Consider a contour C for T̃⌧̀ ps, tq in the complex s plane, which encircles the poles at

s
1 “ m

2 and s
1 “ 3m2 ´ t as well as a generic point s, as shown in Figure 2. By Cauchy’s

integral formula, we have

T̃
`
⌧1⌧2⌧1⌧2ps, tq “ 1

2⇡i

¿

C

ds1 T̃
`
⌧1⌧2⌧1⌧2ps1

, tq
ps1 ´ sq . (3.39)

We can deform this contour so that it runs around the branch cuts and closes with circular

arcs at infinity (contour C 1). We emphasize that even when we are considering higher spins,

a Froissart bound still applies [19] and |T `
⌧1⌧2⌧1⌧2ps, tq||s|Ñ8 † |s|NS . This allows us to neglect

the arcs at infinity by performing a su�cient number of subtractions. We can then obtain

the following dispersion relation:

T̃
`
⌧1⌧2⌧1⌧2ps, tq “

NS´1ÿ

n“0

anptqsn` s
NS

⇡

ª 8

4m2
dµ

AbssT `
⌧1⌧2⌧1⌧2pµ, tq

µNS pµ ´ sq

`u
NS

⇡

ª 8

4m2
dµ

AbsuT⌧̀1⌧2⌧1⌧2p4m2 ´ t ´ µ, tq
µNS pµ ´ uq , (3.40)

where NS is given by Eq. (3.36).

The subtraction functions anptq in the dispersion relation are undetermined by analyticity

and depend on the detailed information of the particular theory involved. To eliminate them,

we simply take Ns derivatives and consider the quantity

f⌧1⌧2ps, tq “ 1

NS !

dNS

dsNS
T̃

`
⌧1⌧2⌧1⌧2ps, tq , (3.41)

“ 1

2⇡i

¿

C

ds1 T̃
`
⌧1⌧2⌧1⌧2ps1

, tq
ps1 ´ sqNS`1

, (3.42)

“ 1

⇡

ª 8

4m2
dµ

AbssT `
⌧1⌧2⌧1⌧2pµ, tq

pµ ´ sqNS`1
` 1

⇡

ª 8

4m2
dµ

AbsuT `
⌧1⌧2⌧1⌧2p4m2 ´ t ´ µ, tq

pµ ´ uqNS`1
. (3.43)

Since we have already established that the absorptive parts are positive on both the RH and

LH cuts in section 3.1 and 3.2, then our first positivity bounds is the simple statement that

f⌧1⌧2ps, tq ° 0 , ´t † s † 4m2
, 0 § t † m

2
, (3.44)

12
The concern is that the tree-level or finite loop residue may already violate the Froissart bound, and

so subtracting it modifies the analyticity arguments which rely on the assumption of the Froissart bound in

determining the overall number of subtractions.
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Positive partial wave Moments

With this, going through the same steps, we can derive improved Y positivity bounds [18, 57]

Y
(2N,M)
✏⇤ (t) =

bM/2cX

r=0

crB
(2N+2r,M�2r)
✏⇤ (t)

+
1

M2

b(M�1)/2cX

k even

(2(N + k) + 1)�kY
(2(N+k),M�2k�1)
✏⇤ (t) > 0, (2.20)

where now M
2 = (✏⇤)2+ t

2 �2m2
' (✏⇤)2. From Eq (2.20), we see that the higher t-derivative bounds

are constructed by linearly combining derivatives of the amplitude with the lower t-derivative bounds.
A greater M2 will suppress the t-derivative bounds and hence enhance the importance of the higher
t-derivative bounds, in addition to the fact that the subtraction from 4m2 to (✏⇤)2 already improves
the Y bounds.

An often considered case is that the UV completion is weakly coupled and this weak coupling is
also accessible at low energies. In this case, loop diagrams can be suppressed with respect to the tree
diagrams by the UV weak coupling and the tree level amplitude already unitarizes the amplitude in
the UV, so we can have a tree level dispersion relation Btr(s, t), which is similar to Eq (2.18) but the
integrand is replaced with the tree level amplitude and the integration starts from ⇤th, the energy
scale of the first state that lies outside the EFT [9]. Then, we can similarly derive the tree level
positivity bounds Y (2N,M)

tr (t). Note that for a tree level amplitude, its imaginary part vanishes, so the
✏⇤ subtracted amplitude B✏⇤(s, t) is the same as B(s, t), so Y

(2N,M)
tr (t) is a special case of Y (2N,M)

✏⇤ (t).

Note that, roughly speaking, the quantities Y (2N,M)(t) or Y (2N,M)
✏⇤ are linear combinations of the

s and t derivatives of the scattering amplitude A(s, t). In contrast, with additional inputs from the
partial wave expansion and crossing symmetry, the positivity bounds we will derive in the following
are often nonlinear in the amplitude (and its s and t derivatives).

3 New positivity bounds: Simple examples

In this section, we will make further use of the dispersion relation (2.19) to extract some new positivity
bounds. In deriving the Y positivity bounds, we essentially used the fact that the imaginary part of
the amplitude is positive in appropriate ranges of s and t, i.e., Eq (2.6). However, the partial wave
expansion and partial wave unitarity actually contain more information, yet to be profited to derive
new positivity bounds. Also, the dispersion relation (2.10) or (2.19) are only manifestly s $ u crossing
symmetric, while the amplitude is actually triple crossing symmetric, which has not been used to derive
the Y positivity bounds. In this section we will take advantages of these new pieces of information
to derive the first examples of new positivity bounds before taking a more systematical approach in
Section 5.

First, since the integrand of Eq (2.19) is positive in the physical region µ > 4m2, we can introduce
a positive “density distribution”

⇢`,↵(µ) =
F (↵)

(µ� µp)3
µ
1/2

(µ� 4m2)↵
(2`+ 2↵)Ima`(µ)C

(↵)
` (1), (3.1)

with

C
(↵)
` (1) =

�(`+D � 3)

�(D � 3)�(`+ 1)
=

✓
`+D � 4

`

◆
> 0, D � 4, (3.2)
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Define

where
�n
k

�
= n!/[k!(n� k)!] are the binomial coe�cients. Then the dispersion relation can be written

as

B✏⇤(s, t) = a(t) +
X

`

Z
dµ


(s� µp)2

µ� s
+

(u� µp)2

µ� u

�
(µ� µp)⇢`,↵(µ)

C
(↵)
` (1)

C
(↵)
`

✓
1 +

2t

µ� 4m2

◆
, (3.3)

where for simplicity we have suppressed the summation and the integration limits, which are from
(✏⇤)2 from 1.

New positivity bounds are easiest to see when the derivatives of the amplitude are evaluated at
s = t = 0 and the limit (✏⇤)2 � m

2
! 0 is taken for the expansion coe�cients, which is the approach

we take in this section. In other words, we shall evaluate s and t derivatives of B✏⇤(s, t) at s = t = 0,
which leads to a dispersion relation where the integrand is a function of µ and m

2, and since the low
limit of µ is (✏⇤)2, we can neglect all the subleading terms with m

2. Clearly, the m ! 0 limit can be
taken earlier, and also choosing µp = 0 we have

B✏⇤(s, t) = a(t) +
X

`

Z
dµ


s
2

µ� s
+

(�s� t)2

µ+ s+ t

�
µ⇢`,↵(µ)

C
(↵)
` (1)

C
(↵)
`

✓
1 +

2t

µ

◆
, (3.4)

To see the simplest examples of these positivity bounds, we may define

f
(2N,M)

⌘
1

2(2N + 2)!
@
M
t @

2N+2
s B✏⇤(s, t)|s,t!0. (3.5)

Making use of dispersion relation (3.4), we have

f
(2N,0) =

X

`

Z
dµ⇢`,↵(µ)

1

µ2N
> 0, N = 0, 1, 2, ..., (3.6)

which are positive, and f
(2N�1,0) = 0 for N = 1, 2, 3, .... Making connection to the triple symmetric

expansion coe�cient ai,j defined in Eq (2.16), we have f
(2N,0) = aN+1,0/2 and so

aN,0 > 0 for N = 1, 2, ... . (3.7)

Now, we can define an “expected value” or “moment” over the “distribution” ⇢`,↵(µ):1

hhX(µ, l)ii =

P
`

R
dµ⇢`,↵(µ)X(µ, l)P
`

R
dµ⇢`,↵(µ)

. (3.8)

We will see that, since the scattering amplitude can be directly linked to this expected value, inequali-
ties associated with generic expected values can be used to derive positivity bounds on the amplitude.

3.1 Nonlinear positivity bounds with s derivatives only

We first look for new positivity bounds with only s derivatives on the amplitude. For this case,
we consider X(µ, l) = 1/µ2N and we have

⌦⌦
1/µ2N

↵↵
= f

(2N,0)
/f

(0,0). Then the Cauchy-Schwarz
inequality for expected values,

⌧⌧
1

µ2I

��⌧⌧
1

µ2J

��
�

⌧⌧
1

µI+J

��2

, (3.9)

1The significance of the moment of the positive distribution has been emphasized by [58].
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1

2
@2
sA0(s, t) =

X

`

Z 1

0
dµ


1

(µ� s)3
+

1

(µ� s� t)3

�
µ3⇢`,↵(µ)

C(↵)
` (1)

C(↵)
`

✓
1 +

2t

µ

◆

f (2N,M) ⌘ 1

2(2N + 2)!
@M
t @2N+2

s A0(s, t)

f (2N,0) = hh 1

µ2N
ii

general gravitational type theories which admit weaker notion of locality [54, 55]. Indeed, the entire
strength of the standard positivity bound story rests on the assumption that the scattering amplitude
is bounded by |s|

2, at large |s| and fixed momentum transfer, which is traditionally derived from the
assumptions of polynomial or (linear) exponential boundedness. The validity of these assumptions in
the gravitational context is unclear. In essense, since we typically do not expect local gauge invariant
observables in a quantum theory of gravity, it is unclear why the scattering amplitude should respect
locality in the usual manner. These issues are further closely intertwined with the technical issues in
the applicability of positivity bounds in the presence of gravity [35, 50–52].

The paper is organized as follows: In Section 2, we review the Y positivity bounds derived in [9],
as we will compare the new bounds with the Y bounds later, and also establish some notations along
the way; In Section 3, as a warm-up, we derive some simple examples of the new positivity bounds; In
Section 4, we apply the first new positivity bounds to theories with soft amplitudes - specifically the
weakly broken Galileon theory and show that such soft amplitude theories cannot have an analytical
UV completion; In Section 5, we take a more systematical approach to derive a few sets of di↵erent
positivity bounds, first using only the s $ u symmetric dispersion and then further imposing the
s $ t symmetry; The best triple crossing symmetric bounds up to level 1/µ10 in 4D are presented in
explicit form; In Section 6, we explore the di↵erences between the Y bounds and the new positivity
bounds; In Section 7, we use these new bounds to constrain SU(2) chiral perturbation theory; We
conclude in Section 8.

Note added: While we were putting final touches on this draft, [56] appeared which contains
some overlap in results obtained through a slightly di↵erent method. In particular, these authors reach
a similar conclusion about theories with soft amplitudes [15, 40–42].

2 Review of the linear Y positivity bounds

In this section, we shall review the linear positivity bounds derived in [9] for the case of a single scalar,
which can be conveniently formulated as a recurrence relation that defines positive Y (2N,M) quantities,
which in turn are sums of derivatives of the scattering amplitude with respect to the Mandelstam
variables. Slightly di↵erent from [9], here we shall present the results in D dimensions. The formulas
in the following are valid only, strictly speaking, for D � 4, but as we will see in Appendix B, with
some appropriate definitions, the results also hold for D = 3.

The 2-to-2 scattering amplitude for scalar particles is a Lorentz invariant function of Mandelstam
variables s, t and u that satisfy the constraint s + t + u = 4m2 and the scattering angle ✓ can be
expressed as

cos ✓ = 1 +
2t

s� 4m2
. (2.1)

Choosing s and t as the independent variables, the amplitude A(s, t) can be viewed as an analytic
function with complex variables s and t, except for certain poles and branch cuts already seen in
perturbation theory. The partial wave expansion in D dimensions is facilitated by D-dimensional
generalization of the Legendre polynomials — the Gegenbauer polynomials C(↵)

` (x):

A(s, t) = F (↵)
s
1/2

(s� 4m2)↵

1X

`=0

(2`+ 2↵)C(↵)
` (cos ✓)a`(s), ↵ =

D � 3

2
, (2.2)
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Partial wave 
expansion:



Null-constraints

3.2 Triple crossing and t derivatives

To extract new positivity bounds with t derivatives, we can make use of detailed properties of the
Gegenbauer polynomial and the fact that a scalar amplitude is trivially triple crossing symmetric.
The dispersion relation (2.9) is manifestly s $ u crossing symmetric B(s, t) = B(u, t). Triple crossing
symmetry means that B(s, t) should also be s $ t crossing symmetric B(s, t) = B(t, s), which one
can impose as a condition on Eq (2.9). Being more precise, in the case where there scattering states
are massive and their is a mass gap to the branch cut, the scattering amplitude will be an analytic
function in the so-called Mandelstam triangle, for which the s and t channel dispersion relations may
be identified

a(t) +

Z 1

4m2

dµ

⇡(µ� µp)2


(s� µp)2

µ� s
+

(u� µp)2

µ� u

�
ImA(µ, t)

= a(s) +

Z 1

4m2

dµ

⇡(µ� µp)2


(t� µp)2

µ� t
+

(u� µp)2

µ� u

�
ImA(µ, s) . (3.17)

Note that this relation is not valid outside of the Mandelstam triangle in general.
The ✏⇤ subtracted amplitude (2.18) that is used in the improved positivity bounds is in general

not triple crossing symmetric, because the 4m2 to (✏⇤)2 subtraction is only s $ u crossing symmetric.
Nevertheless, when there is a weakly coupled tree level UV completion, the dispersion relation for the
tree level amplitude Btr(s, t) is triple crossing symmetric, as the 4m2 to (✏⇤)2 subtraction vanishes
then. With this in mind, triple crossing becomes most powerful in the case of weakly coupled tree
level UV completions.

To proceed and to simplify the core argument we shall assume m ⌧ ⇤ and neglect the mass
dependence in the partial wave formula, as appropriate for weakly coupled UV completions for which
the leading bounds are on the tree amplitudes. Imposing s $ t crossing symmetry at s = 0, that is,
Btr(0, t) = Btr(t, 0), we can express the unknown subtraction function a(t) in terms of the dispersion
integral:

a(t) = a(0) +
X

`

Z
dµ

 
t
2

µ� t
+

t
2

µ+ t

�
µ⇢`,↵(µ)�

t
2

µ+ t

µ⇢`,↵(µ)

C
(↵)
` (1)

C
(↵)
`

✓
1 +

2t

µ

◆!
. (3.18)

Imposing the s $ t crossing symmetry in general and then expanding in terms of powers of kinematic
invariants (which amounts to an expansion in 1/µ) gives rise to

0 = Btr(t, s)�Btr(s, t) =
X

`

Z
dµ ⇢`,↵(µ)


2HD,`st(s2 � t

2)

(D � 2)Dµ2
+O

✓
1

µ3

◆�
, (3.19)

where we have defined

HD,` = `(`+D � 3)[4� 5D � 2(3�D)`+ 2`2]. (3.20)

Since this relation must be true for any s and t, it follows that

X

`

Z
dµ ⇢`,↵(µ)

HD,`

µ2
= 0. (3.21)

must hold as an identity. This is one of the many nontrivial consequences of full crossing symmetry
on the partial wave expansion coe�cients, which will be explored systematically in Section 5.3. For
now, as we shall see, the condition Eq (3.21) already turns out to be remarkably fruitful.
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Using the s $ u symmetric dispersion relation, we can cast the amplitude in a triple-crossing-
symmetric way Btr(s, t) = (Btr(s, t) +Btr(s, u) +Btr(t, s))/3. A straightforward evaluation gives

f
(0,1)

f (0,0)
=

⌧⌧
3(2�D) + 4(�3 +D)`+ 4`2

2(D � 2)µ

��
, (3.22)

which leads to
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
=

⌧⌧
2(�3 +D)`+ 2`2

(D � 2)µ

��
. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values hhX(µ, l)ii2 
⌦⌦
X(µ, l)2

↵↵
(or

“the variance is positive”) tells us that

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

=

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��2



**✓
2(D � 3)`+ 2`2

(D � 2)µ

◆2
++

. (3.24)

Since we can split the square into

(2(D � 3)`+ 2`2)2 = (5D � 4)
⇥
2(D � 3)`+ 2`2

⇤
+ 2HD,`, (3.25)

plugging back into 3.24, the later term vanishes due to Eq 3.21, so we get

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2


5D � 4

D � 2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
. (3.26)

Note that the integrand of the integral
P

`

R
dµ⇢`,↵(µ)(...)/µ2 is positive definite. So if one fixes one

of the µ’s in the denominator to the lower limit of the integration, which is ⇤2
th for this case, the result

is greater than the original integral. For the case where ⇤th = ⇤, we have the following inequality

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
<

1

⇤2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��
. (3.27)

Combining it with Eq (3.26), we have

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

<
5D � 4

(D � 2)⇤2

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆
, (3.28)

which can be written as

0 <
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
<

5D � 4

(D � 2)⇤2
. (3.29)

Since hh1/µii and f
(0,0) are positive, we have

f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.30)

Similarly, we have the inequality
⌧⌧

1

µ

��
<

1

⇤2
=)

X

`

Z
dµ⇢`,↵(µ)

1

µ
<

1

⇤2
f
(0,0)

, (3.31)

and thus we have

0 < f
(0,1) +

3

2⇤2
f
(0,0)

. (3.32)

– 11 –

where
�n
k

�
= n!/[k!(n� k)!] are the binomial coe�cients. Then the dispersion relation can be written

as

B✏⇤(s, t) = a(t) +
X

`

Z
dµ


(s� µp)2

µ� s
+

(u� µp)2

µ� u

�
(µ� µp)⇢`,↵(µ)

C
(↵)
` (1)

C
(↵)
`

✓
1 +

2t

µ� 4m2

◆
, (3.3)

where for simplicity we have suppressed the summation and the integration limits, which are from
(✏⇤)2 from 1.

New positivity bounds are easiest to see when the derivatives of the amplitude are evaluated at
s = t = 0 and the limit (✏⇤)2 � m

2
! 0 is taken for the expansion coe�cients, which is the approach

we take in this section. In other words, we shall evaluate s and t derivatives of B✏⇤(s, t) at s = t = 0,
which leads to a dispersion relation where the integrand is a function of µ and m

2, and since the low
limit of µ is (✏⇤)2, we can neglect all the subleading terms with m

2. Clearly, the m ! 0 limit can be
taken earlier, and also choosing µp = 0 we have

B✏⇤(s, t) = a(t) +
X

`

Z
dµ


s
2

µ� s
+

(�s� t)2

µ+ s+ t

�
µ⇢`,↵(µ)

C
(↵)
` (1)

C
(↵)
`

✓
1 +

2t

µ

◆
, (3.4)

To see the simplest examples of these positivity bounds, we may define

f
(2N,M)

⌘
1

2(2N + 2)!
@
M
t @

2N+2
s B✏⇤(s, t)|s,t!0. (3.5)

Making use of dispersion relation (3.4), we have

f
(2N,0) =

X

`

Z
dµ⇢`,↵(µ)

1

µ2N
> 0, N = 0, 1, 2, ..., (3.6)

which are positive, and f
(2N�1,0) = 0 for N = 1, 2, 3, .... Making connection to the triple symmetric

expansion coe�cient ai,j defined in Eq (2.16), we have f
(2N,0) = aN+1,0/2 and so

aN,0 > 0 for N = 1, 2, ... . (3.7)

Now, we can define an “expected value” or “moment” over the “distribution” ⇢`,↵(µ):1

hhX(µ, l)ii =

P
`

R
dµ⇢`,↵(µ)X(µ, l)P
`

R
dµ⇢`,↵(µ)

. (3.8)

We will see that, since the scattering amplitude can be directly linked to this expected value, inequali-
ties associated with generic expected values can be used to derive positivity bounds on the amplitude.

3.1 Nonlinear positivity bounds with s derivatives only

We first look for new positivity bounds with only s derivatives on the amplitude. For this case,
we consider X(µ, l) = 1/µ2N and we have

⌦⌦
1/µ2N

↵↵
= f

(2N,0)
/f

(0,0). Then the Cauchy-Schwarz
inequality for expected values,

⌧⌧
1

µ2I

��⌧⌧
1

µ2J

��
�

⌧⌧
1

µI+J

��2

, (3.9)

1The significance of the moment of the positive distribution has been emphasized by [58].
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f (2N,M) ⌘ 1

2(2N + 2)!
@M
t @2N+2

s A0(s, t)
��
s,t!0

Make Maximal use of null constraints 
to strengthen positivity boundsKey Idea

hhHD,`

µ2
ii = 0

3.2 Triple crossing and t derivatives

To extract new positivity bounds with t derivatives, we can make use of detailed properties of the
Gegenbauer polynomial and the fact that a scalar amplitude is trivially triple crossing symmetric.
The dispersion relation (2.9) is manifestly s $ u crossing symmetric B(s, t) = B(u, t). Triple crossing
symmetry means that B(s, t) should also be s $ t crossing symmetric B(s, t) = B(t, s), which one
can impose as a condition on Eq (2.9). Being more precise, in the case where there scattering states
are massive and their is a mass gap to the branch cut, the scattering amplitude will be an analytic
function in the so-called Mandelstam triangle, for which the s and t channel dispersion relations may
be identified

a(t) +

Z 1

4m2

dµ

⇡(µ� µp)2


(s� µp)2

µ� s
+

(u� µp)2

µ� u

�
ImA(µ, t)

= a(s) +

Z 1

4m2

dµ

⇡(µ� µp)2


(t� µp)2

µ� t
+

(u� µp)2

µ� u

�
ImA(µ, s) . (3.17)

Note that this relation is not valid outside of the Mandelstam triangle in general.
The ✏⇤ subtracted amplitude (2.18) that is used in the improved positivity bounds is in general

not triple crossing symmetric, because the 4m2 to (✏⇤)2 subtraction is only s $ u crossing symmetric.
Nevertheless, when there is a weakly coupled tree level UV completion, the dispersion relation for the
tree level amplitude Btr(s, t) is triple crossing symmetric, as the 4m2 to (✏⇤)2 subtraction vanishes
then. With this in mind, triple crossing becomes most powerful in the case of weakly coupled tree
level UV completions.

To proceed and to simplify the core argument we shall assume m ⌧ ⇤ and neglect the mass
dependence in the partial wave formula, as appropriate for weakly coupled UV completions for which
the leading bounds are on the tree amplitudes. Imposing s $ t crossing symmetry at s = 0, that is,
Btr(0, t) = Btr(t, 0), we can express the unknown subtraction function a(t) in terms of the dispersion
integral:

a(t) = a(0) +
X

`

Z
dµ

 
t
2

µ� t
+

t
2

µ+ t

�
µ⇢`,↵(µ)�

t
2

µ+ t

µ⇢`,↵(µ)

C
(↵)
` (1)

C
(↵)
`

✓
1 +

2t

µ

◆!
. (3.18)

Imposing the s $ t crossing symmetry in general and then expanding in terms of powers of kinematic
invariants (which amounts to an expansion in 1/µ) gives rise to

0 = Btr(t, s)�Btr(s, t) =
X

`

Z
dµ ⇢`,↵(µ)


2HD,`st(s2 � t

2)

(D � 2)Dµ2
+O

✓
1

µ3

◆�
, (3.19)

where we have defined

HD,` = `(`+D � 3)[4� 5D � 2(3�D)`+ 2`2]. (3.20)

Since this relation must be true for any s and t, it follows that

X

`

Z
dµ ⇢`,↵(µ)

HD,`

µ2
= 0. (3.21)

must hold as an identity. This is one of the many nontrivial consequences of full crossing symmetry
on the partial wave expansion coe�cients, which will be explored systematically in Section 5.3. For
now, as we shall see, the condition Eq (3.21) already turns out to be remarkably fruitful.
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Example



Cauchy-Schwarz

Using the s $ u symmetric dispersion relation, we can cast the amplitude in a triple-crossing-
symmetric way Btr(s, t) = (Btr(s, t) +Btr(s, u) +Btr(t, s))/3. A straightforward evaluation gives

f
(0,1)

f (0,0)
=

⌧⌧
3(2�D) + 4(�3 +D)`+ 4`2

2(D � 2)µ

��
, (3.22)

which leads to
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
=

⌧⌧
2(�3 +D)`+ 2`2

(D � 2)µ

��
. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values hhX(µ, l)ii2 
⌦⌦
X(µ, l)2

↵↵
(or

“the variance is positive”) tells us that

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

=

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��2



**✓
2(D � 3)`+ 2`2

(D � 2)µ

◆2
++

. (3.24)

Since we can split the square into

(2(D � 3)`+ 2`2)2 = (5D � 4)
⇥
2(D � 3)`+ 2`2

⇤
+ 2HD,`, (3.25)

plugging back into 3.24, the later term vanishes due to Eq 3.21, so we get

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2


5D � 4

D � 2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
. (3.26)

Note that the integrand of the integral
P

`

R
dµ⇢`,↵(µ)(...)/µ2 is positive definite. So if one fixes one

of the µ’s in the denominator to the lower limit of the integration, which is ⇤2
th for this case, the result

is greater than the original integral. For the case where ⇤th = ⇤, we have the following inequality

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
<

1

⇤2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��
. (3.27)

Combining it with Eq (3.26), we have

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

<
5D � 4

(D � 2)⇤2

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆
, (3.28)

which can be written as

0 <
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
<

5D � 4

(D � 2)⇤2
. (3.29)

Since hh1/µii and f
(0,0) are positive, we have

f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.30)

Similarly, we have the inequality
⌧⌧

1

µ

��
<

1

⇤2
=)

X

`

Z
dµ⇢`,↵(µ)

1

µ
<

1

⇤2
f
(0,0)

, (3.31)

and thus we have

0 < f
(0,1) +

3

2⇤2
f
(0,0)

. (3.32)
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Using the s $ u symmetric dispersion relation, we can cast the amplitude in a triple-crossing-
symmetric way Btr(s, t) = (Btr(s, t) +Btr(s, u) +Btr(t, s))/3. A straightforward evaluation gives

f
(0,1)

f (0,0)
=

⌧⌧
3(2�D) + 4(�3 +D)`+ 4`2

2(D � 2)µ

��
, (3.22)

which leads to
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
=

⌧⌧
2(�3 +D)`+ 2`2

(D � 2)µ

��
. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values hhX(µ, l)ii2 
⌦⌦
X(µ, l)2

↵↵
(or

“the variance is positive”) tells us that

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

=

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��2



**✓
2(D � 3)`+ 2`2

(D � 2)µ

◆2
++

. (3.24)

Since we can split the square into

(2(D � 3)`+ 2`2)2 = (5D � 4)
⇥
2(D � 3)`+ 2`2

⇤
+ 2HD,`, (3.25)

plugging back into 3.24, the later term vanishes due to Eq 3.21, so we get

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2


5D � 4

D � 2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
. (3.26)

Note that the integrand of the integral
P

`

R
dµ⇢`,↵(µ)(...)/µ2 is positive definite. So if one fixes one

of the µ’s in the denominator to the lower limit of the integration, which is ⇤2
th for this case, the result

is greater than the original integral. For the case where ⇤th = ⇤, we have the following inequality

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
<

1

⇤2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��
. (3.27)

Combining it with Eq (3.26), we have

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

<
5D � 4

(D � 2)⇤2

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆
, (3.28)

which can be written as

0 <
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
<

5D � 4

(D � 2)⇤2
. (3.29)

Since hh1/µii and f
(0,0) are positive, we have

f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.30)

Similarly, we have the inequality
⌧⌧

1

µ

��
<

1

⇤2
=)

X

`

Z
dµ⇢`,↵(µ)

1

µ
<

1

⇤2
f
(0,0)

, (3.31)

and thus we have

0 < f
(0,1) +

3

2⇤2
f
(0,0)

. (3.32)
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Using the s $ u symmetric dispersion relation, we can cast the amplitude in a triple-crossing-
symmetric way Btr(s, t) = (Btr(s, t) +Btr(s, u) +Btr(t, s))/3. A straightforward evaluation gives

f
(0,1)

f (0,0)
=

⌧⌧
3(2�D) + 4(�3 +D)`+ 4`2

2(D � 2)µ

��
, (3.22)

which leads to
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
=

⌧⌧
2(�3 +D)`+ 2`2

(D � 2)µ

��
. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values hhX(µ, l)ii2 
⌦⌦
X(µ, l)2

↵↵
(or

“the variance is positive”) tells us that

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

=

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��2



**✓
2(D � 3)`+ 2`2

(D � 2)µ

◆2
++

. (3.24)

Since we can split the square into

(2(D � 3)`+ 2`2)2 = (5D � 4)
⇥
2(D � 3)`+ 2`2

⇤
+ 2HD,`, (3.25)

plugging back into 3.24, the later term vanishes due to Eq 3.21, so we get

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2


5D � 4

D � 2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
. (3.26)

Note that the integrand of the integral
P

`

R
dµ⇢`,↵(µ)(...)/µ2 is positive definite. So if one fixes one

of the µ’s in the denominator to the lower limit of the integration, which is ⇤2
th for this case, the result

is greater than the original integral. For the case where ⇤th = ⇤, we have the following inequality

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
<

1

⇤2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��
. (3.27)

Combining it with Eq (3.26), we have

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

<
5D � 4

(D � 2)⇤2

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆
, (3.28)

which can be written as

0 <
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
<

5D � 4

(D � 2)⇤2
. (3.29)

Since hh1/µii and f
(0,0) are positive, we have

f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.30)

Similarly, we have the inequality
⌧⌧

1

µ

��
<

1

⇤2
=)

X

`

Z
dµ⇢`,↵(µ)

1

µ
<

1

⇤2
f
(0,0)

, (3.31)

and thus we have

0 < f
(0,1) +

3

2⇤2
f
(0,0)

. (3.32)
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Using the s $ u symmetric dispersion relation, we can cast the amplitude in a triple-crossing-
symmetric way Btr(s, t) = (Btr(s, t) +Btr(s, u) +Btr(t, s))/3. A straightforward evaluation gives

f
(0,1)

f (0,0)
=

⌧⌧
3(2�D) + 4(�3 +D)`+ 4`2

2(D � 2)µ

��
, (3.22)

which leads to
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
=

⌧⌧
2(�3 +D)`+ 2`2

(D � 2)µ

��
. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values hhX(µ, l)ii2 
⌦⌦
X(µ, l)2

↵↵
(or

“the variance is positive”) tells us that

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

=

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��2



**✓
2(D � 3)`+ 2`2

(D � 2)µ

◆2
++

. (3.24)

Since we can split the square into

(2(D � 3)`+ 2`2)2 = (5D � 4)
⇥
2(D � 3)`+ 2`2

⇤
+ 2HD,`, (3.25)

plugging back into 3.24, the later term vanishes due to Eq 3.21, so we get

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2


5D � 4

D � 2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
. (3.26)

Note that the integrand of the integral
P

`

R
dµ⇢`,↵(µ)(...)/µ2 is positive definite. So if one fixes one

of the µ’s in the denominator to the lower limit of the integration, which is ⇤2
th for this case, the result

is greater than the original integral. For the case where ⇤th = ⇤, we have the following inequality

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
<

1

⇤2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��
. (3.27)

Combining it with Eq (3.26), we have

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

<
5D � 4

(D � 2)⇤2

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆
, (3.28)

which can be written as

0 <
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
<

5D � 4

(D � 2)⇤2
. (3.29)

Since hh1/µii and f
(0,0) are positive, we have

f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.30)

Similarly, we have the inequality
⌧⌧

1

µ

��
<

1

⇤2
=)

X

`

Z
dµ⇢`,↵(µ)

1

µ
<

1

⇤2
f
(0,0)

, (3.31)

and thus we have

0 < f
(0,1) +

3

2⇤2
f
(0,0)

. (3.32)
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BUT!!!

ZERO!!!

hence:



Upper and Lower Bound

Using the s $ u symmetric dispersion relation, we can cast the amplitude in a triple-crossing-
symmetric way Btr(s, t) = (Btr(s, t) +Btr(s, u) +Btr(t, s))/3. A straightforward evaluation gives

f
(0,1)

f (0,0)
=

⌧⌧
3(2�D) + 4(�3 +D)`+ 4`2

2(D � 2)µ

��
, (3.22)

which leads to
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
=

⌧⌧
2(�3 +D)`+ 2`2

(D � 2)µ

��
. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values hhX(µ, l)ii2 
⌦⌦
X(µ, l)2

↵↵
(or

“the variance is positive”) tells us that

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2

=

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ

��2



**✓
2(D � 3)`+ 2`2

(D � 2)µ

◆2
++

. (3.24)

Since we can split the square into

(2(D � 3)`+ 2`2)2 = (5D � 4)
⇥
2(D � 3)`+ 2`2

⇤
+ 2HD,`, (3.25)

plugging back into 3.24, the later term vanishes due to Eq 3.21, so we get

✓
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��◆2


5D � 4

D � 2

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
. (3.26)

Note that the integrand of the integral
P

`

R
dµ⇢`,↵(µ)(...)/µ2 is positive definite. So if one fixes one

of the µ’s in the denominator to the lower limit of the integration, which is ⇤2
th for this case, the result

is greater than the original integral. For the case where ⇤th = ⇤, we have the following inequality

⌧⌧
2(D � 3)`+ 2`2

(D � 2)µ2

��
<

1

⇤2
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��
. (3.27)

Combining it with Eq (3.26), we have
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which can be written as
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f (0,0)
+

⌧⌧
3

2µ
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5D � 4

(D � 2)⇤2
. (3.29)

Since hh1/µii and f
(0,0) are positive, we have

f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.30)

Similarly, we have the inequality
⌧⌧

1

µ

��
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1

⇤2
=)

X

`

Z
dµ⇢`,↵(µ)

1

µ
<

1

⇤2
f
(0,0)

, (3.31)

and thus we have

0 < f
(0,1) +

3

2⇤2
f
(0,0)

. (3.32)

– 11 –

Using the s $ u symmetric dispersion relation, we can cast the amplitude in a triple-crossing-
symmetric way Btr(s, t) = (Btr(s, t) +Btr(s, u) +Btr(t, s))/3. A straightforward evaluation gives

f
(0,1)

f (0,0)
=

⌧⌧
3(2�D) + 4(�3 +D)`+ 4`2

2(D � 2)µ

��
, (3.22)

which leads to
f
(0,1)

f (0,0)
+

⌧⌧
3

2µ

��
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2(�3 +D)`+ 2`2

(D � 2)µ

��
. (3.23)

A special case of the Cauchy-Schwarz inequality of the expected values hhX(µ, l)ii2 
⌦⌦
X(µ, l)2

↵↵
(or

“the variance is positive”) tells us that
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��2
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**✓
2(D � 3)`+ 2`2

(D � 2)µ

◆2
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. (3.24)

Since we can split the square into

(2(D � 3)`+ 2`2)2 = (5D � 4)
⇥
2(D � 3)`+ 2`2

⇤
+ 2HD,`, (3.25)

plugging back into 3.24, the later term vanishes due to Eq 3.21, so we get
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Similarly, we have the inequality
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and thus we have
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. (3.32)
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In other words we have both an upper and lower bound on f
(0,1), bounded by a term of the same

order.

�
3

2⇤2
f
(0,0)

< f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.33)

This is a remarkably strong restriction on the parameter of the e↵ective theory.
We will generalize these new positivity bounds in Section 5, following a similar argument, and

compare the new positivity bounds to the previous Y bounds in Section 6, but before that, as an
example of potential applications, we will show that these first new bounds indeed provide extra
constraints on an EFT and already have important implication for weakly broken Galileons in the
next section.

4 Implication for weakly broken Galileon theories

In this section, we apply the new positivity bounds derived above to weaklly broken Galileon theory.
The Y positivity bounds [9] were applied to the specific case of a massive Galileon in [18] and it was
found that there is a parameter region where the theory is compatible with analyticity. We will see
that the new positivity bounds can rule out massive Galileon and more generally any weakly broken
Galileon theory as an EFT with a healthy hierarchy and standard local UV completion.

Let us first see what the nonlinear forward limit positivity bounds imply for a generic scattering
amplitude which is parametrized as in Eq (2.16) and where ã1,0 is suppressed ã1,0 ⇠ g

2 with g ⌧ 1.
With the notation (2.16), the positivity bound (3.14) can be written as

ãN+1,0 ã
N�1
1,0 � ã

N
2,0. (4.1)

In the large N limit, this bound essentially implies ã1,0 > ã2,0 if we assume the high order coe�cients
do not grow arbitrarily large. Since ãN,0 > 0 for N = 1, 2, 3, ..., the fact that ã1,0 is suppressed
(ã1,0 ⇠ g

2) then implies that ã2,0 also has to be suppressed (ã2,0 ⇠ g
2). With this established, we can

go back to Eq (4.1), and we can then infer that generically ãN,0 ⇠ g
2. So in the forward limit t = 0,

neglecting the constant term, the amplitude should schematically go like

B(s, 0) ⇠
g
2

⇤D�4

✓
x

⇤4
+

x
2

⇤8
+

x
3

⇤12
+ · · ·

◆
, (4.2)

where we have neglected order unity coe�cients. This is as far as we get with the forward limit bounds,
but does not say anything interesting about the Galileon case for which it is the leading y ⇠ �stu

term that is relevant.
On the other hand, the t derivative positivity bound (3.30) implies

ã0,1 <
5D � 4

(D � 2)
ã1,0, (4.3)

and the bound (3.32) implies

0 < ã0,1 +
3

2
ã1,0. (4.4)

Since ãN,0 is suppressed ãN,0 ⇠ g
2, the two inequalities above imply that ã0,1 also has to be suppressed,

that is, ã0,1 ⇠ g
2. Therefore, for an amplitude where the leading term ã1,0 is soft, positivity bounds

implies that the amplitude has to be of the schematic form

B(s, 0) ⇠
g
2

⇤D�4

✓
x

⇤4
+

y

⇤6
+

x
2

⇤8
+ · · ·

◆
, (4.5)
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Weakly Broken Galileon

again neglecting order unity factors.
Galileon theories are scalar field theory that captures salient features of a number of massive

gravitational models [45, 46, 59, 60] but have also been considered in their own right as e↵ective
theories with soft behaviour for their scattering amplitudes [43]. The Galileon symmetry ⇡ ! ⇡+bµx

µ

translates directly into the requirement that the usual O(E4) term in the scattering amplitude low
energy expansion vanishes. When the Galileon symmetry is weakly broken, the term is recovered but
with a coe�cient which is suppressed by the amount of breaking. In D dimensions, it is given by the
following Lagrangian

⇤4�D
3 Lmg = �

1

2
@µ⇡@

µ
⇡ �

1

2
m

2
⇡
2 +

D+1X

n=3

gn

⇤3n�3
3

⇡@
µ1@[µ1

⇡@
µ2@µ2⇡ · · · @

µn@µn]⇡

+
X

i

Oi

✓
@
2
⇡

⇤3
3

,
@
3
⇡

⇤4
3

,
@
4
⇡

⇤5
3

, ...

◆
, (4.6)

where gn are dimensionless coe�cients of order one, [ ] is anti-symmetrization of the indices, ⇤3 is the
strong coupling scale and the Oi operators represent higher derivative terms, which if not present at
the classical level can be generated by quantum corrections. An explicit calculation shows that the
scattering amplitude for massive galileon goes like [18]

Bmg(s, t) ⇠
1

⇤D�4
3

✓
m

2

⇤6
3

x+
1

⇤6
3

y +
1

⇤8
3

x
2 + · · ·

◆
, (4.7)

where we have neglected the constant term of order m2
/⇤2

3 and order unity coe�cients. So the massive
galileon amplitude belongs to the type of the amplitude where the leading low energy behaviour is
soft. Matching this amplitude to Eq (4.5), we can infer that

g
2

⇤D
⇠

m
2

⇤D+2
3

,
g
2

⇤D+2
⇠

1

⇤D+2
3

. (4.8)

Therefore, the new positivity bounds imply that for massive galileon the cuto↵ of the theory has to
be parametrically close to the mass of the field

⇤ ⇠ m, (4.9)

which contradicts the most basic requirement of an EFT, a healthy hierarchy between the two scales.
A similar argument applies a theory of a massless Galileon with a small Galileon symmetry

breaking term such as

⇤4�D
3 Lwbg = �

1

2
@µ⇡@

µ
⇡ �

↵

⇤4
3

(@⇡)4 +
D+1X

n=3

gn

⇤3n�3
3

⇡@
µ1@[µ1

⇡@
µ2@µ2⇡ · · · @

µn@µn]⇡

+
X

i

Oi

✓
@
2
⇡

⇤3
3

,
@
3
⇡

⇤4
3

,
@
4
⇡

⇤5
3

, ...

◆
, (4.10)

with |↵| ⌧ 1 the measure of the Galileon symmetry breaking. The form of the scattering amplitude
is then again (4.7) with now m

2
! ↵⇤2

3, and the bounds (3.30) and (3.32) amount to the requirement
that |↵| ⇠ O(1). Stated di↵erently, the Galileon symmetry can never just be weakly broken, since this
would require the leading x term to be suppressed relative to the y term in a way forbidden by the
new positivity bounds.
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with |↵| ⌧ 1 the measure of the Galileon symmetry breaking. The form of the scattering amplitude
is then again (4.7) with now m

2
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3, and the bounds (3.30) and (3.32) amount to the requirement
that |↵| ⇠ O(1). Stated di↵erently, the Galileon symmetry can never just be weakly broken, since this
would require the leading x term to be suppressed relative to the y term in a way forbidden by the
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Weakly Broken Galileon

suppressed

In other words we have both an upper and lower bound on f
(0,1), bounded by a term of the same

order.

�
3

2⇤2
f
(0,0)

< f
(0,1)

<
5D � 4

(D � 2)⇤2
f
(0,0) (3.33)

This is a remarkably strong restriction on the parameter of the e↵ective theory.
We will generalize these new positivity bounds in Section 5, following a similar argument, and

compare the new positivity bounds to the previous Y bounds in Section 6, but before that, as an
example of potential applications, we will show that these first new bounds indeed provide extra
constraints on an EFT and already have important implication for weakly broken Galileons in the
next section.

4 Implication for weakly broken Galileon theories

In this section, we apply the new positivity bounds derived above to weaklly broken Galileon theory.
The Y positivity bounds [9] were applied to the specific case of a massive Galileon in [18] and it was
found that there is a parameter region where the theory is compatible with analyticity. We will see
that the new positivity bounds can rule out massive Galileon and more generally any weakly broken
Galileon theory as an EFT with a healthy hierarchy and standard local UV completion.

Let us first see what the nonlinear forward limit positivity bounds imply for a generic scattering
amplitude which is parametrized as in Eq (2.16) and where ã1,0 is suppressed ã1,0 ⇠ g

2 with g ⌧ 1.
With the notation (2.16), the positivity bound (3.14) can be written as

ãN+1,0 ã
N�1
1,0 � ã

N
2,0. (4.1)

In the large N limit, this bound essentially implies ã1,0 > ã2,0 if we assume the high order coe�cients
do not grow arbitrarily large. Since ãN,0 > 0 for N = 1, 2, 3, ..., the fact that ã1,0 is suppressed
(ã1,0 ⇠ g

2) then implies that ã2,0 also has to be suppressed (ã2,0 ⇠ g
2). With this established, we can

go back to Eq (4.1), and we can then infer that generically ãN,0 ⇠ g
2. So in the forward limit t = 0,

neglecting the constant term, the amplitude should schematically go like

B(s, 0) ⇠
g
2

⇤D�4

✓
x
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x
2
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+

x
3

⇤12
+ · · ·

◆
, (4.2)

where we have neglected order unity coe�cients. This is as far as we get with the forward limit bounds,
but does not say anything interesting about the Galileon case for which it is the leading y ⇠ �stu

term that is relevant.
On the other hand, the t derivative positivity bound (3.30) implies

ã0,1 <
5D � 4

(D � 2)
ã1,0, (4.3)

and the bound (3.32) implies

0 < ã0,1 +
3

2
ã1,0. (4.4)

Since ãN,0 is suppressed ãN,0 ⇠ g
2, the two inequalities above imply that ã0,1 also has to be suppressed,

that is, ã0,1 ⇠ g
2. Therefore, for an amplitude where the leading term ã1,0 is soft, positivity bounds

implies that the amplitude has to be of the schematic form
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x
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◆
, (4.5)
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No local UV completion 
for weakly broken 
Galileons

not suppressed

Contradiction!!!
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Table 2. Explicit triple crossing positivity bounds in 4D up to level 1/µ10. cm,n are the expansion
coe�cients of the pole subtracted amplitude in terms of w and t (see Eq (5.4)). These bounds are
valid for weakly coupled UV completions where we choose � = 1 (see Eq (5.37)).
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3

2
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• The nonlinear PQ bounds:
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where m is the electron mass to avoid the need to introduce new physics at the scale ⇤new ⇠

(emMPl)1/2. Here cimp is the equivalent coe�cient that arises in the expansion of the improved
amplitude (3.8). This is consistent with (1.5) for M ⇠ m/e. While (1.6) is not in conflict with the
MPl ! 1 decoupling limit, it would nevertheless indicate a significant weakening of positivity that
deserves further explanation. At present their is no generally accepted proof of positivity of c at
finite MPl.

We stress again that our conclusions are valid for generic standard UV completions and further
assuming weak coupling, by itself, would not improve the bound (1.6). The UV completion may
equally well be strongly coupled at the scale ⇤new or lead to an infinite tower of higher spin states as
is required in any tree level completion of gravity such as string theory. We only require that QED
minimally coupled to gravity be a good description at low energies and that the Froissart bound
in the weak sense |A(s, t)|< |s|2 is respected at su�ciently large |s|! 1 (the fact that at low
energy another scaling in s is observed is irrelevant). A non-local UV completion could in principle
violate the latter and would evade these considerations, but would in itself be a startling conclusion.

We begin in section 2 with a review of the standard discussion of positivity bounds as applied
to the low energy gravitational Euler-Heisenberg Lagrangian. In section 3 we derive the improved
positivity bounds for scalar QED, and in section 4 perform the analogous calculation for spinor
QED. Most of the calculational details are saved for the appendices.

2 Bounds from Euler-Heisenberg

In the following we consider the theory of QED minimally coupled to gravity, which is itself a low
energy EFT. The action for the fermionic (spinor) QED reads
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where  is the Dirac field,  ̄ ⌘  †�0, /r ⌘ �µrµ, and �µ = vµa�
a are the gamma matrices, vaµ the

vierbein, and r the covariant derivative with the spin-connection (see appendix B.1). We denote
by m and e the electron mass and charge respectively. When the role of the electron is played by
a complex scalar field, the action for scalar QED is then
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where � is the complex scalar and the gauge-covariant derivative is defined as usual Dµ ⌘ @µ�ieAµ.
Throughout this work we use mostly plus signature (�,+,+,+).

2.1 Gravitational Euler-Heisenberg e↵ective field theory

Below the electron mass, we may integrate out the heavy electron from (2.1) and (2.2) respec-
tively. We refer to this as the gravitational Euler-Heisenberg e↵ective field theory. The resulting
EFT involves higher derivative interactions between the Maxwell field and graviton and can be
parameterized as:
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where the ellipses designate higher order operators and where we have defined F̃µ⌫ ⌘ "µ⌫↵�F↵�/2.
The form of these operators is the same independently on whether one starts with the spinor or
scalar QED, only the exact values of the coe�cients ai, bi vary. In turn, the ci couplings appearing
in front of the curvature-squared operators are di↵erent. These arise even in the case when electron
charge e is zero and encode the backreaction of any matter fields on the metric, more precisely the
propagator of the spin-2 state. The couplings ci thus receive contributions from any matter field
coupled to gravity and are not solely determined from our QED EFT. The role of these terms is
discussed in more detail in section 4.4.

The coe�cients for the spinor QED are known to be [33, 40]:
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while for scalar QED the coe�cients are [40, 55, 56]
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(2.5)

where ↵ = e2/(4⇡) is the fine-structure constant. The action (2.3) can be further simplified by
expressing the Riemann tensor in terms of the Weyl tensor C and using the lowest order Einstein
equations (i.e. performing a field redefinition). To this order in the EFT, this leads to
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where F̃µ⌫ is the dual field strength tensor, and (after setting ci = 0) the new coe�cients are4
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Notably, both couplings ai and bi contribute to the two F 4 terms in the action, it is however
important to emphasize the di↵erence in their physical origin. For this, let us note that in the
gravitational Euler-Heisenberg action (2.6) these arise with di↵erent mass scalings in front of the
corresponding operators, so that we have

ai
m4

⇠
e4

m4
,

m2

M2

Pl

bi
m4

⇠
e2

m2M2

Pl

. (2.8)

The appearance of the inverse powers of MPl in the b-terms indicate that the scattering processes
leading to the low energy F 4 interactions are di↵erent in the two cases. The couplings ai are
generated by four-photon scatterings involving only electron exchange, (shown on the first line of
Fig. 2 or first diagram of Fig. 3). The couplings bi in turn are generated by gravitational four-
photon scattering involving a massless graviton exchange as shown on the second line of Fig. 2 (or
last three diagrams of Fig. 3).

4
Note that these relations di↵er slightly from those given in Eq. (3.4) of [40]. Importantly, there is a sign di↵erence

in both b2 and b3 due to the fact that the coe�cients bi change sign under the signature change. The numerical

factors coincide if one switches the units, e.g. 1/4M2
Pl = 4⇡G/2 = 1/2, since 4⇡G ⌘ 1 in [40].
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�
, (2.6)

where F̃µ⌫ is the dual field strength tensor, and (after setting ci = 0) the new coe�cients are4
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1
= a1 +

1
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2
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2
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Pl
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2

m2

M2

Pl

b3 . (2.7)

Notably, both couplings ai and bi contribute to the two F 4 terms in the action, it is however
important to emphasize the di↵erence in their physical origin. For this, let us note that in the
gravitational Euler-Heisenberg action (2.6) these arise with di↵erent mass scalings in front of the
corresponding operators, so that we have

ai
m4

⇠
e4

m4
,

m2

M2

Pl

bi
m4

⇠
e2

m2M2

Pl

. (2.8)

The appearance of the inverse powers of MPl in the b-terms indicate that the scattering processes
leading to the low energy F 4 interactions are di↵erent in the two cases. The couplings ai are
generated by four-photon scatterings involving only electron exchange, (shown on the first line of
Fig. 2 or first diagram of Fig. 3). The couplings bi in turn are generated by gravitational four-
photon scattering involving a massless graviton exchange as shown on the second line of Fig. 2 (or
last three diagrams of Fig. 3).

4
Note that these relations di↵er slightly from those given in Eq. (3.4) of [40]. Importantly, there is a sign di↵erence

in both b2 and b3 due to the fact that the coe�cients bi change sign under the signature change. The numerical

factors coincide if one switches the units, e.g. 1/4M2
Pl = 4⇡G/2 = 1/2, since 4⇡G ⌘ 1 in [40].
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Figure 1: The AA ! AA t-channel scattering in the gravitational Euler-Heisenberg theory. The
wiggly line stands for the vector field Aµ. The exchanged wavy line stands for the graviton hµ⌫ .

2.2 Positivity Bounds from the Euler-Heisenberg EFT

The leading contribution to the four photon AA ! AA scattering amplitude in the gravitational
Euler-Heisenberg theory below the electron mass (2.6) comes from the scattering processes shown
in Fig. 1. Although not explicit in the diagrams, b3 enters through a modified graviton-photon-
photon vertex. Consistently with the previous literature, we find the following results for the various
helicity configurations of the ingoing and outgoing particles (written in an all ingoing convention):
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(2.9)

The b3 interaction vertex only contributes to the AEul�Heis(+ + +�), AEul�Heis(� � �+) etc.
amplitudes as [40]:

AEul�Heis(+ + +�) = AEul�Heis(���+) =
b3

M2

Pl
m2

(s2 + t2 + u2) . (2.10)

These amplitudes respect s-u crossing symmetry in the sense

A(�1�2�3�4)(s, t, u) = A(�1�4�3�2)(u, t, s) . (2.11)

As expected, the amplitudes (2.9) involve the infamous t-channel pole diverging in the forward
limit thus formally invalidating any analyticity arguments that would lead to the positivity bounds.
Interestingly, in [40] it was proven that upon discarding the massless graviton pole and after sym-
metrizing the scattering amplitudes above, the positivity bounds imply

a0
1
+ a0

2
> 0 . (2.12)

Alternatively, this result may also be obtained by analyzing the elastic amplitude A(+ + ��) ⌘

A(++ ! ++) alone. Inserting the expressions of the coe�cients (2.7) we get

a1 + a2 +
m2

M2

Pl

✓
b2
2

+ b3

◆
> 0 . (2.13)
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As discussed earlier, the exact values of the coe�cients ai and bi are known from the QED EFT
(2.6) and are given in Eqs. (2.4) and (2.5). For the scalar QED this implies5

e4
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✓
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e2
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> 0 , (2.14)

while for the spinor QED this leads to
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Pl
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✓
�24

m2

e2
+ 11M2

Pl

◆
> 0 . (2.15)

Taking these bounds at their face value one would be tempted to conclude that these imply the
weak-gravity type of bounds on the charge-to-mass ratio, i.e. that e/m &

p
2/MPl, which was one

of the remarkable points presented in [40]. However as we shall see below, the previous bounds
rely on known positive QED contributions, namely that from the non-gravitational electron loop.
However the raison d’être of positivity bounds is to probe the unknown UV contributions. Any
known contributions from the EFT can and should be removed by means of the improved positivity
bounds, as we describe below, before any physical conclusions are derived.

The bounds (2.12) are not the only bounds that may be derived assuming the t-channel pole may
be discarded, we may also consider states of indefinite polarization which mix in information about
b3. For instance, taking the incoming polarization state to be |+i ⌦

1p
2
(|+i ± |�i) the positivity

bound becomes 4(a0
1
+ a0

2
) > m2

|b3|/M2

Pl
. For specific indefinite polarization states corresponding

to those that are natural from compactification to 3D, we may then recover for example the bounds
argued for in [42]. In our current notation these are the statements that

4a0
1
>

m2

M2

Pl

|b3| , a0
2
> 0 , (2.16)

which are stronger and therefore include (2.13). Once again, taken at face value for QED minimally
coupled to gravity, we would be led to a similar conclusion about the charge-to-mass ratio in order
to satisfy them, a conclusion that would be premature.

Before proceeding we note that the bound discussed in [40] has been countered in the case of
3D by the discussion of [43] which make use of extended positivity bounds of [31], leading to an
opposing bound on the charge-to-mass ratio. This parallels some of the discussion in what follows
for 4D, although we shall make use of the improved positivity bounds which allows us to infer a
bound on the cuto↵ of the EFT and avoid the need to focus on the high powers of s in the expansion
of the amplitude.

3 Bounds from scalar QED coupled to gravity

Our goal is to extend the argumentation of the previous section, whereby, instead of applying
the positivity bounds to the Euler-Heisenberg Lagrangian, we shall apply them directly to QED
minimally coupled to gravity - itself treated as a low energy EFT. The new feature is that the
resulting EFT is valid at and above the mass of the electron (up to the EFT cuto↵ ⇤c), and so we
may use the ‘knowledge’ of electron loop contributions to ‘improve’ the positivity bounds. Before
we do this we outline in more detail the improved positivity bounds in the next subsection.

5
The relations (2.14) and (2.15) are given for ci = 0 whereas [40] also accounts for the non-zero ci. The implications

of non-zero ci, which contribute at order 1/M4
Pl in the amplitudes, are discussed in section 4.4.
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Figure 1: The AA ! AA t-channel scattering in the gravitational Euler-Heisenberg theory. The
wiggly line stands for the vector field Aµ. The exchanged wavy line stands for the graviton hµ⌫ .

2.2 Positivity Bounds from the Euler-Heisenberg EFT

The leading contribution to the four photon AA ! AA scattering amplitude in the gravitational
Euler-Heisenberg theory below the electron mass (2.6) comes from the scattering processes shown
in Fig. 1. Although not explicit in the diagrams, b3 enters through a modified graviton-photon-
photon vertex. Consistently with the previous literature, we find the following results for the various
helicity configurations of the ingoing and outgoing particles (written in an all ingoing convention):
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(2.9)

The b3 interaction vertex only contributes to the AEul�Heis(+ + +�), AEul�Heis(� � �+) etc.
amplitudes as [40]:

AEul�Heis(+ + +�) = AEul�Heis(���+) =
b3

M2

Pl
m2

(s2 + t2 + u2) . (2.10)

These amplitudes respect s-u crossing symmetry in the sense

A(�1�2�3�4)(s, t, u) = A(�1�4�3�2)(u, t, s) . (2.11)

As expected, the amplitudes (2.9) involve the infamous t-channel pole diverging in the forward
limit thus formally invalidating any analyticity arguments that would lead to the positivity bounds.
Interestingly, in [40] it was proven that upon discarding the massless graviton pole and after sym-
metrizing the scattering amplitudes above, the positivity bounds imply

a0
1
+ a0

2
> 0 . (2.12)

Alternatively, this result may also be obtained by analyzing the elastic amplitude A(+ + ��) ⌘

A(++ ! ++) alone. Inserting the expressions of the coe�cients (2.7) we get

a1 + a2 +
m2

M2

Pl

✓
b2
2

+ b3

◆
> 0 . (2.13)
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For spinor QED

For scalar QED

As discussed earlier, the exact values of the coe�cients ai and bi are known from the QED EFT
(2.6) and are given in Eqs. (2.4) and (2.5). For the scalar QED this implies5

e4
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✓
�2

m2

e2
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while for the spinor QED this leads to
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Pl
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> 0 . (2.15)

Taking these bounds at their face value one would be tempted to conclude that these imply the
weak-gravity type of bounds on the charge-to-mass ratio, i.e. that e/m &

p
2/MPl, which was one

of the remarkable points presented in [40]. However as we shall see below, the previous bounds
rely on known positive QED contributions, namely that from the non-gravitational electron loop.
However the raison d’être of positivity bounds is to probe the unknown UV contributions. Any
known contributions from the EFT can and should be removed by means of the improved positivity
bounds, as we describe below, before any physical conclusions are derived.

The bounds (2.12) are not the only bounds that may be derived assuming the t-channel pole may
be discarded, we may also consider states of indefinite polarization which mix in information about
b3. For instance, taking the incoming polarization state to be |+i ⌦

1p
2
(|+i ± |�i) the positivity

bound becomes 4(a0
1
+ a0

2
) > m2

|b3|/M2

Pl
. For specific indefinite polarization states corresponding

to those that are natural from compactification to 3D, we may then recover for example the bounds
argued for in [42]. In our current notation these are the statements that

4a0
1
>

m2

M2

Pl

|b3| , a0
2
> 0 , (2.16)

which are stronger and therefore include (2.13). Once again, taken at face value for QED minimally
coupled to gravity, we would be led to a similar conclusion about the charge-to-mass ratio in order
to satisfy them, a conclusion that would be premature.

Before proceeding we note that the bound discussed in [40] has been countered in the case of
3D by the discussion of [43] which make use of extended positivity bounds of [31], leading to an
opposing bound on the charge-to-mass ratio. This parallels some of the discussion in what follows
for 4D, although we shall make use of the improved positivity bounds which allows us to infer a
bound on the cuto↵ of the EFT and avoid the need to focus on the high powers of s in the expansion
of the amplitude.

3 Bounds from scalar QED coupled to gravity

Our goal is to extend the argumentation of the previous section, whereby, instead of applying
the positivity bounds to the Euler-Heisenberg Lagrangian, we shall apply them directly to QED
minimally coupled to gravity - itself treated as a low energy EFT. The new feature is that the
resulting EFT is valid at and above the mass of the electron (up to the EFT cuto↵ ⇤c), and so we
may use the ‘knowledge’ of electron loop contributions to ‘improve’ the positivity bounds. Before
we do this we outline in more detail the improved positivity bounds in the next subsection.

5
The relations (2.14) and (2.15) are given for ci = 0 whereas [40] also accounts for the non-zero ci. The implications

of non-zero ci, which contribute at order 1/M4
Pl in the amplitudes, are discussed in section 4.4.
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As discussed earlier, the exact values of the coe�cients ai and bi are known from the QED EFT
(2.6) and are given in Eqs. (2.4) and (2.5). For the scalar QED this implies5
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Taking these bounds at their face value one would be tempted to conclude that these imply the
weak-gravity type of bounds on the charge-to-mass ratio, i.e. that e/m &

p
2/MPl, which was one

of the remarkable points presented in [40]. However as we shall see below, the previous bounds
rely on known positive QED contributions, namely that from the non-gravitational electron loop.
However the raison d’être of positivity bounds is to probe the unknown UV contributions. Any
known contributions from the EFT can and should be removed by means of the improved positivity
bounds, as we describe below, before any physical conclusions are derived.

The bounds (2.12) are not the only bounds that may be derived assuming the t-channel pole may
be discarded, we may also consider states of indefinite polarization which mix in information about
b3. For instance, taking the incoming polarization state to be |+i ⌦

1p
2
(|+i ± |�i) the positivity

bound becomes 4(a0
1
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2
) > m2
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Pl
. For specific indefinite polarization states corresponding

to those that are natural from compactification to 3D, we may then recover for example the bounds
argued for in [42]. In our current notation these are the statements that

4a0
1
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Pl

|b3| , a0
2
> 0 , (2.16)

which are stronger and therefore include (2.13). Once again, taken at face value for QED minimally
coupled to gravity, we would be led to a similar conclusion about the charge-to-mass ratio in order
to satisfy them, a conclusion that would be premature.

Before proceeding we note that the bound discussed in [40] has been countered in the case of
3D by the discussion of [43] which make use of extended positivity bounds of [31], leading to an
opposing bound on the charge-to-mass ratio. This parallels some of the discussion in what follows
for 4D, although we shall make use of the improved positivity bounds which allows us to infer a
bound on the cuto↵ of the EFT and avoid the need to focus on the high powers of s in the expansion
of the amplitude.

3 Bounds from scalar QED coupled to gravity

Our goal is to extend the argumentation of the previous section, whereby, instead of applying
the positivity bounds to the Euler-Heisenberg Lagrangian, we shall apply them directly to QED
minimally coupled to gravity - itself treated as a low energy EFT. The new feature is that the
resulting EFT is valid at and above the mass of the electron (up to the EFT cuto↵ ⇤c), and so we
may use the ‘knowledge’ of electron loop contributions to ‘improve’ the positivity bounds. Before
we do this we outline in more detail the improved positivity bounds in the next subsection.

5
The relations (2.14) and (2.15) are given for ci = 0 whereas [40] also accounts for the non-zero ci. The implications

of non-zero ci, which contribute at order 1/M4
Pl in the amplitudes, are discussed in section 4.4.
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Figure 1: The AA ! AA t-channel scattering in the gravitational Euler-Heisenberg theory. The
wiggly line stands for the vector field Aµ. The exchanged wavy line stands for the graviton hµ⌫ .

2.2 Positivity Bounds from the Euler-Heisenberg EFT

The leading contribution to the four photon AA ! AA scattering amplitude in the gravitational
Euler-Heisenberg theory below the electron mass (2.6) comes from the scattering processes shown
in Fig. 1. Although not explicit in the diagrams, b3 enters through a modified graviton-photon-
photon vertex. Consistently with the previous literature, we find the following results for the various
helicity configurations of the ingoing and outgoing particles (written in an all ingoing convention):
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(2.9)

The b3 interaction vertex only contributes to the AEul�Heis(+ + +�), AEul�Heis(� � �+) etc.
amplitudes as [40]:

AEul�Heis(+ + +�) = AEul�Heis(���+) =
b3
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Pl
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(s2 + t2 + u2) . (2.10)

These amplitudes respect s-u crossing symmetry in the sense

A(�1�2�3�4)(s, t, u) = A(�1�4�3�2)(u, t, s) . (2.11)

As expected, the amplitudes (2.9) involve the infamous t-channel pole diverging in the forward
limit thus formally invalidating any analyticity arguments that would lead to the positivity bounds.
Interestingly, in [40] it was proven that upon discarding the massless graviton pole and after sym-
metrizing the scattering amplitudes above, the positivity bounds imply
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Alternatively, this result may also be obtained by analyzing the elastic amplitude A(+ + ��) ⌘

A(++ ! ++) alone. Inserting the expressions of the coe�cients (2.7) we get
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Problem!

As discussed earlier, the exact values of the coe�cients ai and bi are known from the QED EFT
(2.6) and are given in Eqs. (2.4) and (2.5). For the scalar QED this implies5
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Taking these bounds at their face value one would be tempted to conclude that these imply the
weak-gravity type of bounds on the charge-to-mass ratio, i.e. that e/m &

p
2/MPl, which was one

of the remarkable points presented in [40]. However as we shall see below, the previous bounds
rely on known positive QED contributions, namely that from the non-gravitational electron loop.
However the raison d’être of positivity bounds is to probe the unknown UV contributions. Any
known contributions from the EFT can and should be removed by means of the improved positivity
bounds, as we describe below, before any physical conclusions are derived.

The bounds (2.12) are not the only bounds that may be derived assuming the t-channel pole may
be discarded, we may also consider states of indefinite polarization which mix in information about
b3. For instance, taking the incoming polarization state to be |+i ⌦

1p
2
(|+i ± |�i) the positivity

bound becomes 4(a0
1
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2
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to those that are natural from compactification to 3D, we may then recover for example the bounds
argued for in [42]. In our current notation these are the statements that
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2
> 0 , (2.16)

which are stronger and therefore include (2.13). Once again, taken at face value for QED minimally
coupled to gravity, we would be led to a similar conclusion about the charge-to-mass ratio in order
to satisfy them, a conclusion that would be premature.

Before proceeding we note that the bound discussed in [40] has been countered in the case of
3D by the discussion of [43] which make use of extended positivity bounds of [31], leading to an
opposing bound on the charge-to-mass ratio. This parallels some of the discussion in what follows
for 4D, although we shall make use of the improved positivity bounds which allows us to infer a
bound on the cuto↵ of the EFT and avoid the need to focus on the high powers of s in the expansion
of the amplitude.

3 Bounds from scalar QED coupled to gravity

Our goal is to extend the argumentation of the previous section, whereby, instead of applying
the positivity bounds to the Euler-Heisenberg Lagrangian, we shall apply them directly to QED
minimally coupled to gravity - itself treated as a low energy EFT. The new feature is that the
resulting EFT is valid at and above the mass of the electron (up to the EFT cuto↵ ⇤c), and so we
may use the ‘knowledge’ of electron loop contributions to ‘improve’ the positivity bounds. Before
we do this we outline in more detail the improved positivity bounds in the next subsection.

5
The relations (2.14) and (2.15) are given for ci = 0 whereas [40] also accounts for the non-zero ci. The implications

of non-zero ci, which contribute at order 1/M4
Pl in the amplitudes, are discussed in section 4.4.
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Cutoff  of  gravitational QED
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All the above discontinuities are positive as required by unitarity. We may confirm the validity of
the dispersion relation with two subtractions by demonstrating that
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as required, confirming the discontinuities above for both chosen helicity configurations.

4.2 Discontinuities of gravitational diagrams

For spinor QED the only gravitational discontinuities come from the type a diagrams. The discon-
tinuities of these diagrams are negative and are given by,
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As before the negativity of these discontinuities is not in contradiction with unitarity since these are
M2

Pl
suppressed corrections to the positive non-gravitational discontinuities. Here again, one can

explicitly check that this discontinuity is consistent with the relation inferred from the dispersion
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As before, without gravity the bound is trivially satisfied, in the presence of gravity the bound is
violated if the cuto↵ is taken to infinity. If however the cuto↵ scale is taken below

✏⇤c . (emMPl)
1/2 , (4.4)

positivity is respected. Up to numerical factors this is essentially the same order as the bound
derived in scalar QED and suggests a universal result.

4.4 Higher order gravitational contributions

Up to now, we have only considered the gravitational corrections to scattering amplitudes up to
order 1/M2
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on the grounds that these dominate. Given the results of the improved positivity

bounds, it would be remiss not to address whether higher order corrections, specifically the next
ones at order 1/M4

Pl
could rescue positivity without the need for the low cuto↵ (4.4). Indeed as

noted already in [40] this is in principle possible. In the context of the improved positivity bounds
derived here we can show that this actually leads to equally strong implications. Example Feynman
diagrams at this order are given in Fig. 4. They contain no electromagnetic vertices and therefore
do not vanish as e ! 0. Indeed any matter species, even uncharged, will give similar contributions.
Furthermore these amplitudes are logarithmically divergent within 4D QED minimally coupled to
gravity, necessitating the need to add curvature square operators in the actions (2.1) and (2.2)
whose coe�cients can only be determined by matching onto an unknown UV completion. When
included in the amplitude, the improved positivity bounds for spinor QED become

e4

⇡2⇤4

✓
ln

⇤

m
�

1

4

◆
�

11e2

360⇡2m2M2

Pl

�
B

M4

Pl

ln

✓
⇤

m

◆
+

�m
M4

Pl

> 0 , (4.5)

with a similar expression for scalar QED. Here B is a known positive O(1) coe�cient determined
from the positive discontinuities of the diagrams in Fig. 4, and �m is an unknown matching coe�cient
accounting for the curvature square types of operators which needed to be added to the actions
(2.1) defined for convenience7 at a fixed RG scale µ ⇠ m. The logarithmic ⇤ dependence of the
B term arises, as in the first term, from the application of the improved bounds which removes
the branch cut up to the scale s0 ⇠ ⇤2. We now see that in principle there is another solution
to maintain positivity, other than that of (4.4). Indeed assuming ⇤ � (emMPl)1/2 then (4.5)
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Figure 3: The AA ! AA scattering in spinor QED due to non-gravitational interactions (first
line) and gravitational interactions to order 1/M2

Pl
(second line). The wiggly line stands for the

vector field Aµ and the solid line stands for the fermion  . The arrows depict the direction of the
charge flow. We do not show all the crossed versions of the diagrams.

Given the assumed EFT hierarchy m ⌧ ✏⇤c ⌧ MPl it is su�cient to approximate this as
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The first term is the contribution from non-gravitational diagrams which in the absence of gravity
can be removed by sending ⇤c ! 1, reflecting the statement that QED in flat space automatically
satisfies positivity bounds to one-loop. The second term is the distinctively negative gravitational
contribution which arises from the non-Froissart growth of the one-loop amplitudes6. This positivity
bound may be most cleanly interpreted as a bound on the cuto↵ of the e↵ective theory:

✏⇤c . ( emMPl)
1/2 , (3.27)

which is to say that if we take the positivity bound with t-channel pole discarded seriously, QED
cannot be minimally coupled to gravity without introducing new physics at or below the scale
⇤new ⇠ ( emMPl)1/2. This is significantly lower than the scale eMPl implied by the weak gravity
conjecture [54], and indeed by the Euler-Heisenberg bounds derived in section 2.2. The strength
of this result is due to the fact that we can remove the known QED contributions to the positivity
bounds from the electron loops, up to the cuto↵ scale ✏⇤c, giving us a much more constraining
condition. This result exactly parallels similar conclusions derived for toy scalar field theories
coupled to gravity in a previous work [37]. The present result is however cleaner since (a) we do not
rely on spectator fields, (b) the form of the QED lagrangian is more strongly constrained by gauge
invariance and (c) we make no assumption on the types of operators that would arise at the cuto↵.
When the inequality (3.26) comes close to being saturated we should also worry about higher order
corrections in 1/M2

Pl
. These will be considered in section 4.4.

4 Bounds from spinor QED coupled to gravity

The discussion for spinor QED closely parallels that for the scalar QED with the only di↵erence
being numerical factors. We sketch the essential arguments leaving the amplitude calculation details
to appendix B. The number of diagrams contributing to the 4-photon amplitude at one-loop level
and to order 1/M2

Pl
is significantly fewer as seen in Fig. 3.

4.1 Discontinuities of non-gravitational diagrams

As shown in Fig. 3 the only non-gravitational diagram is the ‘box’ diagram. The relevant amplitude
discontinuities are given in appendix B.3 in the s and u channel. For the first two polarization

6
We stress again that this does not imply that the UV amplitudes violate the weak Froissart bound |A(s, t)|< |s|2.
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with a similar expression for scalar QED. Here B is a known positive O(1) coe�cient determined
from the positive discontinuities of the diagrams in Fig. 4, and �m is an unknown matching coe�cient
accounting for the curvature square types of operators which needed to be added to the actions
(2.1) defined for convenience7 at a fixed RG scale µ ⇠ m. The logarithmic ⇤ dependence of the
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the branch cut up to the scale s0 ⇠ ⇤2. We now see that in principle there is another solution
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Now if �⇤ is order unity, then (4.6) amounts to a bound of the form m & eMPl, in complete op-
position to what is anticipated from the weak gravity conjecture. This is of course because we are
trying to maintain positivity with terms which are higher order in 1/MPl rather than lower order.
A similar conclusion was made in the 3D case in [43]. Unlike the situation in 3D however, we
cannot add additional uncharged light states to remove this tension. That is because in 3D, the
R2 terms do not need renormalization and any matter fields, even uncharged, contribute to them
as �S ⇠

R
d3x

p
�gR2/m. Thus by including very light uncharged fields, such as the neutrino, we

can maintain overall positivity without needing to satisfy m & eMPl.

Returning to four dimensions, more generally we should account for the role of larger �⇤ which
cannot be determined within the QED EFT. The typical expectation for the magnitude of �⇤ is of
order the number of fields N⇤ that lie below the Planck scale since every matter field contributes
a term of this form on integrating out. Then the improved positivity bound (4.6) can be satisfied
provided

m & eMPl
p
N⇤

. (4.7)

In particular, for a weakly coupled UV completion in which new massive spin 2 and higher states
arise at a scale Ms, for which M2

Pl
= M2

s /g
2

s , then the scale expected for �UV is �UV ⇠ M2

Pl
/M2

s ⇠

1/g2s � 1. In this case (4.6) amounts to

m & eMs . (4.8)

Unless e is extremely small for every charged states in the theory, both of the bounds (4.7) and
(4.8) are unreasonable constraints on theories of interest, and so we do not consider this ‘resolution’
to maintain positivity as a meaningful solution. Furthermore they stand in clear opposition to the
expectations from weak gravity conjecture [54].

5 Discussion

In this article we have considered whether QED minimally coupled to gravity respects positiv-
ity bounds applied with the t-channel pole removed. Regardless of whether we consider charged
fermions or scalars, we find that it only does so if the e↵ective field theory itself breaks down
at the low scale ⇤new ⇠ (emMPl)1/2, m being the mass of the electron. This result was already
anticipated in the renormalizable scalar field theories discussed in [37], and we see that the new
features of gauge invariance and spin do not change the essential implications. Furthermore, these
results are easily generalized to Nf spinors and Ns scalars given that the entire e↵ect comes from
one-loop diagrams in which the matter (i.e. electron) is in the loop, and so the relevant amplitude
contributions are proportional to Nf and Ns respectively. Crucially since both scalars and spinors
give a characteristically negative contribution to the positivity bound at order 1/M2

Pl
in graviton

exchange then no choice of Nf and Ns can be used to cancel these contributions and a↵ect these
conclusions.

There are three possible perspectives we may take on these results:

• Either consistent (local) UV completions of QED coupled to gravity do require new physics
at scale ⇤new ⇠ (emMPl)1/2, regardless of whether the UV completion is weakly coupled or
strong coupled,

• Or for every charged state, we must impose the unreasonable bounds m & eMPl/
p
N⇤, where

N⇤ is the number of fields below the Planck scale, as discussed in section 4.4,
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As before, without gravity the bound is trivially satisfied, in the presence of gravity the bound is
violated if the cuto↵ is taken to infinity. If however the cuto↵ scale is taken below
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with a similar expression for scalar QED. Here B is a known positive O(1) coe�cient determined
from the positive discontinuities of the diagrams in Fig. 4, and �m is an unknown matching coe�cient
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Alternative Explanation - mild negativity allowed
Alberte et al. 2007.12667
Tokuda et al. 2007.15009

Herrero-Valea et al. 2011.11652
Decoupling limits consistent with

well below the electron mass1. The latter is su�cient to reproduce the bounds (1.1), but by preserv-
ing information from physics at and above the electron mass, one is able to derive a much tighter
constraint as implied by the improved bound (1.3).

Remarkably, the authors of [40] noted that if positivity bounds were applied to 4-photon (i.e.
2-2) scattering amplitudes with the gravitational t-channel exchange removed2, positivity would
hold if the general requirements of the weak gravity conjecture [54] are met, namely that there is a
bound on the charge to mass ratio |e|/m & 1/MPl. Interestingly, at least in 3D, this observation is
partly countered by that of [43] which uses the extended positivity bounds of [31] to derive opposing
bounds, arguing for the need for additional light neutral states to resolve this tension. As we discuss
in section 4.4, this particular ‘resolution’ does not apply in the four dimensional case considered here.

Keeping in the spirit of applying positivity bounds to the t-channel removed amplitude, we
shall find a much stronger result: Improved positivity bounds applied to QED coupled to gravity

demand the existence of new physics at the scale ⇤new ⇠ (emMPl)1/2. Most importantly this result
is independent of what that new physics is. For instance, it applies equally well for the Regge like
completions considered in [41] where the photon Regge tower dominates over the graviton tower,
and it is argued that the weak gravity conjecture from positivity argument is robust. That is be-
cause any Lorentz invariant UV completion will be described at low energies as irrelevant operators
correcting the naive QED Lagrangian, and our consideration only demands that some new physics
comes in at the scale ⇤new ⇠ (emMPl)1/2, which would show up at low energies as the need to add
irrelevant operators, but makes no demands to what its origin is.

As discussed in [37] an alternative explanation of our results is that strict positivity of the
scattering amplitude, with the t-channel pole removed, does not apply. Indeed we can only be sure
it applies in the decoupling limit MPl ! 1. Rather in [37] we conjectured that in the gravitational
context, for a scattering amplitude whose low energy expansion near t = 0 takes the form3

A ⇠ �
s2

M2

Pl
t
+ c s2 + . . . (1.4)

the standard positivity bound (1.1) is weakened to the requirement

c > �
O(1)

M2M2

Pl

, (1.5)

where M is at most the cuto↵ ⇤c of the low energy expansion M  ⇤c. This weakening is consistent
with the known weakening of causality criteria in familiar EFTs [33–36]. Our results for QED
indicate that the improved positivity bound (1.3) would need to be weakened to

cimp > �
e2

m2M2

Pl

⇥O(1) , (1.6)

1
This information is partly recovered in the 3D case considered in [43] by focussing on the large order limit in an

expansion in s/m2
. In practice, for our considerations it is better to utilize the improved positivity bounds since the

former is dominated by the branch put at 4m2
and the latter at a much higher scale.

2
These bounds can be motivated on entropic grounds [44–47] or in other setups [48–51]. Recently, the procedure

of applying directly the positivity bounds to the t-channel removed amplitude was argued to be justified by a

compactification argument in [42]. In [37] various issues with this compactification argument were pointed out. See

also [52, 53] for related discussions.
3
In general graviton loops lead to branch cuts extending to t = 0, however for the 4-photon amplitude these

necessarily arise at order 1/M4
Pl and so will not a↵ect any considerations here. Nevertheless, they are indicative of

the issues with continuing the partial wave expansion past t = 0.
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Conclusions
Positivity Bounds are very powerful at constraining 
irrelevant operators in a low energy EFT

Full crossing symmetry implies upper and lower bounds on 
Wilson coefficients

Strong constraints on interacting massive spin theories and 
supersoft theories

Full understanding of extension to massless gravity (no 
mass gap) unclear, although recent exciting progress

Small amount of ‘negativity’ allowed with gravity, without 
contradicting unitarity and causality


