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Motivation: Positivity Bounds

All possible
Ultraviolet(UV) physics

Can they

t take
‘ ? arbitrary

value?

90" 0!

1 (2
If UV physics satisfied causality, unitarity, '
Lorentz symmetry, crossing symmetry...

{Z a,C;, >0

Positivity bounds is a set of inequalities that
constrain Wilson Coefficients

Relevant literature: [N. Arkani-Hamed, et al. 2012.15849], [B. Bellazzini. et al.
2011.00037], [A. Tolley et al., 2011.02400], [T. Trott, 2011.10058 |,
[S. C-Huot. et al. 2011.02957]  See talk by Trott, Tolley ...



Motivation: Positivity Bounds .

(6 (6) )®)
Lprr = ESM‘FZT-FZZ + -

2-to-2 forward amplitude (spin-0): A(S, O) = ¢y + @ + 6454 + ...

Dim-8 have leading energy dependence only, s2.

To extract dim-8 effect, we consider:

d2
o2 — A(s,0)

See talk by Trott

EFTs can involve more than one particles. (e.g. SMEFT operators;
or those involving multiplet particles, chiral PT, spin-2 EFTs, ...)
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Positivity Bounds I

For 2-to-2 forward scattering(t ~ 0):

i k i

X
AR
J l J

X = BSM states

1

/

M'j—>X(3a Iy ) Mg, (s, x)

ds— 5 +(7 < 1)
A)? W(S—%M2) /
N\ S <> U crossing
e <1

e



Master formula I

. d? 1.
Define: ﬂaf“'u — ﬁ ﬂI”_}M (5 ﬂ[z) Take massless limit

my = M, x (s 11x)

A my T m M |
ijkl _ E: X X Ly
MY _/ 2 T (u— M?=/2) el

E

v

Forward scattering amp, at low
energy (calculable in EFT),
represented by Wilson coef.

Amplitude of SM —» X



Elastic Positivity Bounds .

g *dp m Im
szk‘l — / X X J <—>l
[ 2 oy 7 G 3237

Elastic: When i =k,j=1(ij — ij), RHS — Tr(mm") >0

)\ >0
For more general:
Superposition elastic: M(|u) -+ |U> — ”LL) + |fu>) — wloduFrol* . MLk

with [u) = wli), o) = v7]3)

RHS = |u-my - v|* + |u-my - v*]* >0

- uzvjuk*vl*szkl Z 0



Elastic Positivity Bounds .

» *dp m Im
Mk — / it + (e 1)
{ ; e T (= M?/2)3

Elastic: When i =k,j=1 (ij — ij), RHS — Tr(mm"’) >0

)\ >0
For more general:
Superposition elastic: M(|u) -+ |U> — ”LL) + |fu>) — wloduFrol* . MLk

with [u) = wli), o) = v7]3)

RHS — ‘u-mx-v‘z—l—‘u-mX-U*P >0
- uivjuk*vl*Mijkl Z 0

However, the elastic bounds are not the optimal !




Convex cone nature I [CZ and S.-Y. Zhou, PRL 125, 201601]

; *dp m Im _
Two observation: [ MM = Z/ e XMZ)/(Q) + (el J

N ., . . . ij kl il kj
MUkl g positive linear combinations of My "mx™ +mx"my

mmp 1. MYH js a convex cone

A A., (Edge vector)
1 3 . .
Any vector inside cone can always be written as

positive linear combinations of Aj:

So we conclude:

Mkl — cone({mXiijkl + mXilkaj, m € R"})

cone( A1)

{ Positivity bounds arise as boundary of cone! 1




Projectors as ER I [CZ and S.-Y. Zhou, PRL 125, 201601]

2. X couple to 7 and j, X belong to the direct product space of 7 and j

g > du m Ui
MR = / X A s+ (e g
2 Jons 7 A2 M(ij > X°)
= (X|MIX,)C}
C'is the CG coefficients
Mkt — dﬂ Z X|M|X >|2 Pi(j|k|l) for the direct sum
(eA)? XX, M2/2) T decomposition of T; ®T;

Projector: P*V) =5 Cif(C’;’?)*

R (k|
MUkl is a convex cone: cone ({Pr(jl l)})

10



EFT with symmetry I (CZ and S.-Y. Zhou, 2005.03047]

4-Higgs operators 22=1¢3

Osp = [(Du®)'D,®] x [(D*®) D" 9],
Os, = [(D.®) D"®] x [(D,®)' D" ®],
Os2 = [(D,®)'D,®] x [(D"®)" D'®).

4-W operators 33=1H3d5
Ot = Tr[W,,, WH | Te[W,s W]
Or.p = Tr[W,, WH] Te[Ws, W]
Or, = Tr[WMW”ﬁ]Tr[W W
Or.10 = Tr[WWW““]Tr[ W“B]

4-electron operators

O, = 0“(ev"e)0a(evue) |
Oy = 0%(ev"e)u(Iul)
O3 = D*(el) Dy(le),

Oy = 0%(IW*1) D (lyl)

)

) Fs+ Fso >0,

FS,OEO:

Fso+ Fsy+Fgo >0,

Frao >0,

4Fr 1+ Fra >0,

Fro+8Fpi9 > 0,

8Fro +4Fr; + 3Frs > 0,

12Fro +4F71 + 5Fr2 +4F7110 = 0,
AFrg +4Fr + 3Frs + 12Fr.10 > 0.

6-facet 4D cone

4D “circular cone”

01 g Oj 03 2 0: 04 S O; :-:'i'i.;i:;,r,:j;?_i ,,,w_,,",";':—,.jz : ﬁy_
2\/0104 2 CQ | I} © Ds
I, @ Da

0104 2 _(02 + CS) '\l() oV
oV




EFT with symmetry I (CZ and S.-Y. Zhou, 2005.03047]

4-Higgs operators 22=1¢3

Osp = [(Du®)'D,®] x [(D*®) D" 9],
Os, = [(D.®) D"®] x [(D,®)' D" ®],
Os2 = [(D,®)'D,®] x [(D"®)" D'®).

4-W operators 33=1H3d5
Ot = Tr[W,,, WH | Te[W,s W]
Or.p = Tr[W,, WH] Te[Ws, W]
Or, = Tr[WMW”ﬁ]Tr[W W
Or.10 = Tr[WWW““]Tr[ W“B]

4-electron operators

O, = 0“(ev"e)0a(evue) |
Oy = 0%(ev"e)u(Iul)
O3 = D*(el) Dy(le),

Oy = 0%(IW*1) D (lyl)

)

) Fs+ Fso >0,

FS,OEO:

Fso+ Fsy+Fgo >0,

Frs >0,

4Fry+ Fra > 0,

Fro+8Fpi9 > 0,

8Fro + AFp + 3Fr, > 0,

12Frg + 4Fry + 5Fps + 4Fr 10 > 0,
APr + 4Pp + 3Fpy + 12Fp 19 > 0.
Beyond elastic positivity!

6-facet 4D cone

4D “circular cone”

01 g Oj 03 2 0: 04 S O; :-:'i'i.;i:;,r,:j;?_i ,,,w_,,",";':—,.jz : ﬁy_
2\/0104 2 CQ | I} © Ds
I, @ Da

0104 2 _(02 + CS) '\l() oV
oV




EFT without symmetry? [X. Li, et al, 2101.01191]

The approach is valid so far, however...

Q: What if there is no symmetries? How to characterize bounds?

Solution : use the dual property of cone

Dual cone is defined as

c"'" ={QQ-M>0,vMeC")}

12
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The approach is valid so far, however...
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EFT without symmetry? [X. Li, et al, 2101.01191]

The approach is valid so far, however...

Q: What if there is no symmetries? How to characterize bounds?

Solution : use the dual property of cone

Dual cone is defined as

o= {0 Mg M)
n C* is a cone.

E C* is a set that contain all possible linear bounds

B Hyperplane separation theorem—(C*)*=C
it is enough to carve out exactly the C

These properties make sure our bounds are complete

12



posi. bounds

Dual cone
— vectors in dual cone

Independent Extremal Rays
possible bounds “ of cone C*

A convex cone is closed under
additions and positive scalar
multiplications

>0
but i Yians*
then 7 is not independent,
because a; = 0, #¢* - € = 0

i-C
fr= « Extremal Ray (ER) : n{* cannot be

l
split into other vectors (like an edge

vector in polyhedral cone)

dual cone: C*
13



Dual cone

How to find the ERs in dual cone? ...

Index symmetries of Mk
i<k or jel “ Crossing symmetry: s <> u
1> J+ kel “ Rotation symmetry (Pi around y-axis)

Defined a subspace of M : M € S (Mijkl — MR — gl — Milkj)

Sind cross-antisymmetric
QesS one will vanish @
Q- M2=>0

> Q@MY (g + i) = 2 iy Qi

#sz’kl)%()ﬁQESixn » Qn :S:L_anQS’n‘l

Semi-definite matrices 14




Dual cone---Spectrahedron

2 2 oy ® . .« o
ST the set of n X n positive semi-definite

matrices forms a convex cone

2

AN

ﬂ4_ ‘?'12 n2 _}ﬂ4
Q" =s"" " NS

n2xn
S—l—

15
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Dual cone---Spectrahedron

2 2 oy ® . o« o
ST the set of n X n positive semi-definite

matrices forms a convex cone

2

AN

ﬂ4_ ‘?'L2 n2 _}ﬂﬁl
Q" =s"" " NS

n2xn
S-l-

This object is a spectrahedron !

Spectrahedron: the intersection of a cone with a linear
(affine) subspace is well-defined in math

Ultimate goal : finding ERs of Spectrahedron!

15



SpeCtI‘ahedI‘OIl I [Ramana & Goldman 1995]

— Let Q,,i=0,....,m be the basis matrices of the space
Q) = Qy + 7,Q;
— The spectrahedron: G = {$|Q($) = ()}

question: whether a vector x is at a ER? - iff the rank of B is m-1

(or dimension of F(x) is 1)

r {ui} be basis of Null(Q(x))
Null(): space span by the j

independent null vectors
Qiuy -+ Qnuus

B =
F(x) is the lowest unique

face that contains x (the Qluk s Qmuk
face is k-face) - -

16



SpeCtI‘ahedI‘OIl I [Ramana & Goldman 1995]

— Let Q,,i=0,....,m be the basis matrices of the space
Q(z) = Qy +z,0;
— The spectrahedron: G = {$|Q(x) = ()}

question: whether a vector x is at a ER? - iff the rank of B is m-1

(or dimension of F(x) is 1)

r {ui} be basis of Null(Q(x))
Null(): space span by the j

independent null vectors
Qiuy -+ Qnuus

B =
F(x) is the lowest unique

face that contains x (the Qluk s Qmuk
face is k-face) - -

L Null(B) is the linear span of F(x) J

16



A Scalar EFT



General 2-scalar case I| With 72 symmetry | ¢; = =@,

LD CijlOljkl) Ozgkl ,qubzauqu L/qbkauqbl

A4
k=11 22 12 21 )
. - .
g=11 [4C 111 Cli29 .
' b c >0,c>0,
M _ 22 | Clizo 4C2222 Q¥ 3Q0-= a>0,c
scalar / d b ae > BRd> |b|
12 Ci212 Chi2o >0*,d>
21 Ciz2 Ci212

g

1 0 0 0 01 0 0 0O 0 00
{Qi,liiéﬁ}z 0000?1000,0100?
{(8888 b0 10) \onoo)  Q)=aQ+bQ,+cQy+dQ, =0
0O 0 0 0
0 0 1 0
0 0 01
1 r 0 07 0 0 0 0O = q
_ rr2 0 0 0000 ounds:
Two kinds of ER: Qexl(r)_ 0 0 ’T| r 3Qex2 0010 {Qex'M>0
00 7 |r 000 1]

18



Visualize the cones I

3D “cross section” of 4D cones

Dual space (spectrahedron) Amplitude space

ERs = posi. bounds

)

a>0,c>0,
ac > b*,d > |b|

Bounds

Cri11 = 0, Ca222 > 0, Ci212 >0

4/ C1111C2222 = £(2C1122 + C1212) — Ch212
19




Visualize the cones I

3D “cross section” of 4D cones

Dual space (spectrahedron) Amplitude space

ERs = posi. bounds

)

a>0,c>0,
ac > b*,d > |b|

Bounds

Cri11 = 0, Ca222 > 0, Ci212 >0

4/ C1111C2222 = £(2C1122 + C1212) — Ch212
19




Visualize the cones I

3D “cross section” of 4D cones

Dual space (spectrahedron) Amplitude space

ERs = posi. bounds

a>0,c>0,
ac > b*,d > |b|

Bounds

Cri11 = 0, Ca222 > 0, Ci212 >0
4/ C1111C2222 = £(2C1122 + C1212) — Ch212

19



Visualize the cones I

3D “cross section” of 4D cones

Dual space (spectrahedron) Amplitude space

ERs = posi. bounds

a>0,c>0,
ac > b*,d > |b|

Bounds

Cri11 = 0, Ca222 > 0, Ci212 >0
4/ C1111C2222 = £(2C1122 + C1212) — Ch212
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General 2-scalar case I| Without 72 symmetry |
1

LD Fcijkloijkla
(401111 Cliez Ciiiz Criiz |
Meacatar = | Clizz 4C2222 Cia22 Claae
C'1112 01222 01212 01122
i 01112 01222 Ci122 01212_
kl = 11 22 12
"a® ab ac
ERs Qe — |ab b2 be
ac bc 2¢® — ab
Lac bc ab

variable substitution

Qex - M = [wQ

rw—é—sw ?"8] D - [w2

>0 Vr,s,we€R,

It is quartic !

Oijrr = 0,0:0"$;0,¢1,0" ¢y

Ciii2 2C1212 Cha22
Chi22

a b e e
SENP
Q" 2Q=| _ Fod b
e f b d
21
ac Ty =11
be 22 With 2> ab
ab 12
2¢% — ab. 21
rw—+sw 2C1111 Ciiiz Chize

Cha22 2C3220

20



Positivity bounds for general 2-scalar EFTs

Finally get bounds !

/(71111 >0 and 4C1,Ci212 — Ciyps >0 \

and {011120112201222 — C1111Ca95 — CF112Ca202 + Ct212 (—CF 195 + 4C1111C2222) > 0

or {A = 3(4C1111Ca222 — C1112C1222) + (Chi22 + Cia12) > > 0

3CT12

and — 2(Ch122 + C1212) < VA < Chz12 — 2C1120

and 2A%2 > 27 (01111012222 + 01211202222) — 9(Cr122 + C1212) (8C1111C2292 + C1112C1222)

\ +2(Ch122 + Ci212) 3] } /

What if n > 27

——resort to the numerical approach

(Base on semi-definite programming (SDP)).

21



Numerical approach




The “MC” approach I

Randomly search ERs

i~/

23



The “MC” approach I

Randomly search ERs

‘- Start with a random point x

<.A
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The “MC” approach I

Randomly search ERs
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" Find the (k-)face F(x)

“‘
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The “MC” approach I

w‘

W

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Take a random straight-line in F(x)
that crosses x. Find its intersection

with the boundary of the cone (this is
a SDP).
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The “MC” approach I

<.A

" % 80

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Take a random straight-line in F(x)
that crosses x. Find its intersection

with the boundary of the cone (this is
a SDP).

Take x to be the intersection point and
iterate, if F(x) is not dimension 1
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‘.(

" % 80
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The “MC” approach I

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Take a random straight-line in F(x)
that crosses x. Find its intersection

with the boundary of the cone (this is
a SDP).

Take x to be the intersection point and
iterate, if F(x) is not dimension 1

" 4 4 a0

If F(x) is dimension 1, An ER is found.

23



The SDP approach I

The semi-definite programming (SDP) approach:

— Given a M

min Q- M
subject to Q € spectrahedron

If the minimum is not negative, then M is allowed by positivity.

Advantage 1. Solvable within polynomial complexity.

(in contrast to elastic approach, which is NP-hard.)

2. QGuarantee bounds are accurate

24






EFT operators:

Q) (GG ) (G GPP7) Q) | gABECDE(GA By (GS,GPeo)
ng (GﬁxyéAuy)(Gfaéde) (Ciz dABEdCDE(GﬁyéB”V)(GgaéDpa)
Q4 (G4, GP)(G4,GPro)

@) A F B A SE Plus a (D6)? term: fabeav qbpen
Qi (G, GPH) (G GPP) B e

—

n-C >0 — ngiven by

0,0,0,1,0,0,0]  [0,0,6,3,7,2,0] [24,0,12,21,15,14,0]  [0,0,96, 24, 64, 40, —81]
0,0,1,1,1,0,0]  [8,6,1,6,0,2,0] [24,32,24,4,8,0,-27]  [40,32,80,4,0,0, —189]
2,0,1,0,0,0,0]  [0,6,3,12,5,0,0] [48,36,21,27,25,0,0]  [0,0,24, 120,40, 104, —81]
0,2,0,1,0,0,0]  [8,6,1,12,0,0,0] 32,40,4,80,0,0,-27]  [0,0,120,24,104, 40, —81]
[0,0,3,0,2,0,0]  [0.6,6.,9.,10,4,0] [0,48,0,48,0,40, —81]  [96, 0,144, 24, 64, 40, —81]
0,0,0,3,0,2,0]  [0,12,0,14,0,0,—9]  [24,0,36,24,16,40, —81] [48,0,96,24, 0, 40, —243]
1,1,2,2,0,0,0]  [0,0,8,8,0,8,—27] 0,0, 48,24, 32,40, —81]  [0,192,168, 96, 112, 120, —405]
6,0,3,0,2,0,0]  [12,0,14,0,0,0,—27] [0,0,24,48,16,56,—81]  [168, 480, 168, 156,56, 160, —729]
[4,2,2,1,2,0,0]  [6,8,12,1,0,0,—27]  [88,32,56,4,40,0,—27]  [264,384, 156, 168, 16,200, —729]
0,0,4,0,0,0,—9] [8,16,4,8,0,8,—27]  [96,42,27,84,25,0,0]  [288,384,216, 168,0, 200, —891]
6,0,6,0,5,0,0] [0,24,0,12,0,8,—27]  [96,66,42,39,50,4,0]  [480, 384, 480, 168, 160, 200, —729]
0,0,3,6,5,4,0]  [8,22,1,14,0,10,—27] [120,42,39,42,40,14,0] [336, 768,672, 216,0, 200, —2187]

We can prove only a few of them can obtained by elastic 26



EFT operators:

Q4! (GG (GER,GPr) Q) | gABEACDB(GA GBI (G, GP#)

Q(Z) (GﬁyéAW)(GfgéBm) Qgﬁ dABEdC’DE(GﬁyéBuu)(GgaéDpa)

Q4! (G, GP*)(G1,GP*) . O

=~ ~ us a term: fab Wal,
ng (GﬁyGBMV)(G})AUGBPU) ( ) fﬁl LGaI‘ G PGCP:
7-C>0 — ngiven by 7D polyhedral cone with 48 facets!

[0,0,0,1,0,0,0]  [0,0,6,3,7,2,0] 24,0,12,21,15,14, 0] [0,0,96, 24, 64, 40, —81]
[0,0,1,1,1,0,0]  [8,6,1,6,0,2,0] 24,32,24,4,8,0,—27]  [40,32,80,4,0,0, —189]

[ [

[ [
[2,0,1,0,0,0,0]  [0,6,3,12,5,0,0] 48,36,21,27,25,0,0]  [0,0,24,120,40,104, —81]
(0,2.0,1,0,0,0] [8,6,1,12,0,0,0] 32,40,4,80,0,0,-27]  [0,0,120,24,104, 40, —81]
[0,0.3,0,2,0,0]  [0.6,6,9,10,4,0] [0,48,0,48,0,40, —81]  [96,0, 144,24, 64, 40, —81]
[0,0.0,3,0,2,0]  [0,12,0,14,0,0,—9]  [24,0.36,24,16,40, —81] [48,0,96. 24,0, 40, —243]
[1,1,2,2,0,0,0]  [0,0,8,8,0,8, —27] 0,0, 48,24, 32,40, —81]  [0,192,168, 96, 112, 120, —405]
[6.0,3,0,2,0,0]  [12,0,14,0,0,0,—27]  [0,0,24,48,16,56, —81]  [168, 480, 168, 156, 56, 160, —729]
[4,2.2,1,2,0,0]  [6,8,12,1,0,0,—27]  [88,32,56,4,40,0,—27]  [264,384, 156, 168, 16, 200, —729)
[0,0,4,0,0,0,—9] [8,16,4,8,0,8,—27]  [96,42,27,84,25,0,0]  [288,384, 216, 168,0, 200, —891]
[6,0.6,0,5,0,0] [0,24,0,12,0,8,—27]  [96,66,42,39,50,4,0]  [480, 384, 480, 168, 160, 200, —729]
0,0,3,6,5,4,0]  [8,22,1,14,0,10,—27] [120,42,39,42,40,14,0]  [336, 768,672, 216, 0, 200, —2187]

We can prove only a few of them can obtained by elastic 26



Example: SM flavor sector . i, J, kL =ep, g, Tp

o SM flavor sector (n=3 fields): [2004.02885, Remmen & Rodd]

4-fermion operator in dim-8&:
Elastic: from elastic scattering

_ r £

Oijkg = au(fﬁ’,,fj)a”(fk’}/ fl) Exact: from SDP approach

i 0.14f
-G1313 - | [
:83333: - L 0.12F
G - +
—C13a33 |  — O 0.10¢
—Ca323 - [
gEs - — i = 0.08f
_§$§§§ : - . Elastic T S _
Eg%%g_ — — Exact | ' 0.06¢ .
=G1223 - 0.04 Elastic1
I s S e Center _|_® ] -
:C;ggi o W 0.02: Exact
ggﬁﬁg I . 0.00E. . . . ]
Sl e — -0.04 -0.02 0.00 0.02

-0.1 0.0 0.1 0.2 0.3 Ci112

SDP always give stronger bounds
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Example: Spin-2 EFT I

o dRGT massive gravity (n=5) —— (c3, d5):
[PRL.106(2011) 231101, C. de Rham, et, al]

Elastic: elastic approach(superposed)
[JHEP 04 (2016) 002. C. Cheung and G. Remmen]

~0.112
-0.114}
«» Exact: SDP approach:
-0.116}
9]
-
-0.118} . improves slightly the minimum
aslic
~0.120} Exact value of d5.
~0.122

-0.01 0 0.01 0.02
c3
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_Summary |

 Positive structures arise at the dim-8 level in EF'T coefficient space,
as a consequence of axiomatic QFT principles.

 Realistic problems often involve multi-field EFTs, in which a
convex geometric perspective helps to understand these
structures.

* We convert the problem of finding bounds to a geometric problem:
finding the ERs of a spectrahedron.

— For small n, can be solved analytically.

— For large n, can be solved as a semi-definite programming
problem.

 Improved some previous results, and gave some new results.
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base on 2101.01191 with C. Yang, H. Xu, C. Zhang, and S.-Y. Zhou
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Non elastic bounds for n=3 .

Qex

|
—_ O OO OO O O -
— O = O oONDNO
O — = = = O Wb O
— =N O N O OO
—_—O = O = O =0 O
—_ === O === O
N = W=D = OO
—_ = == O === O
Qo = DN = = =N

Which can be apply in SM flavor sector (n=3 fields)

This is a rank-4 matrix, so it cannot be written as
uvu*v* form, which is at most rank-2 by definition
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ERs for without Z2 symmetry .

Hilbert 16th problem: if the variables are less than 3, then the
quartic polynomial can be always written as a sum of squares.

_ 2 rw4+sw . . 2 rw4sw T
flrys,w) = [w? ™ rs| . D |w® B ) P
w Tsw Tw Sw
9 2 2.2 .2 2
= S lot v sl S, e[
S'LU3 TS2'LU TS'LUZ 82'1,02_
_ T Ax4 ~ @ nt
[X—Zamaxa €S+ ﬂS ] [l‘a:[m}x .’L‘g{ $§I Qj‘i:}
§4x4  gn 01 0 07 |
1 ¢ 1 0 O 0 gn T@jkl — T@lkj — Tlcjzl — szlk
X = _Mscalar + d
2 00 0 -l <§>n4 gkl _ qrilkj __qrkgil _ ilk
00 —1 0 _

(4C1111 C11552%Ch112 Cing
C1155%44C5222 Cr222 Chazz S 0
Ci112 Cha2a Cio12 ClizAd 7
I Ciii2 Cha2o2 Oiﬁ%dcmlg_
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ERs for without Z2 symmetry .

-401111 C{ﬁ%d (1112 01112_ Sylvester’s criterion
C1135294C5222 Ciz22 Crazz > () ‘ The determinants of all
Ci112  Ch222 Ciz2i2 C i 1_23‘1 . principal minors are
01112 01222 Cil_Q%d01212 larger than zero

|401111| >0 C1111 = 0

401111 C'1112

4C1111C1212 — C%19 > 0
Cii1z Ciaie 1111%~1212 1112 =

>0

01122 + 2d 402222 01222 Z 0

and {011120112201222 — C11110% 535 — CF115C2292 + Cro12 (—Chigg +4Cl11102222) >0
Cii12 C1999 Clo1o

$ 33

(
or [A =3 (4C111Ca202 — Ci112C1222) + (Chiza + Chrz12) 2 = 0

3C?
| and 4—0“12 —2(C122 + Ch212) < VA < Ciara — 2C1122
1111

and 242 > 27 (C1111C g5 + CF112C2222) — 9 (Crazz + Crz12) (8C1111Cazzz + Cr1n2Chan) + 2 (Crize + Ciziz) 3] }
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At least for simple cases, the ext(G) can be found by inspection.

E.g. simplest case:

n=2, with some Z2 symmetry, e=f=0, T -> ai B0 0
b e 0 0
00 .d: b
There are two kinds of ERs 00 6w
° : a=b=c=0, d=1
o : ac=b?, d=|b|, a,c>0 A 3D cross section
of the 4D cone (a,b,c,d)
A
S
iN|
Ch Cy 00 ﬂ
M’Lj kl _ CQ 03 0 0 “;J€=
0 0= Cy Cs !%
0 (T ) B

01,03,04 2 0 and \ 0103 2 :tQCQ = C4
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Infer UV model from EFT measurements

: Given the measured values of the operator coefficients around the electroweak scale,
to what extend can we possibly determine the nature of the new physics beyond the SM?

see also

Many BSM models

SM +
particle 2

SM +
particle 1

LLess UV DoFs

Less UV DoFs

SM +

SM + 2 :
particle 4

S!chI+ : particles
particie (3&4)




