Positivity in Multi-Field EFTs

Xu Li (黎栩)

Institute of High Energy Physics

Apr. 16 Higgs and Effective Field Theory - HEFT 2021
base on 2101.01191 with C. Yang, H. Xu, C. Zhang, and S.-Y. Zhou

Motivation: Positivity Bounds

All possible
Ultraviolet(UV) physics

EFT: $\quad \mathcal{L}_{E F T}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}}+\sum_{i} \frac{C_{i}^{(8)} O_{i}^{(8)}}{\Lambda^{4}}+\cdots$

Motivation: Positivity Bounds

All possible Ultraviolet(UV) physics

Motivation: Positivity Bounds

All possible
Ultraviolet(UV) physics

Motivation: Positivity Bounds

If UV physics satisfied causality, unitarity, Lorentz symmetry, crossing symmetry...

$$
\left\{\begin{array}{c}
\sum_{i} a_{i} C_{i} \geq 0 \\
\vdots
\end{array}\right.
$$

Motivation: Positivity Bounds

If UV physics satisfied causality, unitarity,
Lorentz symmetry, crossing symmetry...

$$
\left\{\begin{array}{c}
\sum_{i} a_{i} C_{i} \geq 0 \\
\vdots
\end{array}\right.
$$

Positivity bounds is a set of inequalities that
constrain Wilson Coefficients

Motivation: Positivity Bounds

If UV physics satisfied causality, unitarity, Lorentz symmetry, crossing symmetry...

$$
\left\{\begin{array}{c}
\sum_{i} a_{i} C_{i} \geq 0 \\
\vdots
\end{array}\right.
$$

Positivity bounds is a set of inequalities that constrain Wilson Coefficients

Relevant literature: [N. Arkani-Hamed, et al. 2012.15849], [B. Bellazzini. et al.
2011.00037], [A. Tolley et al., 2011.02400], [T. Trott, 2011.10058],
[S. C-Huot. et al. 2011.02957] See talk by Trott, Tolley ...

Motivation: Positivity Bounds

$$
\mathcal{L}_{E F T}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}}+\sum_{i} \frac{C_{i}^{(8)} O_{i}^{(8)}}{\Lambda^{4}}+\cdots
$$

2-to-2 forward amplitude (spin-0): $\quad A(s, 0)=c_{0}+c_{2} s^{2}+c_{4} s^{4}+\cdots$
Dim- 8 have leading energy dependence only, s2.

To extract dim-8 effect, we consider:

$$
\frac{d^{2}}{d s^{2}} A(s, 0) \quad \text { See talk by Trott }
$$

EFTs can involve more than one particles. (e.g. SMEFT operators;
or those involving multiplet particles, chiral PT, spin-2 EFTs, ...)

1

2

A Scalar EFT

Numerical approach

4
3
Framework

Examples

Framework

Positivity Bounds

For 2-to-2 forward scattering $(t \approx 0): \quad f=\frac{1}{2 \pi i} \oint d s \frac{A(s, 0)}{\left(s-\mu^{2}\right)^{3}}$

$$
\frac{d^{2}}{d s^{2}} M_{i j \rightarrow k l}\left(s=\frac{1}{2} M^{2}, t=0\right)
$$

$$
M^{2}=m_{i}^{2}+m_{j}^{2}+m_{k}^{2}+m_{l}^{2}
$$

$$
\begin{aligned}
& =\sum_{X} \int_{(\epsilon \Lambda)^{2}}^{\infty} d s \frac{M_{i j \rightarrow X}\left(s, \Pi_{X}\right) M_{k l \rightarrow X}^{*}\left(s, \Pi_{X}\right)}{\pi\left(s-\frac{1}{2} M^{2}\right)^{3}}+(j \leftrightarrow l) \\
& =\text { BSM states } \in \in \leq 1
\end{aligned}
$$

Master formula

Define: $\quad M^{i j k l} \equiv \frac{d^{2}}{d s^{2}} M_{i j \rightarrow k l}\left(\frac{1}{2} M^{2}\right) \quad$ Take massless limit

$$
m_{X}^{i j} \equiv M_{i j \rightarrow X}\left(\mu, \Pi_{X}\right)
$$

$$
M^{i j k l}=\sum_{X} \int_{(\epsilon \Lambda)^{2}}^{\infty} \frac{d \mu}{\pi} \frac{m_{X}^{i j} m_{X}^{k l}}{\left(\mu-M^{2} / 2\right)^{3}}+(j \leftrightarrow l)
$$

Forward scattering amp, at low
Amplitude of $\mathrm{SM} \rightarrow X$ energy (calculable in EFT), represented by Wilson coef.

Elastic Positivity Bounds

$$
M^{i j k l}=\sum_{X} \int_{(\epsilon \Lambda)^{2}}^{\infty} \frac{d \mu}{\pi} \frac{m_{X}{ }^{i j} m_{X}{ }^{k l}}{\left(\mu-M^{2} / 2\right)^{3}}+(j \leftrightarrow l)
$$

Elastic: When $i=k, j=l(i j \rightarrow i j), \quad$ RHS $\rightarrow \operatorname{Tr}\left(m m^{T}\right) \geq 0$

$$
M^{i j i j} \geq 0
$$

For more general:

Superposition elastic: $M(|u\rangle+|v\rangle \rightarrow|u\rangle+|v\rangle)=u^{i} v^{j} u^{k *} v^{l *} \cdot M^{i j k l}$

$$
\begin{gathered}
\qquad \text { with }|u\rangle=u^{i}|i\rangle,|v\rangle=v^{j}|j\rangle \\
\text { RHS } \rightarrow\left|u \cdot m_{X} \cdot v\right|^{2}+\left|u \cdot m_{X} \cdot v^{*}\right|^{2} \geq 0 \\
\longrightarrow u^{i} v^{j} u^{k *} v^{l *} M^{i j k l} \geq 0
\end{gathered}
$$

Elastic Positivity Bounds

$$
M^{i j k l}=\sum_{X} \int_{(\epsilon \Lambda)^{2}}^{\infty} \frac{d \mu}{\pi} \frac{m_{X}{ }^{i j} m_{X}{ }^{k l}}{\left(\mu-M^{2} / 2\right)^{3}}+(j \leftrightarrow l)
$$

Elastic: When $i=k, j=l(i j \rightarrow i j), \quad$ RHS $\rightarrow \operatorname{Tr}\left(m m^{T}\right) \geq 0$

$$
M^{i j i j} \geq 0
$$

For more general:
Superposition elastic: $M(|u\rangle+|v\rangle \rightarrow|u\rangle+|v\rangle)=u^{i} v^{j} u^{k *} v^{l *} \cdot M^{i j k l}$

$$
\begin{aligned}
& \text { with }|u\rangle=u^{i}|i\rangle,|v\rangle=v^{j}|j\rangle \\
& \text { RHS } \rightarrow\left|u \cdot m_{X} \cdot v\right|^{2}+\left|u \cdot m_{X} \cdot v^{*}\right|^{2} \geq 0 \\
& \longrightarrow u^{i} v^{j} u^{k *} v^{l *} M^{i j k l} \geq 0
\end{aligned}
$$

However, the elastic bounds are not the optimal !

Convex cone nature

$$
M^{i j k l}=\sum_{X} \int_{(\epsilon \Lambda)^{2}}^{\infty} \frac{d \mu}{\pi} \frac{m_{X}{ }^{i j} m_{X}{ }^{k l}}{\left(\mu-M^{2} / 2\right)^{3}}+(j \leftrightarrow l)
$$

$M^{i j k l}$ is positive linear combinations of $m_{X}{ }^{i j} m_{X}{ }^{k l}+m_{X}{ }^{i l} m_{X}{ }^{k j}$
\longrightarrow 1. $M^{i j k l}$ is a convex cone

2. X couple to i and j, X belong to the direct product space of i and j

$$
\mathbf{r}_{i} \otimes \mathbf{r}_{j}=\mathbf{X}_{1} \oplus \mathbf{X}_{2} \oplus \ldots
$$

$$
\begin{aligned}
& M^{i j k l}=\sum_{X} \int_{(\epsilon \Lambda)^{2}}^{\infty} \frac{d \mu}{\pi} \frac{m_{X}^{i j} m_{X}{ }^{k l}}{\left(\mu-M^{2} / 2\right)^{3}}+(j \leftrightarrow l) \\
& M^{i j k l}=\int_{(\epsilon \Lambda)^{2}}^{\infty} d \mu \sum_{X i n \mathbf{X}_{r}} \frac{\left.|\langle X| \mathcal{M}| \mathbf{X}_{r}\right\rangle\left.\right|^{2}}{\pi\left(\mu-M^{2} / 2\right)^{3}} P_{r}^{i(j|k| l)} \quad \begin{array}{l}
M\left(i j \rightarrow X^{\alpha}\right) \\
\langle X| \mathcal{M}\left|\mathbf{X}_{r}\right\rangle C_{i, j}^{r, \alpha}
\end{array}
\end{aligned}
$$

Projector: $P_{r}^{i(j|k| l \mid} \equiv \Sigma_{\alpha} C_{i, j}^{r, \alpha}\left(C_{k, l}^{r, \alpha}\right)^{*}$
$M^{i j k l}$ is a convex cone: cone $\left(\left\{P_{r}^{i(j|k| l)}\right\}\right)$

EFT with symmetry

4-Higgs operators $\quad 2 \otimes 2=1 \oplus 3$

Triangular cone

$$
\begin{array}{ll}
O_{S, 0}=\left[\left(D_{\mu} \Phi\right)^{\dagger} D_{\nu} \Phi\right] \times\left[\left(D^{\mu} \Phi\right)^{\dagger} D^{\nu} \Phi\right], & F_{S, 0} \geq 0 \\
O_{S, 1}=\left[\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi\right] \times\left[\left(D_{\nu} \Phi\right)^{\dagger} D^{\nu} \Phi\right], & F_{S, 0}+F_{S, 2} \geq 0 \\
O_{S, 2}=\left[\left(D_{\mu} \Phi\right)^{\dagger} D_{\nu} \Phi\right] \times\left[\left(D^{\nu} \Phi\right)^{\dagger} D^{\mu} \Phi\right] . & F_{S, 0}+F_{S, 1}+F_{S, 2} \geq 0
\end{array}
$$

15

4-W operators $\quad 3 \otimes 3=1 \oplus 3 \oplus 5$

$$
\begin{aligned}
& O_{T, 0}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \operatorname{Tr}\left[\hat{W}_{\alpha \beta} \hat{W}^{\alpha \beta}\right] \\
& O_{T, 2}=\operatorname{Tr}\left[\hat{W}_{\alpha \mu} \hat{W}^{\mu \beta}\right] \operatorname{Tr}\left[\hat{W}_{\beta \nu} \hat{W}^{\nu \alpha}\right] \\
& O_{T, 1}=\operatorname{Tr}\left[\hat{W}_{\alpha \nu} \hat{W}^{\mu \beta}\right] \operatorname{Tr}\left[\hat{W}_{\mu \beta} \hat{W}^{\alpha \nu}\right] \\
& O_{T, 10}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \tilde{W}^{\mu \nu}\right] \operatorname{Tr}\left[\hat{W}_{\alpha \beta} \tilde{W}^{\alpha \beta}\right]
\end{aligned}
$$

$$
\pm 5 \quad \begin{aligned}
& \oplus 5 \\
& F_{T, 2} \geq 0 \\
& 4 F_{T, 1}+F_{T, 2} \geq 0 \\
& F_{T, 2}+8 F_{T, 10} \geq 0 \\
& 8 F_{T, 0}+4 F_{T, 1}+3 F_{T, 2} \geq 0 \\
& 12 F_{T, 0}+4 F_{T, 1}+5 F_{T, 2}+4 F_{T, 10} \geq 0 \\
& 4 F_{T, 0}+4 F_{T, 1}+3 F_{T, 2}+12 F_{T, 10} \geq 0
\end{aligned}
$$

6-facet 4D cone

4D "circular cone"

$$
\begin{array}{ll}
O_{1} & =\partial^{\alpha}\left(\bar{e} \gamma^{\mu} e\right) \partial_{\alpha}\left(\bar{e} \gamma_{\mu} e\right), \\
O_{2} & =\partial^{\alpha}\left(\bar{e} \gamma^{\mu} e\right) \partial_{\alpha}\left(\bar{l} \gamma_{\mu} l\right), \\
O_{3} & =D^{\alpha}(\bar{e} l) D_{\alpha}(\bar{l} e), \\
O_{4} & =\partial^{\alpha}\left(\bar{l} \gamma^{\mu} l\right) \partial_{\alpha}\left(\bar{l} \gamma_{\mu} l\right),
\end{array} \quad \begin{aligned}
& C_{1} \leq 0, C_{3} \geq 0, C_{4} \leq 0 \\
& 2 \sqrt{C_{1} C_{4}} \geq C_{2} \\
& 2 \sqrt{C_{1} C_{4}} \geq-\left(C_{2}+C_{3}\right)
\end{aligned}
$$

4-electron operators

EFT with symmetry

4-Higgs operators $\quad 2 \otimes 2=1 \oplus 3$

$$
\begin{aligned}
O_{S, 0} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} D_{\nu} \Phi\right] \times\left[\left(D^{\mu} \Phi\right)^{\dagger} D^{\nu} \Phi\right], \\
O_{S, 1} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi\right] \times\left[\left(D_{\nu} \Phi\right)^{\dagger} D^{\nu} \Phi\right], \\
O_{S, 2} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} D_{\nu} \Phi\right] \times\left[\left(D^{\nu} \Phi\right)^{\dagger} D^{\mu} \Phi\right] .
\end{aligned}
$$

Triangular cone

$F_{S, 0}+F_{S, 2} \geq 0$,
$F_{S, 0}+F_{S, 1}+F_{S, 2} \geq 0$.

$$
F_{S, 0} \geq 0,
$$

$$
F_{S, 0}+F_{S, 2} \geq 0,
$$

$$
F_{S, 0}+F_{S, 1}+F_{S, 2} \geq 0
$$

4-W operators $\quad 3 \otimes \mathbf{3}=\mathbf{1} \oplus \mathbf{3} \oplus \mathbf{5}$

$$
\begin{aligned}
& O_{T, 0}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \operatorname{Tr}\left[\hat{W}_{\alpha \beta} \hat{W}^{\alpha \beta}\right] \\
& O_{T, 2}=\operatorname{Tr}\left[\hat{W}_{\alpha \mu} \hat{W}^{\mu \beta}\right] \operatorname{Tr}\left[\hat{W}_{\beta \nu} \hat{W}^{\nu \alpha}\right] \\
& O_{T, 1}=\operatorname{Tr}\left[\hat{W}_{\alpha \nu} \hat{W}^{\mu \beta}\right] \operatorname{Tr}\left[\hat{W}_{\mu \beta} \hat{W}^{\alpha \nu}\right] \\
& O_{T, 10}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \tilde{W}^{\mu \nu}\right] \operatorname{Tr}\left[\hat{W}_{\alpha \beta} \tilde{W}^{\alpha \beta}\right]
\end{aligned}
$$

4-electron operators

$$
\begin{aligned}
& O_{1}=\partial^{\alpha}\left(\bar{e} \gamma^{\mu} e\right) \partial_{\alpha}\left(\bar{e} \gamma_{\mu} e\right), \\
& O_{2}=\partial^{\alpha}\left(\bar{e} \gamma^{\mu} e\right) \partial_{\alpha}\left(\bar{l} \gamma_{\mu} l\right), \\
& O_{3}=D^{\alpha}(\bar{e} l) D_{\alpha}(\bar{l} e), \\
& O_{4}=\partial^{\alpha}\left(\bar{l} \gamma^{\mu} l\right) \partial_{\alpha}\left(\bar{l} \gamma_{\mu} l\right),
\end{aligned}
$$

$$
\begin{aligned}
& F_{T, 2} \geq 0, \\
& 4 F_{T, 1}+F_{T, 2} \geq 0, \\
& F_{T, 2}+8 F_{T, 10} \geq 0 \\
& 8 F_{T, 0}+4 F_{T, 1}+3 F_{T, 2} \geq 0, \\
& 12 F_{T, 0}+4 F_{T, 1}+5 F_{T, 2}+4 F_{T, 10} \geq 0, \\
& 4 F_{T, 0}+4 F_{T, 1}+3 F_{T, 2}+12 F_{T, 10} \geq 0 .
\end{aligned}
$$

Beyond elastic positivity!

6-facet 4D cone

4D "circular cone"
$C_{1} \leq 0, C_{3} \geq 0, C_{4} \leq 0$,
$2 \sqrt{C_{1} C_{4}} \geq C_{2}$
$2 \sqrt{C_{1} C_{4}} \geq-\left(C_{2}+C_{3}\right)$

EFT without symmetry?

The approach is valid so far, however...
Q: What if there is no symmetries? How to characterize bounds?

Solution : use the dual property of cone

Dual cone is defined as

$$
\mathbf{C}^{n^{4^{*}}}=\left\{\mathcal{Q} \mid \mathcal{Q} \cdot \mathcal{M} \geq 0, \forall \mathcal{M} \in \mathbf{C}^{n^{4}}\right\}
$$

EFT without symmetry?

The approach is valid so far, however...
Q: What if there is no symmetries? How to characterize bounds?

Solution : use the dual property of cone

Dual cone is defined as

$$
\mathbf{C}^{n^{4^{*}}}=\left\{\mathcal{Q} \mid \mathcal{Q} \cdot \mathcal{M} \geq 0, \forall \mathcal{M} \in \mathbf{C}^{n^{4}}\right\}
$$

1
C^{*} is a cone.

EFT without symmetry?

The approach is valid so far, however...
Q: What if there is no symmetries? How to characterize bounds?

Solution : use the dual property of cone

Dual cone is defined as

$$
\mathbf{C}^{n^{4^{*}}}=\left\{\mathcal{Q} \mathcal{Q} \cdot \mathcal{M} \geq 0, \forall \mathcal{M} \in \mathbf{C}^{n^{4}}\right\}
$$

C^{*} is a cone.
$2 \mathrm{C}^{*}$ is a set that contain all possible linear bounds

EF'T without symmetry?

The approach is valid so far, however...
Q: What if there is no symmetries? How to characterize bounds?

Solution : use the dual property of cone

Dual cone is defined as

$$
\mathbf{C}^{n^{4^{*}}}=\left\{\mathcal{Q} \mid \mathcal{Q} \cdot \mathcal{M} \geq 0, \forall \mathcal{M} \in \mathbf{C}^{n^{4}}\right\}
$$

C^{*} is a cone.

C* is a set that contain all possible linear bounds

Hyperplane separation theorem $\rightarrow\left(\mathrm{C}^{*}\right)^{*}=\mathrm{C}$
__it is enough to carve out exactly the C
These properties make sure our bounds are complete

Dual cone

posi. bounds
 $=$ vectors in dual cone

Independent possible bounds

Extremal Rays of cone C*

- A convex cone is closed under additions and positive scalar multiplications
$\vec{n} \cdot \vec{C} \geq 0$
but if $\vec{n}=\sum_{i} a_{i} \vec{n}_{i}^{e x}$
then \vec{n} is not independent, because $a_{i} \geq 0, \vec{n}_{i}^{e x} \cdot \vec{C} \geq 0$

dual cone: C*

Dual cone

How to find the ERs in dual cone? ...
Index symmetries of $M^{i j k l}$

$$
\begin{array}{ll}
i \leftrightarrow k \text { or } j \leftrightarrow l \\
i \leftrightarrow j+k \leftrightarrow l
\end{array} \quad \longleftrightarrow \quad \text { Crossing symmetry: } s \leftrightarrow u
$$

Defined a subspace of $M: \mathcal{M} \in \overrightarrow{\mathbf{S}}^{n^{4}}\left(\mathcal{M}^{i j k l}=\mathcal{M}^{j i l k}=\mathcal{M}^{k l i j}=\mathcal{M}^{i l k j}\right)$

$$
\mathcal{Q} \in \overrightarrow{\mathbf{S}}^{n^{4}} \quad \begin{aligned}
& \text { cross-antisymmetric } \\
& \text { one will vanish }
\end{aligned} \mathcal{Q} \cdot \mathcal{M}
$$

$\mathcal{Q} \cdot \mathcal{M} \geq 0$
$\Rightarrow \mathcal{Q}^{i j k l} \sum_{\alpha}\left(m_{\alpha}^{i j} m_{\alpha}^{k l}+m_{\alpha}^{i l} m_{\alpha}^{k j}\right)=2 \sum_{\alpha} m_{\alpha}^{i j} \mathcal{Q}^{i j k l} m_{\alpha}^{k l}$

$$
\Rightarrow \mathcal{Q}^{(i j),(k l)} \succcurlyeq 0 \Rightarrow \mathcal{Q} \in \mathbf{S}_{+}^{n^{2} \times n^{2}} \Rightarrow \mathbf{Q}^{n^{4}}=\mathbf{S}_{+}^{n^{2} \times n^{2}} \cap \overrightarrow{\mathbf{S}}^{n^{4}}
$$

Dual cone---Spectrahedron

$$
\begin{array}{r}
\mathrm{S}_{+}^{n^{2} \times n^{2}}: \quad \text { the set of } \mathrm{n} \times \mathrm{n} \text { positive semi-definite } \\
\text { matrices forms a convex cone }
\end{array}
$$

Dual cone---Spectrahedron

Dual cone---Spectrahedron

Spectrahedron: the intersection of a cone with a linear (affine) subspace
is well-defined in math

Dual cone---Spectrahedron

Spectrahedron: the intersection of a cone with a linear (affine) subspace
is well-defined in math

Spectrahedron

- Let $Q_{i}, i=0, \ldots, m$ be the basis matrices of the space

$$
Q(x)=Q_{0}+x_{i} Q_{i}
$$

- The spectrahedron: $\quad G=\{x \mid Q(x) \succcurlyeq 0\}$
question: whether a vector x is at a ER? \rightarrow iff the rank of B is $\mathrm{m}-1$ (or dimension of $\mathrm{F}(\mathrm{x})$ is 1)

$\left\{u_{i}\right\}$ be basis of $\operatorname{Null}(\mathrm{Q}(\mathrm{x}))$
Null(): space span by the independent null vectors
$\mathrm{F}(\mathrm{x})$ is the lowest unique face that contains x (the face is k-face)

$$
B=\left[\begin{array}{ccc}
\mathcal{Q}_{1} u_{1} & \cdots & \mathcal{Q}_{m} u_{1} \\
\vdots & \ddots & \vdots \\
\mathcal{Q}_{1} u_{k} & \cdots & \mathcal{Q}_{m} u_{k}
\end{array}\right]
$$

Spectrahedron

- Let $Q_{i}, i=0, \ldots, m$ be the basis matrices of the space

$$
Q(x)=Q_{0}+x_{i} Q_{i}
$$

- The spectrahedron: $\quad G=\{x \mid Q(x) \succcurlyeq 0\}$
question: whether a vector x is at a ER? \rightarrow iff the rank of B is m-1 (or dimension of $\mathrm{F}(\mathrm{x})$ is 1)

A Scalar EFT

General 2-scalar case

$$
\mathcal{L} \supset \frac{1}{\Lambda^{4}} C_{i j k l} O_{i j k l}, \quad O_{i j k l}=\partial_{\mu} \phi_{i} \partial^{\mu} \phi_{j} \partial_{\nu} \phi_{k} \partial^{\nu} \phi_{l}
$$

$$
\mathcal{M}_{\text {scalar }}=\begin{gathered}
i j=11 \\
12 \\
21
\end{gathered}\left[\begin{array}{cccc}
k l=11 & 22 & 12 & 21 \\
4 C_{1111} & C_{1122}^{\prime} & C_{1112} & C_{1112} \\
C_{1122}^{\prime} & 4 C_{2222} & C_{1222} & C_{1222} \\
C_{1112} & C_{1222} & C_{1212} & C_{1122} \\
C_{1112} & C_{1222} & C_{1122}^{\prime} & C_{1212}
\end{array}\right] \quad \mathbf{Q}^{2^{4}} \ni \mathcal{Q}=\left(\begin{array}{cccc}
a & b & e & e \\
b & c & f & f \\
e & f & d & b \\
e & f & b & d
\end{array}\right) \quad \begin{gathered}
a \geq 0, c \geq 0, \\
a c \geq b^{2}, d \geq|b|
\end{gathered}
$$

$$
\begin{aligned}
\left\{Q_{i, 1} \leq i \leq i \leq 6\right\}= & \left\{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\right. \\
& \left.\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\right\}
\end{aligned}
$$

$$
Q(\boldsymbol{x})=a Q_{1}+b Q_{2}+c Q_{3}+d Q_{4} \succcurlyeq 0
$$

Two kinds of ER: $Q_{\text {ex } 1}(r)=\left[\begin{array}{cccc}1 & r & 0 & 0 \\ r & r^{2} & 0 & 0 \\ 0 & 0 & |r| & r \\ 0 & 0 & r & |r|\end{array}\right], Q_{\text {ex } 2}^{12}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \begin{gathered}\text { Bounds: } \\ Q_{\text {ex }} \cdot \mathcal{M} \geq 0\end{gathered}$

Visualize the cones

3D "cross section" of 4D cones

Dual space (spectrahedron)
Amplitude space
$a \geq 0, c \geq 0$, $a c \geq b^{2}, d \geq|b|$

ERs $=$ posi. bounds

Bounds

$$
\begin{aligned}
& C_{1111} \geq 0, C_{2222} \geq 0, C_{1212} \geq 0 \\
& 4 \sqrt{C_{1111} C_{2222}} \geq \pm\left(2 C_{1122}+C_{1212}\right)-C_{1212}
\end{aligned}
$$

Visualize the cones

3D "cross section" of 4D cones

Dual space (spectrahedron)
Amplitude space

$$
\begin{gathered}
a \geq 0, c \geq 0, \\
a c \geq b^{2}, d \geq|b|
\end{gathered}
$$

ERs $=$ posi. bounds

Bounds

$$
\begin{aligned}
& C_{1111} \geq 0, C_{2222} \geq 0, C_{1212} \geq 0 \\
& 4 \sqrt{C_{1111} C_{2222}} \geq \pm\left(2 C_{1122}+C_{1212}\right)-C_{1212}
\end{aligned}
$$

Visualize the cones

3D "cross section" of 4D cones

Dual space (spectrahedron)

ERs $=$ posi. bounds

Bounds

Amplitude space

$$
\begin{aligned}
& C_{1111} \geq 0, C_{2222} \geq 0, C_{1212} \geq 0 \\
& 4 \sqrt{C_{1111} C_{2222}} \geq \pm\left(2 C_{1122}+C_{1212}\right)-C_{1212}
\end{aligned}
$$

Visualize the cones

3D "cross section" of 4D cones

Dual space (spectrahedron)

ERs $=$ posi. bounds

Amplitude space

Bounds

$$
\begin{aligned}
& C_{1111} \geq 0, C_{2222} \geq 0, C_{1212} \geq 0 \\
& 4 \sqrt{C_{1111} C_{2222}} \geq \pm\left(2 C_{1122}+C_{1212}\right)-C_{1212}
\end{aligned}
$$

General 2-scalar case

variable substitution

$$
Q_{\mathrm{ex}} \cdot \mathcal{M} \equiv\left[\begin{array}{lll}
w^{2} & \frac{r w+s w}{2} & r s
\end{array}\right] \cdot D \cdot\left[\begin{array}{lll}
w^{2} & \frac{r w+s w}{2} & r s
\end{array}\right]^{T} \quad D=\left[\begin{array}{lll}
2 C_{111} & C_{111} & C_{112} \\
C_{1112} & C_{112} \\
C_{1122} & C_{1222} & C_{12222} \\
C_{212}
\end{array}\right]
$$

$$
\geq 0 \quad \forall r, s, w \in \mathbb{R}, \quad \text { It is quartic }!
$$

$$
\begin{aligned}
& \mathcal{L} \supset \frac{1}{\Lambda^{4}} C_{i j k l} O_{i j k l}, \quad O_{i j k l}=\partial_{\mu} \phi_{i} \partial^{\mu} \phi_{j} \partial_{\nu} \phi_{k} \partial^{\nu} \phi_{l} \\
& \mathcal{M}_{\text {scalar }}=\left[\begin{array}{cccc}
4 C_{1111} & C_{1122}^{\prime} & C_{1112} & C_{1112} \\
C_{1122}^{\prime} & 4 C_{2222} & C_{1222} & C_{1222} \\
C_{1112} & C_{1222} & C_{1212} & C_{1122}^{\prime} \\
C_{1112} & C_{1222} & C_{1122}^{\prime} & C_{1212}
\end{array}\right] \quad \mathbf{Q}^{2^{4}} \ni \mathcal{Q}=\left(\begin{array}{cccc}
a & b & e & e \\
b & c & f & f \\
e & f & d & b \\
e & f & b & d
\end{array}\right) \\
& k l=1122 \quad 12 \quad 21 \\
& \text { ERs } Q_{\mathrm{ex}} \rightarrow\left[\begin{array}{cccc}
a^{2} & a b & a c & a c \\
a b & b^{2} & b c & b c \\
a c & b c & 2 c^{2}-a b & a b \\
a c & b c & a b & 2 c^{2}-a b
\end{array}\right]^{i j=11} \begin{array}{r}
\\
22 \\
12 \\
21
\end{array} \quad \text { With } c^{2} \geq a b
\end{aligned}
$$

Positivity bounds for general 2-scalar EFTs

Finally get bounds!

$$
\begin{aligned}
& C_{1111} \geq 0 \quad \text { and } \quad 4 C_{1111} C_{1212}-C_{1112}^{2} \geq 0 \\
& \text { and } \quad\left\{C_{1112} C_{1122} C_{1222}-C_{1111} C_{1222}^{2}-C_{1112}^{2} C_{2222}+C_{1212}\left(-C_{1122}^{2}+4 C_{1111} C_{2222}\right) \geq 0\right. \\
& \text { or } \quad\left[\Delta \equiv 3\left(4 C_{1111} C_{2222}-C_{1112} C_{1222}\right)+\left(C_{1122}+C_{1212}\right)^{2} \geq 0\right. \\
& \text { and } \quad \frac{3 C_{1112}^{2}}{4 C_{1111}}-2\left(C_{1122}+C_{1212}\right) \leq \sqrt{\Delta} \leq C_{1212}-2 C_{1122} \\
& \text { and } \quad 2 \Delta^{3 / 2} \geq 27\left(C_{1111} C_{1222}^{2}+C_{1112}^{2} C_{2222}\right)-9\left(C_{1122}+C_{1212}\right)\left(8 C_{1111} C_{2222}+C_{1112} C_{1222}\right) \\
& \left.\left.\quad+2\left(C_{1122}+C_{1212}\right)^{3}\right]\right\}
\end{aligned}
$$

What if $n>2$?

__resort to the numerical approach

(Base on semi-definite programming (SDP)).

Numerical approach

Randomly search ERs

Randomly search ERs

Start with a random point x

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Take a random straight-line in $\mathrm{F}(\mathrm{x})$ that crosses x. Find its intersection with the boundary of the cone (this is a SDP).

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Take a random straight-line in $\mathrm{F}(\mathrm{x})$ that crosses x. Find its intersection with the boundary of the cone (this is a SDP).

Take x to be the intersection point and iterate, if $F(x)$ is not dimension 1

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Take a random straight-line in $\mathrm{F}(\mathrm{x})$ that crosses x. Find its intersection with the boundary of the cone (this is a SDP).

Take x to be the intersection point and iterate, if $F(x)$ is not dimension 1

Randomly search ERs

Start with a random point x

Find the (k-)face F(x)

Take a random straight-line in $\mathrm{F}(\mathrm{x})$ that crosses x. Find its intersection with the boundary of the cone (this is a SDP).

Take x to be the intersection point and iterate, if $F(x)$ is not dimension 1

If $\mathrm{F}(\mathrm{x})$ is dimension $1, \mathrm{An} \mathrm{ER}$ is found.

The SDP approach

The semi-definite programming (SDP) approach:

$$
\begin{aligned}
& \min \mathcal{Q} \cdot \mathcal{M} \\
& \text { subject to } \quad \mathcal{Q} \in \text { spectrahedron a } M
\end{aligned}
$$

If the minimum is not negative, then M is allowed by positivity.

Advantage

1. Solvable within polynomial complexity. (in contrast to elastic approach, which is NP-hard.)
2. Guarantee bounds are accurate

Examples

4 -gluon case

EFT operators:

$Q_{G^{4}}^{(1)}$	$\left(G_{\mu \nu}^{A} G^{A \mu \nu}\right)\left(G_{\rho \sigma}^{B} G^{B \rho \sigma}\right)$		${ }^{D E}\left(G_{\mu \nu}^{A} G^{B \mu \nu}\right)\left(G_{\rho \sigma}^{C} G^{D \rho \sigma}\right)$
$Q_{G^{4}}^{(2)}$	$\left(G_{\mu \nu}^{A} \widetilde{G}^{A \mu \nu}\right)\left(G_{\rho \sigma}^{B} \widetilde{G}^{B \rho \sigma}\right)$	$\left.\widetilde{G}^{B \rho \sigma}\right) \quad Q_{G^{4}}^{(8)}$	${ }^{D E}\left(G_{\mu \nu}^{A} \widetilde{G}^{B \mu \nu}\right)\left(G_{\rho \sigma}^{C} \widetilde{G}^{D \rho \sigma}\right)$
$Q_{G^{4}}^{(3)}$	$\left(G_{\mu \nu}^{A} G^{B \mu \nu}\right)\left(G_{\rho \sigma}^{A} G^{B \rho \sigma}\right)$		
$Q_{G^{4}}^{(4)}$	$\left(G_{\mu \nu}^{A} \widetilde{G}^{B \mu \nu}\right)\left(G_{\rho \sigma}^{A} \widetilde{G}^{B \rho \sigma}\right)$		Plus a (D6) ${ }^{2}$ term: $f^{a b c} G_{\mu}^{a \nu} G_{\nu}^{b \rho} G_{\rho}^{c \mu}$
$\vec{n} \cdot \vec{C} \geq 0 \rightarrow$	n given by		
[$0,0,0,1,0,0,0$]	[$0,0,6,3,7,2,0]$	[24, 0, 12, 21, 15, 14, 0]	[$0,0,96,24,64,40,-81]$
[$0,0,1,1,1,0,0]$	[8,6,, , 6, 0, 2, 0]	[24, 32, 24, 4, 8, 0, -27]	[$40,32,80,4,0,0,-189]$
[2, 0, 1, 0, 0, 0, 0]	[$0,6,3,12,5,0,0]$	[$48,36,21,27,25,0,0]$	[$0,0,24,120,40,104,-81]$
[$0,2,0,1,0,0,0$]	[$8,6,1,12,0,0,0]$	[$32,40,4,80,0,0,-27]$	[$0,0,120,24,104,40,-81]$
[$0,0,3,0,2,0,0$]	[$0,6,6,9,10,4,0]$	[$0,48,0,48,0,40,-81]$	[96, 0, 144, 24, 64, 40, -81]
[$0,0,0,3,0,2,0$]	[$0,12,0,14,0,0,-9]$	[24, 0, 36, 24, 16, 40, -81]	[$48,0,96,24,0,40,-243]$
[1,1, 2, 2, 0, 0, 0]	[$0,0,8,8,0,8,-27]$	[$0,0,48,24,32,40,-81]$	[$0,192,168,96,112,120,-405]$
[$6,0,3,0,2,0,0]$	[12, 0, 14, 0, 0, 0, -27]	[$0,0,24,48,16,56,-81]$	[168, 480, 168, 156, 56, 160, -729]
[$4,2,2,1,2,0,0]$	[$6,8,12,1,0,0,-27]$	[88, 32, 56, 4, 40, 0, -27]	[264, 384, 156, 168, 16, 200, -729]
[$0,0,4,0,0,0,-9$]	[$8,16,4,8,0,8,-27]$	[96, 42, 27, 84, 25, 0, 0]	[288, 384, 216, 168, 0, 200, -891]
[$6,0,6,0,5,0,0$]	$[0,24,0,12,0,8,-27]$	[96, 66, 42, 39, 50, 4, 0]	[480, 384, 480, 168, 160, 200, -729]
[$0,0,3,6,5,4,0$]	[8, 22, 1, 14, 0, 10, -27]	[120, 42, 39, 42, 40, 14, 0]	[336, 768, 672, 216, 0, 200, -2187]

We can prove only a few of them can obtained by elastic

4 －gluon case

EFT operators：

$\begin{aligned} & Q_{G^{4}}^{(1)} \\ & Q_{G^{4}}^{(2)} \\ & Q_{G^{4}}^{(3)} \\ & Q_{G^{4}}^{(4)} \end{aligned}$	$\left(G_{\mu \nu}^{A} G^{A \mu \nu}\right)\left(G_{\rho}^{B}\right.$ $\left(G_{\mu \nu}^{A} \widetilde{G}^{A \mu \nu}\right)\left(G_{\rho \rho}^{B}\right.$ $\left(G_{\mu \nu}^{A} G^{B \mu \nu}\right)\left(G_{\rho}^{A}\right.$ $\left(G_{\mu \nu}^{A} \widetilde{G}^{B \mu \nu}\right)\left(G_{\rho}^{A}\right.$		
$\vec{n} \cdot \vec{C} \geq 0$	n given by	7 D polyh	al cone with 48 facets！
［ $0,0,0,1,0,0,0$ ］	［ $0,0,6,3,7,2,0]$	［24，0，12，21，15，14，0］	［ $0,0,96,24,64,40,-81]$
［ $0,0,1,1,1,0,0$ ］	［8，6，$, 6,6,0,2,0]$	［24，32，24，4，8，0，－27］	［ $40,32,80,4,0,0,-189]$
［2，0，1，0，0，0，0］	［ $0,6,3,12,5,0,0]$	［48，36，21，27，25，0，0］	［ $0,0,24,120,40,104,-81]$
［ $0,2,0,1,0,0,0]$	［8，6，1，12，0，0，0］	［32，40，4，80，0，0，－27］	［ $0,0,120,24,104,40,-81]$
［ $0,0,3,0,2,0,0$ ］	［ $0,6,6,9,10,4,0]$	［ $0,48,0,48,0,40,-81]$	［ $96,0,144,24,64,40,-81]$
［ $0,0,0,3,0,2,0$ ］	［ $0,12,0,14,0,0,-9]$	［24，0，36，24，16，40，－81］	［ $48,0,96,24,0,40,-243]$
［ $1,1,2,2,0,0,0$ ］	［ $0,0,8,8,0,8,-27]$	［ $0,0,48,24,32,40,-81]$	［0，192，168，96，112，120，－405］
［ $6,0,3,0,2,0,0$ ］	［ $12,0,14,0,0,0,-27]$	［ $0,0,24,48,16,56,-81]$	［168，480，168，156，56，160，－729］
［ $4,2,2,1,2,0,0$ ］	$[6,8,12,1,0,0,-27]$	［88，32，56，4，40， $0,-27]$	［264，384，156，168，16，200，－729］
［ $0,0,4,0,0,0,-9$ ］	［ $8,16,4,8,0,8,-27]$	［96，42，27，84，25，0，0］	［288，384，216，168，0，200，－891］
［ $6,0,6,0,5,0,0$ ］	［ $0,24,0,12,0,8,-27]$	［ $96,66,42,39,50,4,0]$	［ $480,384,480,168,160,200,-729]$
［ $0,0,3,6,5,4,0$ ］	［ $8,22,1,14,0,10,-27]$	［ $120,42,39,42,40,14,0]$	［336，768，672，216，0，200，－2187］

We can prove only a few of them can obtained by elastic

Example: SM flavor sector

- SM flavor sector ($\mathrm{n}=3$ fields): [2004.02885, Remmen \& Rodd]

4-fermion operator in dim-8:

$$
O_{i j k l}=\partial_{\mu}\left(\bar{f}_{i} \gamma_{\nu} f_{j}\right) \partial^{\mu}\left(\bar{f}_{k} \gamma^{\nu} f_{l}\right)
$$

Elastic: from elastic scattering Exact: from SDP approach

SDP always give stronger bounds

Example: Spin-2 EFT

- dRGT massive gravity ($\mathrm{n}=5$) —— (c3, d5):
[PRL.106(2011) 231101, C. de Rham, et, al]

Elastic: elastic approach(superposed)
[JHEP 04 (2016) 002. C. Cheung and G. Remmen]

- Exact: SDP approach:
improves slightly the minimum value of d 5 .

Summary

- Positive structures arise at the dim-8 level in EFT coefficient space, as a consequence of axiomatic QFT principles.
- Realistic problems often involve multi-field EFTs, in which a convex geometric perspective helps to understand these structures.
- We convert the problem of finding bounds to a geometric problem: finding the ERs of a spectrahedron.
- For small n, can be solved analytically.
- For large n, can be solved as a semi-definite programming problem.
- Improved some previous results, and gave some new results.

Thank You!

Xu Li
 Institute of High Energy Physics

Apr. 14 Higgs and Effective Field Theory - HEFT 2021
base on 2101.01191 with C. Yang, H. Xu, C. Zhang, and S.-Y. Zhou

Backup

Non elastic bounds for $\mathrm{n}=3$

$$
\mathcal{Q}_{e x}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 2 & 2 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 2 & 3 & 0 & 1 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 2 & 0 & 1 & 2 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 1 & 1 & 3 & 1 & 2 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 3
\end{array}\right]
$$

Which can be apply in SM flavor sector ($\mathrm{n}=3$ fields)
This is a rank- 4 matrix, so it cannot be written as $u v u^{*} v^{*}$ form, which is at most rank-2 by definition

ERs for without Z2 symmetry

Hilbert 16 th problem: if the variables are less than 3 , then the quartic polynomial can be always written as a sum of squares.

$$
\begin{aligned}
f(r, s, w) & \equiv\left[\begin{array}{lll}
w^{2} & \frac{r w+s w}{2} & r s
\end{array}\right] \cdot D \cdot\left[\begin{array}{lll}
w^{2} & \frac{r w+s w}{2} & r s
\end{array}\right]^{T} \\
& =\sum_{\alpha}\left(x_{\alpha} \cdot\left[\begin{array}{lll}
w^{2} & r s & r w
\end{array}\right]\right)^{2}=\sum_{i, j} X_{i j} W_{i j}
\end{aligned}
$$

$$
W=\left[\begin{array}{cccc}
w^{4} & r s w^{2} & r w^{3} & s w^{3} \\
r s w^{2} & r^{2} s^{2} & r^{2} s w & r r^{2} w \\
r w^{3} & r^{2} s w \\
s w^{2} w^{2} & r w^{2} & r s w^{2} w & r s w^{2} \\
s s^{2} w^{2}
\end{array}\right]
$$

$$
X=\sum_{\alpha} x_{\alpha} x_{\alpha}^{T} \in \mathbf{S}_{+}^{4 \times 4} \cap \overleftrightarrow{\mathbf{S}}^{n^{4}}
$$

$$
x_{\alpha}=\left[\begin{array}{llll}
x_{\alpha}^{1} & x_{\alpha}^{2} & x_{\alpha}^{3} & x_{\alpha}^{4}
\end{array}\right]
$$

$$
X=\frac{1}{2} \mathcal{M}_{\text {scalar }}^{\substack{\mathbf{S}_{+}^{4 \times 4} \cap \dot{\mathbf{S}}^{n^{4}}}}+d\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
\overrightarrow{\mathbf{S}}^{n^{4}} & \mathcal{T}^{i j k l}=\mathcal{T}^{i l k j}=\mathcal{T}^{k j i l}=\mathcal{T}^{j i l k} \\
\overleftrightarrow{\mathbf{S}}^{n^{4}} & \mathcal{T}^{i j k l}=\mathcal{T}^{i l k j}=\mathcal{T}^{k j i l}=\mathcal{T}^{j i l k}
\end{array}\right.
$$

$$
\left[\begin{array}{cccc}
4 C_{1111} & C_{1122}^{\prime+2 d} C_{1112} & C_{1112} \\
C_{1122}^{\prime} 2 d 4 C_{2222} & C_{1222} & C_{1222} \\
C_{1112} & C_{1222} & C_{1212} & C_{1122}^{\prime 2} \\
C_{1112} & C_{1222} & C_{1122}^{\prime-2 d} C_{1212}
\end{array}\right] d \succcurlyeq 0
$$

ERs for without Z2 symmetry

$\left[\begin{array}{cccc}4 C_{1111} & C_{1122}^{\prime} 2 d & C_{1112} & C_{1112} \\ C_{1122}^{\prime}+2 d & 4 C_{2222} & C_{1222} & C_{1222} \\ C_{1112} & C_{1222} & C_{1212} & C_{122}^{\prime}-2 \\ C_{1112} & C_{1222} & C_{1122}^{\prime}-2 d_{1212}\end{array}\right] \succcurlyeq 0$

Sylvester's criterion

$$
\left|4 C_{1111}\right| \geq 0
$$

$$
\left|\begin{array}{cc}
4 C_{1111} & C_{1112} \\
C_{1112} & C_{1212}
\end{array}\right| \geq 0
$$

$$
4 C_{1111} C_{1212}-C_{1112}^{2} \geq 0
$$

- At least for simple cases, the $\operatorname{ext}(\mathrm{G})$ can be found by inspection.
- E.g. simplest case: $\mathrm{n}=2$, with some Z 2 symmetry, $\mathrm{e}=\mathrm{f}=0, \mathrm{~T}->$
- There are two kinds of ERs

$$
\left(\begin{array}{llll}
a & b & 0 & 0 \\
b & c & 0 & 0 \\
0 & 0 & d & b \\
0 & 0 & b & d
\end{array}\right)
$$

- ER1: $a=b=c=0, d=1$
- ER2: $a c=b^{2}, d=|b|, a, c>0$

A 3D cross section of the 4D cone ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$)

$$
M^{i j k l}=\left(\begin{array}{cccc}
C_{1} & C_{2} & 0 & 0 \\
C_{2} & C_{3} & 0 & 0 \\
0 & 0 & C_{4} & C_{2} \\
0 & 0 & C_{2} & C_{4}
\end{array}\right)
$$

$$
C_{1}, C_{3}, C_{4} \geq 0 \text { and } \sqrt{C_{1} C_{3}} \geq \pm 2 C_{2}-C_{4}
$$

- Infer UV model from EFT measurements

Inverse problem: Given the measured values of the operator coefficients around the electroweak scale, to what extend can we possibly determine the nature of the new physics beyond the SM? [Gu, Wang, 2008.07551]
see also [S. Dawson et al. 2007.01296] [N. Arkani-Hamed et al. hep-ph/0512190]

[CZ and S.-Y. Zhou 2005.03047]

