

Positivity in Multi-Field EFTs

Xu Li (黎 栩)

Institute of High Energy Physics

Apr. 16 Higgs and Effective Field Theory - HEFT 2021

base on 2101.01191 with C. Yang, H. Xu, C. Zhang, and S.-Y. Zhou

Motivation: Positivity Bounds

All possible Ultraviolet(UV) physics

EFT:
$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \sum_i \frac{C_i^{(8)} O_i^{(8)}}{\Lambda^4} + \cdots$$

All possible Ultraviolet(UV) physics

Can they take arbitrary value?

EFT:
$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \sum_i \frac{C_i^{(8)} O_i^{(8)}}{\Lambda^4} + \cdots$$

All possible Ultraviolet(UV) physics

Can they take arbitrary value?

EFT:
$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \sum_i \frac{C_i^{(8)} O_i^{(8)}}{\Lambda^4} + \cdots$$

All possible Ultraviolet(UV) physics

Can they take arbitrary value?

EFT:
$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \sum_i \frac{C_i^{(8)} O_i^{(8)}}{\Lambda^4} + \cdots$$

If UV physics satisfied causality, unitarity, Lorentz symmetry, crossing symmetry...

$$\left\{ \sum_{i} a_{i} C_{i} \ge 0 \right.$$

All possible Ultraviolet(UV) physics

Can they take arbitrary value?

EFT:
$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \sum_i \frac{C_i^{(8)} O_i^{(8)}}{\Lambda^4} + \cdots$$

If UV physics satisfied causality, unitarity, Lorentz symmetry, crossing symmetry...

$$\left\{ \sum_{i} a_{i} C_{i} \geq 0 \right.$$

Positivity bounds is a set of inequalities that constrain Wilson Coefficients

All possible Ultraviolet(UV) physics

Can they take arbitrary value?

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}} + \sum_{i} \frac{C_{i}^{(8)} O_{i}^{(8)}}{\Lambda^{4}} + \cdots$$

If UV physics satisfied causality, unitarity, Lorentz symmetry, crossing symmetry...

$$\left\{ \sum_{i} a_{i} C_{i} \geq 0 \right.$$

Positivity bounds is a set of inequalities that constrain Wilson Coefficients

Relevant literature:

[N. Arkani-Hamed, et al. 2012.15849], [B. Bellazzini. et al. 2011.00037], [A. Tolley et al., 2011.02400], [T. Trott, 2011.10058], [S. C-Huot. et al. 2011.02957] See talk by Trott, Tolley ...

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}} + \sum_{i} \underbrace{C_{i}^{(8)} O_{i}^{(8)}}_{\Lambda^{4}} + \cdots$$

2-to-2 forward amplitude (spin-0):

$$A(s,0) = c_0 + c_2 s^2 + c_4 s^4 + \cdots$$

Dim-8 have leading energy dependence only, s2.

To extract dim-8 effect, we consider:

$$\frac{d^2}{ds^2}A(s,0)$$
 See talk by Trott

EFTs can involve more than one particles. (e.g. SMEFT operators; or those involving multiplet particles, chiral PT, spin-2 EFTs, ...)

Outline

- 1 Framework
- 2 A Scalar EFT
- 3 Numerical approach
- 4 Examples

Framework

Positivity Bounds

For 2-to-2 forward scattering $(t \approx 0)$: $f = \frac{1}{2\pi i} \oint ds \frac{A(s,0)}{(s-u^2)^3}$

$$f = \frac{1}{2\pi i} \oint ds \frac{A(s,0)}{(s-\mu^2)^3}$$

Master formula

Define:
$$M^{ijkl} \equiv \frac{d^2}{ds^2} M_{ij \to kl} \left(\frac{1}{2} M^2\right)$$
 Take massless limit

$$m_X^{ij} \equiv M_{ij \to X}(\mu, \Pi_X)$$

$$M^{ijkl} = \sum_{X} \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu}{\pi} \frac{m_X^{\ \ ij} m_X^{\ kl}}{(\mu - M^2/2)^3} + (j \leftrightarrow l)$$

Forward scattering amp, at <u>low</u> <u>energy</u> (calculable in EFT), represented by Wilson coef.

Amplitude of SM $\rightarrow X$

$$\left(M^{ijkl} = \sum_X \int_{(\epsilon\Lambda)^2}^\infty \frac{d\mu}{\pi} \frac{m_X^{ij} m_X^{kl}}{(\mu - M^2/2)^3} + (j \leftrightarrow l) \right)$$

Elastic: When $i = k, j = l \ (ij \to ij), \quad \text{RHS} \to \text{Tr} \ (mm^T) \ge 0$

$$M^{ijij} \geq 0$$

For more general:

Superposition elastic: $M(|u\rangle + |v\rangle \rightarrow |u\rangle + |v\rangle) = u^i v^j u^{k*} v^{l*} \cdot M^{ijkl}$

with
$$|u\rangle = u^i|i\rangle, |v\rangle = v^j|j\rangle$$

RHS
$$\rightarrow |u \cdot m_X \cdot v|^2 + |u \cdot m_X \cdot v^*|^2 \ge 0$$

$$u^i v^j u^{k*} v^{l*} M^{ijkl} \ge 0$$

$$\left(M^{ijkl} = \sum_X \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu}{\pi} \frac{m_X^{ij} m_X^{kl}}{(\mu - M^2/2)^3} + (j \leftrightarrow l) \right)$$

Elastic: When $i = k, j = l \ (ij \to ij), \quad \text{RHS} \to \text{Tr} \ (mm^T) \ge 0$

$$M^{ijij} > 0$$

For more general:

Superposition elastic: $M(|u\rangle + |v\rangle \rightarrow |u\rangle + |v\rangle) = u^i v^j u^{k*} v^{l*} \cdot M^{ijkl}$

with
$$|u\rangle = u^i|i\rangle, |v\rangle = v^j|j\rangle$$

RHS
$$\rightarrow |u \cdot m_X \cdot v|^2 + |u \cdot m_X \cdot v^*|^2 \ge 0$$

However, the elastic bounds are not the optimal!

[CZ and S.-Y. Zhou, PRL 125, 201601]

Two observation:

$$M^{ijkl} = \sum_X \int_{(\epsilon\Lambda)^2}^\infty \frac{d\mu}{\pi} \frac{m_X^{ij} m_X^{kl}}{(\mu - M^2/2)^3} + (j \leftrightarrow l)$$

 M^{ijkl} is positive linear combinations of $m_X^{ij}m_X^{kl} + m_X^{il}m_X^{kj}$

1. M^{ijkl} is a convex cone

Any vector inside cone can always be written as **positive** linear combinations of Ai

So we conclude:

$$M^{ijkl} = \operatorname{cone}(\{m_X^{ij}m_X^{kl} + m_X^{il}m_X^{kj}, m \in \mathbb{R}^{n^2}\})$$

Positivity bounds arise as boundary of cone!

2. X couple to i and j, X belong to the direct product space of i and j

$$\mathbf{r}_i \otimes \mathbf{r}_j = \mathbf{X}_1 \oplus \mathbf{X}_2 \oplus \dots$$

$$M^{ijkl} = \sum_X \int_{(\epsilon\Lambda)^2}^\infty \frac{d\mu}{\pi} \frac{m_X^{\ \ ij} m_X^{\ kl}}{(\mu - M^2/2)^3} + (j \leftrightarrow l)$$

$$M^{ijkl} = \int_{(\epsilon\Lambda)^2}^{\infty} d\mu \sum_{X \ in \ \mathbf{X}} \ \frac{|\langle X|\mathcal{M}|\mathbf{X}_r\rangle|^2}{\pi(\mu - M^2/2)^3} P_r^{i(j|k|l)}$$

$$M(ij \to X^{\alpha})$$

$$= \langle X | \mathcal{M} | \mathbf{X}_r \rangle C_{i,j}^{r,\alpha}$$

C is the CG coefficients for the direct sum decomposition of $\mathbf{r}_i \otimes \mathbf{r}_j$

Projector:
$$P_r^{i(j|k|l)} \equiv \Sigma_{\alpha} C_{i,j}^{r,\alpha} (C_{k,l}^{r,\alpha})^*$$

$$M^{ijkl}$$
 is a convex cone: cone $\left(\left\{P_r^{i(j|k|l)}\right\}\right)$

EFT with symmetry

4-Higgs operators $\mathbf{2} \otimes \mathbf{2} = \mathbf{1} \oplus \mathbf{3}$

$$O_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi],$$

$$O_{S,1} = [(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi],$$

$$O_{S,2} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi].$$

Triangular cone

4-W operators $3 \otimes 3 = 1 \oplus 3 \oplus 5$

$$O_{T,0} = \text{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}]\text{Tr}[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}]$$

$$O_{T,2} = \text{Tr}[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}]\text{Tr}[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}]$$

$$O_{T,1} = \text{Tr}[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}]\text{Tr}[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}]$$

$$O_{T,10} = \text{Tr}[\hat{W}_{\mu\nu}\tilde{W}^{\mu\nu}]\text{Tr}[\hat{W}_{\alpha\beta}\tilde{W}^{\alpha\beta}]$$

6-facet 4D cone

4-electron operators

$$O_{1} = \partial^{\alpha}(\bar{e}\gamma^{\mu}e)\partial_{\alpha}(\bar{e}\gamma_{\mu}e) ,$$

$$O_{2} = \partial^{\alpha}(\bar{e}\gamma^{\mu}e)\partial_{\alpha}(\bar{l}\gamma_{\mu}l) ,$$

$$O_{3} = D^{\alpha}(\bar{e}l) D_{\alpha}(\bar{l}e) ,$$

$$O_{4} = \partial^{\alpha}(\bar{l}\gamma^{\mu}l) \partial_{\alpha}(\bar{l}\gamma_{\mu}l) ,$$

$$\begin{split} &C_1 \leq 0, C_3 \geq 0, C_4 \leq 0, \\ &2\sqrt{C_1C_4} \geq C_2 \\ &2\sqrt{C_1C_4} \geq -(C_2+C_3) \end{split}$$

4D "circular cone"

EFT with symmetry

4-Higgs operators $\mathbf{2} \otimes \mathbf{2} = \mathbf{1} \oplus \mathbf{3}$

$$O_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi],$$

$$O_{S,1} = [(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi],$$

$$O_{S,2} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi].$$

Triangular cone

4-W operators $3 \otimes 3 = 1 \oplus 3 \oplus 5$

$$O_{T,0} = \text{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}]\text{Tr}[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}]$$

$$O_{T,2} = \text{Tr}[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}]\text{Tr}[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}]$$

$$O_{T,1} = \text{Tr}[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}]\text{Tr}[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}]$$

$$O_{T,10} = \text{Tr}[\hat{W}_{\mu\nu}\tilde{W}^{\mu\nu}]\text{Tr}[\hat{W}_{\alpha\beta}\tilde{W}^{\alpha\beta}]$$

Beyond elastic positivity!

6-facet 4D cone

4-electron operators

$$O_{1} = \partial^{\alpha}(\bar{e}\gamma^{\mu}e)\partial_{\alpha}(\bar{e}\gamma_{\mu}e) ,$$

$$O_{2} = \partial^{\alpha}(\bar{e}\gamma^{\mu}e)\partial_{\alpha}(\bar{l}\gamma_{\mu}l) ,$$

$$O_{3} = D^{\alpha}(\bar{e}l) D_{\alpha}(\bar{l}e) ,$$

$$O_{4} = \partial^{\alpha}(\bar{l}\gamma^{\mu}l) \partial_{\alpha}(\bar{l}\gamma_{\mu}l) ,$$

4D "circular cone"

[X. Li, et al, 2101.01191]

The approach is valid so far, however...

Q: What if there is no symmetries? How to characterize bounds?

Solution: use the dual property of cone

Dual cone is defined as

$$\mathbf{C}^{n^4} = \{ \mathcal{Q} | \mathcal{Q} \cdot \mathcal{M} \ge 0, \forall \mathcal{M} \in \mathbf{C}^{n^4} \}$$

[X. Li, et al, 2101.01191]

The approach is valid so far, however...

Q: What if there is no symmetries? How to characterize bounds?

Solution: use the dual property of cone

Dual cone is defined as

$$\mathbf{C}^{n^4} = \left\{ \mathcal{Q} | \mathcal{Q} \cdot \mathcal{M} \ge 0, \forall \mathcal{M} \in \mathbf{C}^{n^4} \right\}$$

C* is a cone.

[X. Li, et al, 2101.01191]

The approach is valid so far, however...

Q: What if there is no symmetries? How to characterize bounds?

Solution: use the dual property of cone

Dual cone is defined as

$$\mathbf{C}^{n^4*} = \left\{ \mathcal{Q} \middle| \mathcal{Q} \cdot \mathcal{M} \ge 0 \right\} \forall \mathcal{M} \in \mathbf{C}^{n^4} \right\}$$

- 1 C* is a cone.
- 2 C* is a set that contain all possible linear bounds

[X. Li, et al, 2101.01191]

The approach is valid so far, however...

Q: What if there is no symmetries? How to characterize bounds?

Solution: use the dual property of cone

Dual cone is defined as

$$\mathbf{C}^{n^4*} = \left\{ \mathcal{Q} \middle| \mathcal{Q} \cdot \mathcal{M} \ge 0 \right\} \forall \mathcal{M} \in \mathbf{C}^{n^4} \right\}$$

- 1 C* is a cone.
- 2 C* is a set that contain all possible linear bounds
- Hyperplane separation theorem \rightarrow (C*)*=C—it is enough to carve out exactly the C

These properties make sure our bounds are complete

Dual cone

posi. bounds
= vectors in dual cone

Independent possible bounds

Extremal Rays of cone C*

• A convex cone is closed under additions and positive scalar multiplications

 $\vec{n} \cdot \vec{C} \ge 0$ but if $\vec{n} = \sum_{i} a_{i} \vec{n}_{i}^{ex}$ then \vec{n} is not independent, because $a_{i} \ge 0$, $\vec{n}_{i}^{ex} \cdot \vec{C} \ge 0$

dual cone: C*

Dual cone

How to find the ERs in dual cone? ...

Index symmetries of M^{ijkl}

$$i \leftrightarrow k \text{ or } j \leftrightarrow l$$

Crossing symmetry: $s \leftrightarrow u$

$$i \leftrightarrow j + k \leftrightarrow l$$

Rotation symmetry (Pi around y-axis)

Defined a subspace of $M: \mathcal{M} \in \vec{\mathbf{S}}^{n^4} \ (\mathcal{M}^{ijkl} = \mathcal{M}^{jilk} = \mathcal{M}^{klij} = \mathcal{M}^{ilkj})$

$$\mathcal{Q} \in \vec{\mathbf{S}}^{n^4}$$

 $Q \in \vec{\mathbf{S}}^{n^4}$ cross-antisymmetric $Q \cdot \mathcal{M}$

$$Q \cdot \mathcal{M} > 0$$

$$\Rightarrow \mathcal{Q}^{ijkl} \sum_{\alpha} (m_{\alpha}^{ij} m_{\alpha}^{kl} + m_{\alpha}^{il} m_{\alpha}^{kj}) = 2 \sum_{\alpha} m_{\alpha}^{ij} \mathcal{Q}^{ijkl} m_{\alpha}^{kl}$$

$$\Rightarrow \mathcal{Q}^{(ij),(kl)} \succcurlyeq 0 \Rightarrow \mathcal{Q} \in \mathbf{S}_{+}^{n^{2} \times n^{2}} \quad \Longrightarrow \quad \mathbf{Q}^{n^{4}} = \mathbf{S}_{+}^{n^{2} \times n^{2}} \cap \vec{\mathbf{S}}^{n^{4}}$$

$$\Rightarrow \mathcal{Q}^{(ij),(kl)} \succcurlyeq 0 \Rightarrow \mathcal{Q} \in \mathbf{S}_{\perp}^{n^2 \times n^2}$$

$$\mathbf{Q}^{n^4} = \mathbf{S}_+^{n^2 imes n^2} \cap \vec{\mathbf{S}}^{n^4}$$

 $\mathbf{S}_{+}^{n^2 \times n^2}$: the set of n × n positive semi-definite matrices forms a convex cone

 $\mathbf{S}_{+}^{n^2 \times n^2}$: the set of n × n positive semi-definite matrices forms a convex cone

 $\mathbf{S}_{+}^{n^2 \times n^2}$: the set of n × n positive semi-definite matrices forms a convex cone

Spectrahedron: the intersection of a cone with a linear (affine) subspace is well-defined in math

 $\mathbf{S}_{+}^{n^2 \times n^2}$: the set of n × n positive semi-definite matrices forms a convex cone

Spectrahedron: the intersection of a cone with a linear (affine) subspace is well-defined in math

Ultimate goal: finding ERs of Spectrahedron!

Let $Q_i, i = 0, ..., m$ be the basis matrices of the space

$$Q(x) = Q_0 + x_i Q_i$$

The spectrahedron: $G = \{x | Q(x) \geq 0\}$

$$G = \{x | Q(x) \succcurlyeq 0\}$$

question: whether a vector x is at a ER? \rightarrow iff the rank of B is m-1 (or dimension of F(x) is 1)

 $\{u_i\}$ be basis of Null(Q(x))

Null(): space span by the independent null vectors

F(x) is the lowest unique face that contains x (the face is k-face)

$$B = \begin{bmatrix} \mathcal{Q}_1 u_1 & \cdots & \mathcal{Q}_m u_1 \\ \vdots & \ddots & \vdots \\ \mathcal{Q}_1 u_k & \cdots & \mathcal{Q}_m u_k \end{bmatrix}$$

Let $Q_i, i = 0, ..., m$ be the basis matrices of the space

$$Q(x) = Q_0 + x_i Q_i$$

The spectrahedron: $G = \{x | Q(x) \geq 0\}$

$$G = \{x | Q(x) \succcurlyeq 0\}$$

question: whether a vector x is at a ER? \rightarrow iff the rank of B is m-1 (or dimension of F(x) is 1)

 $\{u_i\}$ be basis of Null(Q(x))

Null(): space span by the independent null vectors

F(x) is the lowest unique face that contains x (the face is k-face)

$$B = \begin{bmatrix} \mathcal{Q}_1 u_1 & \cdots & \mathcal{Q}_m u_1 \\ \vdots & \ddots & \vdots \\ \mathcal{Q}_1 u_k & \cdots & \mathcal{Q}_m u_k \end{bmatrix}$$

Null(B) is the linear span of F(x)

A Scalar EFT

General 2-scalar case

With Z2 symmetry

$$\mathcal{L} \supset \frac{1}{\Lambda^4} C_{ijkl} O_{ijkl}, \quad O_{ijkl} = \partial_{\mu} \phi_i \partial^{\mu} \phi_j \partial_{\nu} \phi_k \partial^{\nu} \phi_l$$

$$\mathbf{Q}^{2^4}
ightarrow \mathcal{Q} = egin{pmatrix} a & b & e & e \ b & c & f & f \ b & c & f & f \ e & f & d & b \ e & f & b & d \ \end{pmatrix} \quad egin{matrix} a \geq 0, c \geq 0, \ ac \geq b^2, d \geq |b| \ ac \geq b^2, d \geq |b| \ \end{pmatrix}$$

Dual space (spectrahedron)

Amplitude space

ERs = posi. bounds

$$C_{1111} \ge 0, \ C_{2222} \ge 0, \ C_{1212} \ge 0$$

 $4\sqrt{C_{1111}C_{2222}} \ge \pm (2C_{1122} + C_{1212}) - C_{1212}$

Dual space (spectrahedron)

Amplitude space

ERs = posi. bounds

$$C_{1111} \ge 0, \ C_{2222} \ge 0, \ C_{1212} \ge 0$$

 $4\sqrt{C_{1111}C_{2222}} \ge \pm (2C_{1122} + C_{1212}) - C_{1212}$

Amplitude space

ERs = posi. bounds

$$C_{1111} \ge 0, \ C_{2222} \ge 0, \ C_{1212} \ge 0$$

 $4\sqrt{C_{1111}C_{2222}} \ge \pm (2C_{1122} + C_{1212}) - C_{1212}$

Amplitude space

ERs = posi. bounds

$$C_{1111} \ge 0, \ C_{2222} \ge 0, \ C_{1212} \ge 0$$

 $4\sqrt{C_{1111}C_{2222}} \ge \pm (2C_{1122} + C_{1212}) - C_{1212}$

Without Z2 symmetry

$$\mathcal{L} \supset \frac{1}{\Lambda^4} C_{ijkl} O_{ijkl}, \quad O_{ijkl} = \partial_{\mu} \phi_i \partial^{\mu} \phi_j \partial_{\nu} \phi_k \partial^{\nu} \phi_l$$

$$\mathcal{M}_{\text{scalar}} = \begin{bmatrix} 4C_{1111} & C'_{1122} & C_{1112} & C_{1112} \\ C'_{1122} & 4C_{2222} & C_{1222} & C_{1222} \\ C_{1112} & C_{1222} & C_{1212} & C'_{1122} \\ C_{1112} & C_{1222} & C'_{1122} & C_{1212} \end{bmatrix} \qquad \mathbf{Q}^{2^4} \ni \mathcal{Q} = \begin{pmatrix} a & b & e & e \\ b & c & f & f \\ e & f & d & b \\ e & f & b & d \end{pmatrix}$$

$$\text{ERs } Q_{\text{ex}} \to \begin{bmatrix} a^2 & ab & ac & ac \\ ab & b^2 & bc & bc \\ ac & bc & 2c^2 - ab & ab \\ ac & bc & ab & 2c^2 - ab \end{bmatrix} ij = 11 \\ 22 \\ 12 \\ 21 \\ \text{With } c^2 \ge ab$$

variable substitution

$$Q_{\text{ex}} \cdot \mathcal{M} \equiv \begin{bmatrix} w^2 & \frac{rw + sw}{2} & rs \end{bmatrix} \cdot D \cdot \begin{bmatrix} w^2 & \frac{rw + sw}{2} & rs \end{bmatrix}^T \\ \geq 0 \quad \forall r, s, w \in \mathbb{R}, \quad \text{It is quartic !} \end{bmatrix}^T$$

$$D = \begin{bmatrix} 2C_{1111} & C_{1112} & C_{1122} \\ C_{1112} & 2C_{1212} & C_{1222} \\ C_{1122} & C_{1222} & 2C_{2222} \end{bmatrix}$$

Positivity bounds for general 2-scalar EFTs

Finally get bounds!

$$C_{1111} \ge 0 \quad \text{and} \quad 4C_{1111}C_{1212} - C_{1112}^2 \ge 0$$

$$\text{and} \quad \left\{ C_{1112}C_{1122}C_{1222} - C_{1111}C_{1222}^2 - C_{1112}^2C_{2222} + C_{1212}\left(-C_{1122}^2 + 4C_{1111}C_{2222}\right) \ge 0 \right.$$

$$\text{or} \quad \left[\Delta \equiv 3\left(4C_{1111}C_{2222} - C_{1112}C_{1222}\right) + \left(C_{1122} + C_{1212}\right)^2 \ge 0 \right.$$

$$\text{and} \quad \frac{3C_{1112}^2}{4C_{1111}} - 2\left(C_{1122} + C_{1212}\right) \le \sqrt{\Delta} \le C_{1212} - 2C_{1122}$$

$$\text{and} \quad 2\Delta^{3/2} \ge 27\left(C_{1111}C_{1222}^2 + C_{1112}^2C_{2222}\right) - 9\left(C_{1122} + C_{1212}\right)\left(8C_{1111}C_{2222} + C_{1112}C_{1222}\right) + 2\left(C_{1122} + C_{1212}\right)^3 \right] \right\}$$

What if n > 2?

——resort to the numerical approach

(Base on semi-definite programming (SDP)).

Numerical approach

Start with a random point x

Start with a random point x

Find the (k-) face F(x)

Start with a random point x

Find the (k-) face F(x)

Take a random straight-line in F(x) that crosses x. Find its **intersection** with the boundary of the cone (this is a SDP).

Start with a random point x

Find the (k-) face F(x)

Take a random straight-line in F(x) that crosses x. Find its **intersection** with the boundary of the cone (this is a SDP).

Take x to be the intersection point and iterate, if F(x) is not dimension 1

Start with a random point x

Find the (k-) face F(x)

Take a random straight-line in F(x) that crosses x. Find its **intersection** with the boundary of the cone (this is a SDP).

Take x to be the intersection point and iterate, if F(x) is not dimension 1

The "MC" approach

Randomly search ERs

- Start with a random point x
- Find the (k-) face F(x)
- Take a random straight-line in F(x) that crosses x. Find its **intersection** with the boundary of the cone (this is a SDP).
- Take x to be the intersection point and iterate, if F(x) is not dimension 1
- If F(x) is dimension 1, An ER is found.

The <u>semi-definite programming</u> (SDP) approach:

If the minimum is not negative, then M is allowed by positivity.

Advantage

- 1. Solvable within polynomial complexity.

 (in contrast to elastic approach, which is NP-hard.)
- 2. Guarantee bounds are accurate

Examples

4-gluon case

i, j, k, l = g (n = 16 fields)

EFT operators:

$$\vec{n} \cdot \vec{C} \ge 0 \rightarrow n$$
 given by

```
[0,0,0,1,0,0,0]
                     [0,0,6,3,7,2,0]
                                                [24, 0, 12, 21, 15, 14, 0]
                                                                              [0, 0, 96, 24, 64, 40, -81]
                     [8, 6, 1, 6, 0, 2, 0]
                                           [24, 32, 24, 4, 8, 0, -27]
                                                                              [40, 32, 80, 4, 0, 0, -189]
[0, 0, 1, 1, 1, 0, 0]
                                                                               [0, 0, 24, 120, 40, 104, -81]
[2, 0, 1, 0, 0, 0, 0]
                     [0,6,3,12,5,0,0]
                                               [48, 36, 21, 27, 25, 0, 0]
[0, 2, 0, 1, 0, 0, 0]
                     [8, 6, 1, 12, 0, 0, 0]
                                               [32, 40, 4, 80, 0, 0, -27]
                                                                               [0, 0, 120, 24, 104, 40, -81]
[0,0,3,0,2,0,0]
                     [0,6,6,9,10,4,0]
                                               [0, 48, 0, 48, 0, 40, -81]
                                                                               [96, 0, 144, 24, 64, 40, -81]
[0,0,0,3,0,2,0]
                     [0, 12, 0, 14, 0, 0, -9]
                                               [24, 0, 36, 24, 16, 40, -81]
                                                                              [48, 0, 96, 24, 0, 40, -243]
[1, 1, 2, 2, 0, 0, 0]
                     [0, 0, 8, 8, 0, 8, -27]
                                               [0, 0, 48, 24, 32, 40, -81]
                                                                               [0, 192, 168, 96, 112, 120, -405]
[6,0,3,0,2,0,0]
                     [12, 0, 14, 0, 0, 0, -27]
                                               [0, 0, 24, 48, 16, 56, -81]
                                                                               [168, 480, 168, 156, 56, 160, -729]
                     [6, 8, 12, 1, 0, 0, -27]
[4, 2, 2, 1, 2, 0, 0]
                                               [88, 32, 56, 4, 40, 0, -27]
                                                                               [264, 384, 156, 168, 16, 200, -729]
[0, 0, 4, 0, 0, 0, -9]
                     [8, 16, 4, 8, 0, 8, -27]
                                               [96, 42, 27, 84, 25, 0, 0]
                                                                               [288, 384, 216, 168, 0, 200, -891]
[6,0,6,0,5,0,0]
                     [0, 24, 0, 12, 0, 8, -27]
                                               [96, 66, 42, 39, 50, 4, 0]
                                                                               [480, 384, 480, 168, 160, 200, -729]
[0,0,3,6,5,4,0]
                     [8, 22, 1, 14, 0, 10, -27]
                                                [120, 42, 39, 42, 40, 14, 0]
                                                                               [336, 768, 672, 216, 0, 200, -2187]
```

We can prove only a few of them can obtained by elastic

4-gluon case

i, j, k, l = g (n = 16 fields)

EFT operators:

$\vec{n} \cdot \vec{C} \ge 0 \rightarrow n$ given by

7D polyhedral cone with 48 facets!

[0,0,0,1,0,0,0]	[0,0,6,3,7,2,0]	[24, 0, 12, 21, 15, 14, 0]	[0, 0, 96, 24, 64, 40, -81]
[0,0,1,1,1,0,0]	[8, 6, 1, 6, 0, 2, 0]	[24, 32, 24, 4, 8, 0, -27]	[40, 32, 80, 4, 0, 0, -189]
[2, 0, 1, 0, 0, 0, 0]	[0, 6, 3, 12, 5, 0, 0]	[48, 36, 21, 27, 25, 0, 0]	[0,0,24,120,40,104,-81]
[0, 2, 0, 1, 0, 0, 0]	[8, 6, 1, 12, 0, 0, 0]	[32, 40, 4, 80, 0, 0, -27]	[0,0,120,24,104,40,-81]
[0,0,3,0,2,0,0]	[0, 6, 6, 9, 10, 4, 0]	[0, 48, 0, 48, 0, 40, -81]	[96, 0, 144, 24, 64, 40, -81]
[0,0,0,3,0,2,0]	[0, 12, 0, 14, 0, 0, -9]	[24, 0, 36, 24, 16, 40, -81]	[48, 0, 96, 24, 0, 40, -243]
[1, 1, 2, 2, 0, 0, 0]	[0,0,8,8,0,8,-27]	[0, 0, 48, 24, 32, 40, -81]	[0, 192, 168, 96, 112, 120, -405]
[6,0,3,0,2,0,0]	[12,0,14,0,0,0,-27]	[0, 0, 24, 48, 16, 56, -81]	[168, 480, 168, 156, 56, 160, -729]
[4,2,2,1,2,0,0]	[6,8,12,1,0,0,-27]	[88, 32, 56, 4, 40, 0, -27]	[264, 384, 156, 168, 16, 200, -729]
[0,0,4,0,0,0,-9]	[8, 16, 4, 8, 0, 8, -27]	[96, 42, 27, 84, 25, 0, 0]	[288, 384, 216, 168, 0, 200, -891]
[6,0,6,0,5,0,0]	[0, 24, 0, 12, 0, 8, -27]	[96, 66, 42, 39, 50, 4, 0]	[480, 384, 480, 168, 160, 200, -729]
[0,0,3,6,5,4,0]	[8, 22, 1, 14, 0, 10, -27]	[120, 42, 39, 42, 40, 14, 0]	[336, 768, 672, 216, 0, 200, -2187]

We can prove only a few of them can obtained by elastic

$$i,j,k,l=e_R,\mu_R,\tau_R$$

• SM flavor sector (n=3 fields): [2004.02885, Remmen & Rodd]

4-fermion operator in dim-8:

$$O_{ijkl} = \partial_{\mu}(\bar{f}_i \gamma_{\nu} f_j) \partial^{\mu}(\bar{f}_k \gamma^{\nu} f_l)$$

Elastic: from elastic scattering

Exact: from SDP approach

SDP always give stronger bounds

• dRGT massive gravity (n=5) — (c3, d5):

[PRL.106(2011) 231101, C. de Rham, et, al]

Elastic: elastic approach(superposed)

[JHEP 04 (2016) 002. C. Cheung and G. Remmen]

• Exact: SDP approach:

improves slightly the minimum value of d5.

Summary

- Positive structures arise at the dim-8 level in EFT coefficient space, as a consequence of axiomatic QFT principles.
- Realistic problems often involve multi-field EFTs, in which a convex geometric perspective helps to understand these structures.
- We convert the problem of finding bounds to a geometric problem: finding the ERs of a spectrahedron.
 - For small n, can be solved **analytically**.
 - For large n, can be solved as a **semi-definite programming** problem.
- Improved some previous results, and gave some new results.

Thank You!

Xu Li Institute of High Energy Physics

Apr. 14 Higgs and Effective Field Theory - HEFT 2021

base on 2101.01191 with C. Yang, H. Xu, C. Zhang, and S.-Y. Zhou

Backup

$$Q_{ex} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 2 & 3 & 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 2 & 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 & 1 & 3 & 1 & 2 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 3 \end{bmatrix}$$

Which can be apply in SM flavor sector (n=3 fields)

This is a rank-4 matrix, so it cannot be written as uvu^*v^* form, which is at most rank-2 by definition

ERs for without Z2 symmetry

Hilbert 16th problem: if the variables are less than 3, then the quartic polynomial can be always written as a sum of squares.

$$f(r, s, w) \equiv \begin{bmatrix} w^2 & \frac{rw + sw}{2} & rs \end{bmatrix} \cdot D \cdot \begin{bmatrix} w^2 & \frac{rw + sw}{2} & rs \end{bmatrix}^T \\ = \sum_{\alpha} (x_{\alpha} \cdot \begin{bmatrix} w^2 & rs & rw & sw \end{bmatrix})^2 = \sum_{i,j} X_{ij} W_{ij} \end{bmatrix}^T W = \begin{bmatrix} w^4 & rsw^2 & rw^3 & sw^3 \\ rsw^2 & r^2s^2 & r^2sw & rs^2w \\ rw^3 & r^2sw & r^2w^2 & rsw^2 \\ sw^3 & rs^2w & rsw^2 & s^2w^2 \end{bmatrix}$$

$$W = \begin{bmatrix} w^4 & rsw^2 & rw^3 & sw^3 \\ rsw^2 & r^2s^2 & r^2sw & rs^2w \\ rw^3 & r^2sw & r^2w^2 & rsw^2 \\ sw^3 & rs^2w & rsw^2 & s^2w^2 \end{bmatrix}$$

$$X = \sum_{\alpha} x_{\alpha} x_{\alpha}^T \in \mathbf{S}_{+}^{4 \times 4} \cap \overleftrightarrow{\mathbf{S}}^{n^4}$$

$$x_{\alpha} = \begin{bmatrix} x_{\alpha}^1 & x_{\alpha}^2 & x_{\alpha}^3 & x_{\alpha}^4 \end{bmatrix}$$

$$X = \frac{1}{2} \mathcal{M}_{\text{scalar}}^{4 \times 4} + d \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \qquad \overrightarrow{\mathbf{S}}^{n^4} \quad \mathcal{T}^{ijkl} = \mathcal{T}^{ilkj} = \mathcal{T}^{kjil} = \mathcal{T}^{jilk}$$

$$\overrightarrow{\mathbf{S}}^{n^4}$$
 $\mathcal{T}^{ijkl} = \mathcal{T}^{ilkj} = \mathcal{T}^{kjil} = \mathcal{T}^{jilk}$

$$\begin{bmatrix} 4C_{1111} & C'_{1122}^{+2d}C_{1112} & C_{1112} \\ C'_{1122}^{+2d}4C_{2222} & C_{1222} & C_{1222} \\ C_{1112} & C_{1222} & C_{1212} & C'_{1122} \\ C_{1112} & C_{1222} & C'_{1122}^{-2d}C_{1212} \end{bmatrix} \succcurlyeq 0$$

ERs for without Z2 symmetry

$$\begin{bmatrix} 4C_{1111} & C'_{1122} + 2d & C_{1112} & C_{1112} \\ C'_{1122} + 2d & 4C_{2222} & C_{1222} & C_{1222} \\ C_{1112} & C_{1222} & C_{1212} & C'_{1122} \\ C_{1112} & C_{1222} & C'_{1122} + 2d \\ C_{1112} & C_{1222} & C'_{1122} + 2d \\ C_{1112} & C_{1222} & C'_{1122} + 2d \\ \end{bmatrix} \succcurlyeq 0$$

Sylvester's criterion

The determinants of all principal minors are larger than zero

$$|4C_{1111}| \ge 0$$

$$C_{1111} \ge 0$$

$$\begin{vmatrix} 4C_{1111} & C_{1112} \\ C_{1112} & C_{1212} \end{vmatrix} \ge 0$$

$$4C_{1111}C_{1212} - C_{1112}^2 \ge 0$$

$$\begin{vmatrix} 4C_{1111} & C_{1122}' + 2d & C_{1112} \\ C_{1122}' + 2d & 4C_{2222} & C_{1222} \\ C_{1112} & C_{1222} & C_{1212} \end{vmatrix} \ge 0$$

$$+$$
 ...

and
$$\left\{ C_{1112}C_{1122}C_{1222} - C_{1111}C_{1222}^2 - C_{1112}^2C_{2222} + C_{1212}\left(-C_{1122}^2 + 4C_{1111}C_{2222}\right) \ge 0 \right.$$
 or
$$\left[\Delta \equiv 3\left(4C_{1111}C_{2222} - C_{1112}C_{1222}\right) + \left(C_{1122} + C_{1212}\right)^2 \ge 0 \right.$$
 and
$$\frac{3C_{1112}^2}{4C_{1111}} - 2\left(C_{1122} + C_{1212}\right) \le \sqrt{\Delta} \le C_{1212} - 2C_{1122}$$

 $\text{and}\quad 2\Delta^{3/2}\geq 27\left(C_{1111}C_{1222}^2+C_{1112}^2C_{2222}\right)-9\left(C_{1122}+C_{1212}\right)\left(8C_{1111}C_{2222}+C_{1112}C_{1222}\right)+2\left(C_{1122}+C_{1212}\right)^3\right]\right\}$

- At least for simple cases, the ext(G) can be found by inspection.
- E.g. simplest case:n=2, with some Z2 symmetry, e=f=0, T ->

$$\left(egin{array}{cccc} a & b & 0 & 0 \ b & c & 0 & 0 \ 0 & 0 & d & b \ 0 & 0 & b & d \end{array}
ight)$$

- There are two kinds of ERs
 - ER1: a=b=c=0, d=1
 - ER2: $ac=b^2$, d=|b|, a,c>0

$$M^{ijkl} = \left(egin{array}{cccc} C_1 & C_2 & 0 & 0 \ C_2 & C_3 & 0 & 0 \ 0 & 0 & C_4 & C_2 \ 0 & 0 & C_2 & C_4 \end{array}
ight)$$

$$C_1, C_3, C_4 \ge 0$$
 and $\sqrt{C_1 C_3} \ge \pm 2C_2 - C_4$

Infer UV model from EFT measurements

Inverse problem: Given the measured values of the operator coefficients around the electroweak scale, to what extend can we possibly determine the nature of the new physics beyond the SM? [Gu, Wang, 2008.07551]

see also [S. Dawson et al. 2007.01296] [N. Arkani-Hamed et al. hep-ph/0512190]

[CZ and S.-Y. Zhou 2005.03047] [2009.02212 B. Fuks, Y. Liu, CZ, S.-Y. Zhou]