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1. Introduction

The indirect search for Beyond Standard Model (BSM) physics requires
very precise measurements and predictions
and greatly benefits from the use of a general framework
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1. Introduction

The indirect search for Beyond Standard Model (BSM) physics requires
very precise measurements and predictions
and greatly benefits from the use of a general framework

¥

General framework: SMEFT

© The only requirement is to assume a large gap between the
electroweak (EW) scale and the new physics (NP) scale

- It allows us to take advantage of the EFT machinery, in order to
test many NP models

-~ Especially useful if we look at low energy observables, since the
Indirect effect of heavy NP is guaranteed
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1. Introduction

The indirect search for Beyond Standard Model (BSM) physics requires
very precise measurements and predictions
and greatly benefits from the use of a general framework

¥

Precise measurements: LEP + LHC

© LEP provides very precise measurements which leave little room
for NP at the EW scale. LHC and Tevatron have also contributed to this
thanks to some of their measurements for observables in the
W, top and Higgs sectors
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¥

Precise measurements: LEP + LHC

© LEP provides very precise measurements which leave little room
for NP at the EW scale. LHC and Tevatron have also contributed to this

thanks to some of their measurements for observables in the

W, top and Higgs sectors
© Could it be that LHC can also compete with or complement LEP

by means of the measurements it can provide for the Z observables?
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1. Introduction

The indirect search for Beyond Standard Model (BSM) physics requires
very precise measurements and predictions
and greatly benefits from the use of a general framework

¥

Precise measurements: LEP + LHC

© LEP provides very precise measurements which leave little room
for NP at the EW scale. LHC and Tevatron have also contributed to this
thanks to some of their measurements for observables in the

W, top and Higgs sectors
© Could it be that LHC can also compete with or complement LEP
by means of the measurements it can provide for the Z observables?

~ We will explore this possibility by looking at Drell-Yan dilepton
production, which at the EW scale could be used to improve
our knowledge of the Zf f couplings
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2. Theory framework

~ SMEFT: Organized in an expansion in 1/A?, truncated at order A™2:
1 B
LsmerT = Lsm + e Z C; O%{’]‘—ﬁ

We focus only on Z and W pole observables, which are mainly sensitive
to non-derivative interactions between EW bosons and fermions:

LSMEFT D —T (W-I_HL’}K#(V + 59L )dL + w;j_ﬂ-}{’y#(ngwqdR -+ h.c.)

—ﬁ (W;VL’}‘”(I + 897 ey, + h.c.)

B+ Zu | Y fuv((TF - s3Qp) 1+ 8] )fL]

| fEu,de,v

—\ g% + Q%Zﬁ Z fRTﬁ(_Sg‘QI I+ 59J;A?f)ff?]

__fEu,a‘,e

2,2 2, 27,2
LY - o 9L+ gy)Y
LsmerT O = (1+ oma) Wi W, + =L 3 Y. 7.7,
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2. Theory framework

© SMEFT: Organized in an expansion in 1/A?, truncated at order A2:
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2. Theory framework

- We only need to consider a subset of all involved operators since many
of them can be ignored when looking at Z and W pole observables:

-5gfY and & gffq can be expressed by the vertex corrections:

1% e e W u
597" = 8g) ¢ + 697, dg; T =06gFV — Véghe

-The contributions from 4-fermion operators are suppressed by
[, /M, or by a loop factor relatively to those of 6g and are neglected

-As for the dipole interactions, their interference with the SM
amplitudes is suppressed by the small fermion masses

We s Wp o W
“, 0g; ", ogp "

-7 - 7 - 7 c Ad VA Zb Z Z
091, % L9097 R GQLfRs 097 /R 097 R 9917 R> 991 /R> 097 /R: 091 /R 0w
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2. Theory framework

- We only need to consider a subset of all involved operators since many
of them can be ignored when looking at Z and W pole observables:

-5gfY and & gffq can be expressed by the vertex corrections:

1% e e W u
597" = 8g) ¢ + 697, dg; T =06gFV — Véghe

-The contributions from 4-fermion operators are suppressed by
[, /M, or by a loop factor relatively to those of 6g and are neglected

-As for the dipole interactions, their interference with the SM
amplitudes is suppressed by the small fermion masses

* We end up with only 20
Independent parameters

We ¢ W W A - 4 c A ¢ Zd VA Zb VA Z
dgr, ©, 0g; ", dgr T, 097 /R GQLfRs 097 /R 097 R 9917 R> 991 /R> 097 /R: 091 /R 0w
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3. Traditional pole observables

~ Z pole observables:

- W pole observables:

Observable Experimental value | SM prediction Definition ‘ Observable ‘ Experimental value ‘ SM prediction

Iz [GeV] | 2.4955+0.0023 |4, 28| 2.441 > NZ = ff) my [GeV] 80.379 + 0.012 [9] 80.356

] P o s e D[ eTe Y[ E—qq)

Ohad |nb| | 41.4802 £0.0325 |4, 28] 41.4842 ’—;f’ ,.;" = Ty [GeV] 2.085 +0.042 9] 2.088
R. 20804 £0.050 [4] | 20.734 Tg o ad) Br(W — ev) 0.1071 +0.0016 [5] 0.1082
R 20.785 +0.033 [4] 20,734 3, '(Z—ad) Br(W — uv) 0.1063 £ 0.0015 5] 0.1082
1?# 20.764 £ 0.045 [4] 20.781 SRAT Br(W — 7v) 0.1138 +0.0021 [5] 0.1081
;1'{‘- 0.0 l;d Lo (imzf ] o [;mz Iz ;;157'1- Br(W — puv)/Br(W — ev) 0.982 + 0.024 [32] 1.000
Hoyp . ] . i ] a b T ko ‘

4,;']"j 0.0169 £ 0.0013 [4] 00160 5}:1 4 Br(W — ) /Br(W — ev) 1.020 £ 0.019 [12] 1.000
App s . a il =l T 17 17 .
-4':]-'E 0.0188 + 0.0017 4] 00162 isa, Br(ﬁr — ;L;/)/Br(ur — cv) 1.003 £ 0.010 [13] 1.000
T 021629 2 0.00066 [ - L Zom) Br(W — 7v)/Br(W — er) | 0.961 4 0.061 |9, 31] 0.999

' . - ' &fll_l,f}:‘j':?';'] Br(W — 7v)/Br(W — ) 0.992 +0.013 [14] 0.999
R, 0.1721 4 0.0030 [4] 0.17222 etz — W 5es)

|-'rn " . . 2ag 1 00d) Rwe = F(W—ud)+T(W—es) 0.49+0.04 [9] 0.50
Af 0.0996 + 0.0016 |4, 29 0.1032 2A. A
AFB 0.0707 £ 0.0035 [4] 0.0736 A4,

(Eoefe \—T{Z—eler
A, 01516 £0.0021 [4] |  0.1470 e )17 epcy)
. - r (Zoptp; )-T(Zophus)
A, 0.142 £ 0.015 [4] 0.1470 ey 8
. - - | A Sl W T S o |
A, 0.136 £+ 0.015 [4] 0.1470 L T
YT ST S

A, 0.1498 4 0.0049 [4] 0.1470 ACal L el Ot L)
A, 0.1439 £ 0.0043 [4] 0.1470 C(Zory 7 ) Ty ry)
A 0.923 £ 0.020 [4] 0.935 L
A, 0.670 £ 0.027 [4] 0.668 D(Zvep2p) TUZepzn)
A, 0.805 £ 0.001 [30] 0.036 S vy —
R 0.166 + 0.009 (9] 0.1722 TSt (2 —er)

EE,; [TE—qq)
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3. Traditional pole observables

~ Leptonic couplings:

—1.34+ 3.2 —0.43 4+ 0.27
69} €= | —28+26 | x107° A 0.0+ 1.4 x 1073
1.5 4+ 4.0 0.62 £+ 0.62
—0.19 4+ 0.28
_3 .
097 = 0.1+1.2 x 10 ~ W mass correction:

—0.09 £ 0.59
7 S = (2.9+£1.6) x 10~

~s,c, b couplings:

=(1.3+41)x 102 §g4° =(2.2+5.6) x 102
6g7¢ = (—1.3+£3.7) x107%  §gi¢=(-3.2+5.4) x 10°°
8g7° = (31+1.7) x 1072 §g%° = (21.8 £ 8.8) x 1073
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~ Leptonic couplings:

—1.34+ 3.2 —0.43 4+ 0.27
69} €= | —28+26 | x107° A 0.0+ 1.4 x 1073
1.5 4+ 4.0 0.62 £+ 0.62
—0.19 4+ 0.28
097 = 0.1+1.2 x 1077 ~ W mass correction:

—0-09=0.59 Sy = (2.9+1.6) x 1074

~'s, ¢, b couplings: ‘ What about Zuu and Zdd corrections?

=(1.3+41)x 102 §g4° =(2.2+5.6) x 102
6g7¢ = (—1.3+£3.7) x107%  §gi¢=(-3.2+5.4) x 10°°
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© One linear combination of up and down quark vertex corrections is unconstrained:

59%“’ — 6gfd -+

3. Traditional pole observables

397, — 9y « zu 9L t 9y - 74
9 5.9]% + 2 59R
4gY QQY

~ Itis useful to rearrange these 4 couplings so that we can separate the blind direction
from the rest of the parameter space:

14.04.2021

(;j\

~
ry

1/

o
5gZu

5‘ Zd
\ 07

¥

—0.9+£1.8

0.3+33

—24+48
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3. Traditional pole observables

© One linear combination of up and down quark vertex corrections is unconstrained:

397 — g4 397 + g3
Sgit + 697 + L sgpt + LT G ghe
4gY QQY

~ Itis useful to rearrange these 4 couplings so that we can separate the blind direction
from the rest of the parameter space:

() (097" (093 -029 —0.23 —0.01\ (dg7"
vl _ o, dgft | _ [ 018 087 —0.33 —0.33 | | 497"
> | 97! 027 018 0.90 —0.29 | | 6474
\t/)  \agZ) \oa7 037 017 090 ) \ 5471 )
. _0.0L18 This can be achieved
_9 | using DO data [Efrati,
y | =1 03£33 | x10 _ ‘
94448 Falkowski, Soreq, ‘15]
) ST but with very modest
: . recision: |t]| < 0.2
~ ¢t unconstrained. Can we use LHC data to restrict it? L i
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4. Hadron colliders as probes of Zgqg couplings

> We find that the cleanest observable for the task at hand is the Drell-Yan
forward-backward asymmetry (Agg)

© This asymmetry arises in the SM due to parity-violating Z couplings to fermions:
d6 g (8, cosd™)
d cos 6*

o< HZ" (3) (14 cos? 0*) + Hggd (§) cos 0*

Forward events: cos8* > 0
Backward events: cos8* < 0
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4. Hadron colliders as probes of Zqgq couplings

© This asymmetry cannot be directly observed at the LHC because there we
are not dealing with quarks as incoming particles, but with protons. Thus, we must
modify its definition by including parton distribution functions (PDFs)
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4. Hadron colliders as probes of Zqgq couplings

© This asymmetry cannot be directly observed at the LHC because there we
are not dealing with quarks as incoming particles, but with protons. Thus, we must
modify its definition by including parton distribution functions (PDFs)

Problem: the absence of
a preferred direction
that one can use to
build an asymmetry.
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4. Hadron colliders as probes of Zqgq couplings

© This asymmetry cannot be directly observed at the LHC because there we
are not dealing with quarks as incoming particles, but with protons. Thus, we must
modify its definition by including parton distribution functions (PDFs)

Problem: the absence of Solution: the asymmetry is defined
a preferred direction considering the longitudinal boost
that one can use to of the dilepton system on an event-
build an asymmetry. by-event basis.
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4. Hadron colliders as probes of Zqgq couplings

© This asymmetry cannot be directly observed at the LHC because there we
are not dealing with quarks as incoming particles, but with protons. Thus, we must
modify its definition by including parton distribution functions (PDFs)

Problem: the absence of Solution: the asymmetry is defined
a preferred direction considering the longitudinal boost
that one can use to of the dilepton system on an event-
build an asymmetry. by-event basis.

loy, (Y, 5, cos6* ven ;- . . } .
dapp (Y, 8, cos¥) X Z [r’%m’m (8,c080%) + Dyz (Y, §) 6944 (3, cos )} Fig (Y. s)

dY ds d cos 6* 44 qq
q=u.d,s,c,b

A cr(Y.s)—op(Y.s
AFB (Y, ‘5) — ( A) ( A)
orp (Y.8)+op(Y.3)
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4. Hadron colliders as probes of Zqgq couplings

~ The functional dependence on Y and s increases the number of independent
observables at our disposal

© The measurement we will use is one of the angular coefficient A, (Apg = 3/8 A,)
coming from ATLAS:

Y| Experimental value | SM prediction | [ATLAS-CONF-2018-037 (2018)]
0.0-0.8 0.0195 4 0.0015 0.0144 4 0.0007

0.8-1.6 0.0448 = 0.0016 0.0471 = 0.0017
1.6 - 2.5 0.0923 £ 0.0026 0.0928 £ 0.0021
25-3.6 0.1445 £ 0.0046 0.1464 = 0.0021

© This choice is motivated by the availability of a fully developed SM prediction
[S. Catani, D. de Florian, G. Ferrera, and M. Grazzini ‘15]
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4. Hadron colliders as probes of Zgqg couplings

> Restrictions from each bin:

0.0<|Y|<08: 0.635g7% +0.716g5" — 0.205g7¢ — 0.22 597 = 0.088(29)
0.8 <|Y|<1.6: 0.605g7"+0.74595" —0.185g7% — 0.226g5% = —0.012(12)
1.6 <|Y|<25: 0.538¢7% +0.808g5" — 0.165g7% — 0.23 6975 = —0.0014(92)
2.5 <|Y|<36: 0.43597" +0.866g5" —0.185g7% — 0.21 595 = —0.0030(81)
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4. Hadron colliders as probes of Zgqg couplings

> Restrictions from each bin:

0.0<|Y|<08: 0.635g7% +0.716g5" — 0.205g7¢ — 0.22 597 = 0.088(29)
0.8 <|Y|<1.6: 0.605g7"+0.74595" —0.185g7% — 0.226g5% = —0.012(12)
1.6 <|Y|<25: 0.538g7%+0.800g75" — 0.16 @M —0.238g7% = —0.0014(92)
25<|Y|<36: 0.43597" +0.866g5" — 0.185g7¢ — 0.21 5g5¢ = —0.0030(81)

¥

> Restrictions on the four uncorrelated and orthonormal linear combinations:

[ = 0.216g7" + 0.1959%" + 0. 16597 + 0.840g70\ [ —10£4

u = 0.030g7" — 0. 07(’39{2“ 0.870g7% + 0.4909%5% | 0.5+ 0.4
= 0.830g7" — 0.546g4" + 0.025g7¢ — 0.1086g4% | 0.04 + 0.06
\ = 0.510g7% + 0. 82(’)9{2“’ 0.170g7% — 0.226¢5" ) \—0.001 £ 0.005
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4. Hadron colliders as probes of Zgqg couplings

> Restrictions from each bin:

0.0<|Y|<08: 0.635g7% +0.716g5" — 0.205g7¢ — 0.22 597 = 0.088(29)
0.8 <|Y|<1.6: 0.605g7"+0.74595" —0.185g7% — 0.226g5% = —0.012(12)
1.6 <|Y|<25: 0.538g7%+0.800g75" — 0.16 @M —0.238g7% = —0.0014(92)
25<|Y|<36: 0.43597" +0.866g5" — 0.185g7¢ — 0.21 5g5¢ = —0.0030(81)

¥

> Restrictions on the four uncorrelated and orthonormal linear combinations:

(1" =0.215g7" + 0.195g7" +046092d+084bg @\ [ —10+4 )
,» = 0.030g7" — 0. 07(’39{2“ 0.870g7¢ + 0.495 g% 0.5+ 0.4
= 0.830g7" — 0.546g2" 4 0.025g7 % — 0.105 g2 0.04 + 0.06

\ t' = 0.515g7% + 0.825g4% — 0.176¢%4 —0.22097" )

We are capable of obtaining
per mille level constraints
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4. Hadron colliders as probes of Zgqg couplings

© Impact on the global fit:

The combination of

T 0.004 + 0.017 1. —0.09 —0.08 —0.04 LEP+LHC is good
vl _ 0.010 £ 0.032 _ —0.09 1. -=0.09 —0.93 enough to lift the blind
2 0.021 £ 0.046 | 7 —0.08 =0.09 1. —=0.19 ’ direction, but we are not

t —0.03£0.19 —0.04 —0.93 —0.19 1. as restrictive as we were
int’, sincet-t' =0.16
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4. Hadron colliders as probes of Zgqg couplings

© Impact on the global fit:

The combination of
T 0.004 +0.017 1. —0.09 —0.08 —Q.0- LEP+LHC is good
y | ]0.010+0.032 [ -009 1. —0.09C0.93) _} enough to lift the blind
Sl T lo021+0046 |0 T | —0.08 —0.09 1. 1€ direction, but we are not
t —0.034+0.19 —0.04 —0.93 —0.19 as restrictive as we were
int’,sincet-t’' =0.16
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4. Hadron colliders as probes of Zgqg couplings

© Impact on the global fit:
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04+ i J 04
l I |
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02F 02t
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The combination of
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enough to lift the blind
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4. Hadron colliders as probes of Zqgq couplings

© LHC constrains a specific direction much strongly than DO. Both hadron
measurements are important for the global fit, although for simple scenarios
LHC typically has a larger effect:

[\  [—0.005=+0.016) /[ 1. —0.25 0.1 0.01 )
y 0.009 = 0.022 ~0.25 1. —0.03 —0.91
T —0014ax0032] P 01 —003 1. —0.26
\t/ \ —0.03+£0.13 ) \ 0.01 —0.91-026 1. )
(6g7"\  [—0.012 £0.024) /[ 1 0.51 0.68 0.69)
dg4* | | —0.005 £ 0.032 1051 1 0.56 0.94
ogft | | —0.020 £0.037 | P= 1068056 1 054
\Jdg7?) \ —0.03£0.13 ) \0.69 0.94 0.54 1 )
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4. Hadron colliders as probes of Zqgq couplings

© LHC constrains a specific direction much strongly than DO. Both hadron
measurements are important for the global fit, although for simple scenarios
LHC typically has a larger effect:

[\  [—0.005=+0.016) /[ 1. —0.25 0.1 0.01 )
y 0.009 = 0.022 ~0.25 1. —0.03 —0.91
T —0014ax0032] P 01 —003 1. —0.26
\t/ \ —0.03+£0.13 ) \ 0.01 —0.91-026 1. )
(6g7"\  [—0.012 £0.024) /[ 1 0.51 0.68 0.69)
dg4* | | —0.005 £ 0.032 1051 1 0.56 0.94
ogft | | —0.020 £0.037 | P= 1068056 1 054
\Jdg7?) \ —0.03£0.13 ) \0.69 0.94 0.54 1 )

The other 16 parameters are also being fitted here, to almost no changes in their limits
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4. Hadron colliders as probes of Zgqg couplings

ALEC provides crucial information in simple NP scenarios:

0.04} _, /
&
L7
0.02} 47
— = LEP
H‘% Or LHC
© — Afp
~ | aeaa- LEP+ALY
-0.02} {_,{ / &
" LHC
ﬁ:,-" — LEF‘+AFE
~-0.04} s
4 r

004 -002 0 002 004
691"
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4. Hadron colliders as probes of Zgqg couplings

© The use of these two inputs leaves much less room for the inclusion
of nonlinear contributions:

LEP fit LHC fit

01 0.1}

linear
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Side note: importance of hadron colliders for the EW fit
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5. Conclusions

© We have discussed the impact of LHC Z-pole measurements on constraining
the Wilson coefficients of dimension-6 operators in the SMEFT
(mainly vertex corrections)

~ Our main result is that the flat direction along the t variable is indeed lifted
with the inclusion of the Apz ATLAS input

~ We find that the ATLAS Az information provides a significant improvement
on LEP-only bounds on the Zqq vertex corrections even in simple scenarios
with few free parameters
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© We have discussed the impact of LHC Z-pole measurements on constraining
the Wilson coefficients of dimension-6 operators in the SMEFT
(mainly vertex corrections)

~ Our main result is that the flat direction along the t variable is indeed lifted
with the inclusion of the Apz ATLAS input

~ We find that the ATLAS Az information provides a significant improvement
on LEP-only bounds on the Zqq vertex corrections even in simple scenarios
with few free parameters

> Qutlook 1: Current and future measurements of Drell-Yan dilepton production
by LHC could be analyzed following a similar procedure to ours in order to
extend the impact of hadron colliders on the electroweak precision program

© Qutlook 2: Information from Drell-Yan cross sections (in addition to asymmetries)
could be added, and the off-pole data could be analyzed at the same time in the
context of a more general fit to both vertex corrections and 4-fermion operators
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EXTRA SLIDES




Backup 1: Allowed regions for some simple NP settings
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