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Outline

• EFT (EFfective Theories) from amplitudes, instead 
of Lagrangians

• Renormalization of EFT using on-shell methods:                 
         Loops from tree-level on-shell amplitudes 
☛  Simple, elegant, and efficient
☛  Selection rules can explain many non-renormalizations
☛  Clean relations between different anomalous dimensions
☛  Easy recycling: Every calculation can be re-used!  

• Some motivations for on-shell amplitude methods



I. Some motivation



Extremely useful for simplifying calculations

Amplitude methods

à la Feynman !

1 INTRODUCTION
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Figure 1: Gauge theories have three- and four-point vertices in a Feynman diagrammatic descrip-
tion.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2

Ô
≠gR . (1.5)
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1 INTRODUCTION

Here F a
µ‹ is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ = 1
2ˆµh‹

‹ , the corresponding vertex
is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc
3 µ‹‡(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by

3pt graviton 
Feynman vertex

4pt graviton 
Feynman vertex

modern
methods
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
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Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
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derived from their respective Lagrangians
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Here F a
µ‹ is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ = 1
2ˆµh‹

‹ , the corresponding vertex
is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc
3 µ‹‡(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
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where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
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to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2

Ô
≠gR . (1.5)

6

1

2

3

4

1 INTRODUCTION

Here F a
µ‹ is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ = 1
2ˆµh‹

‹ , the corresponding vertex
is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc
3 µ‹‡(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
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µ‹F a µ‹ , LEH = 2
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
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where the momentum-index combinations are pp, PY,
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians
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We conclude that it is impossible to a single self-interacting massless spin 1 particle! But

suppose we have many of these particles labelled by the index a; thus the self-interaction of
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, a
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, a
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is further proportional to a coupling constant fa1a2a3 . Considering the four particle

amplitude with the same helicities and labels a
1

, a
2

, a
3

, a
4

, the residues in the s, t, u channels

have additional factors of fa1a2ef ea3a4 and similarly in the t, u channels. Now the ansatz for

the four-particle amplitude has the form

h13i2[24]2
✓

Aa1a2a3a4

st
+

Ba1a2a3a4

tu
+

Ca1a2a3a4

us

◆

(3.9)

and matching the residues in s, t, u tells us that

Ca1a2a3a4 �Aa1a2a3a4 = fa1a2ef ea3a4

Aa1a2a3a4 �Ba1a2a3a4 = fa2a3ef ea4a1

Ba1a2a3a4 � Ca1a2a3a4 = fa3a1ef ea2a4 (3.10)

and now, we can solve for Aa1a2a3a4 , Ba1a2a3a4 , Ca1a2a3a4 if and only if the fa1a2a3 satisfies the

Jacobi identity

fa1a2ef ea3a4 + fa2a3ef ea4a1 + fa3a1ef ea2a4 = 0 (3.11)

Let’s now move on to a single particle with s = 2. Naively, since the residue in the

s�channel is proportional to 1/u2, we might think that it is impossible for the four-particle

amplitude to have crucial properties of having only single poles! However, this 1/u2 is the

residue just as s ! 0, and so it could also be represented as � 1

tu . Thus there is a unique

possibility for the four-particle amplitude for a single massless spin two particle:

� h13i4[24]4
stu

(3.12)

which evidently has all the correct residues in all three channels! We can further investigate

the possibility on several massless spin two particles, with a coupling constant ga1a2a3 ; the

same analysis as for spin one then gives us quadratic constraints on the ga1a2a3 that are solved

only by g’s that, up to change of basis, are only non-vanishing for a
1

= a
2

= a
3

, i.e. which

are mutually non-interacting.

We have thus seen that the only consistently interacting massless spin one particles must

have a Yang-Mills structure, and the only consistent massless spin 2 particles does not non-

trivially allow more than one such particle, and gives us the standard gravity amplitude. Of

course we have done more than simply show the amplitudes are consistent, we have computed

them!

For spin s > 2, the residue in the s-channel is at least 1/u3, and so there is no way to

have a consistent four particle amplitude with only simple poles in s, t, u. We thus conclude

that there are no consistent theories of self-interacting massless particles of spin higher than

two.

Let’s move on to determine what sorts of self-consistent interactions other particles can

have with massless spin 1, 2 particles. Let’s start with the coupling of a spin s particles to
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where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2

Ô
≠gR . (1.5)
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Here F a
µ‹ is the usual YM field strength and R the Ricci scalar.

Following standard Feynman-diagrammatic methods, we gauge-fix and then extract the
propagator(s) and the three- and higher-point vertices. For gravity we also expand around
flat spacetime, taking the metric to be gµ‹ = ÷µ‹ + Ÿhµ‹ where ÷µ‹ is the Minkowski metric
and hµ‹ is the graviton field. As illustrated in Figs. 1 and 2, with standard gauge choices,
gauge theory has only three- and four-point vertices, while gravity has an infinite number
of vertices of arbitrary multiplicity. The complexity of each individual interaction term is
perhaps more striking than their infinite number. Consider, for example, the three-graviton
interaction. In the standard de Donder gauge, ˆ‹h‹

µ = 1
2ˆµh‹

‹ , the corresponding vertex
is [96, 97],

G3 µfl,‹⁄,‡· (p1, p2, p3)

= iSym
5
≠1

2P3(p1 · p2÷µfl÷‹⁄÷‡· ) ≠ 1
2P6(p1‹p1⁄÷µfl÷‡· ) + 1

2P3(p1 · p2÷µ‹÷fl⁄÷‡· )

+ P6(p1 · p2÷µfl÷‹‡÷⁄· ) + 2P3(p1‹p1· ÷µfl÷⁄‡) ≠ P3(p1⁄p2µ÷fl‹÷‡· )
+ P3(p1‡p2· ÷µ‹÷fl⁄) + P6(p1‡p1· ÷µ‹÷fl⁄) + 2P6(p1‹p2· ÷⁄µ÷fl‡)

+ 2P3(p1‹p2µ÷⁄‡÷·fl) ≠ 2P3(p1 · p2÷fl‹÷⁄‡÷·µ)
6

, (1.6)

where we set Ÿ = 2, pi are the momenta of the three gravitons, ÷µ‹ is the flat metric, “Sym”
implies a symmetrization in each pair of graviton Lorentz indices µ ¡ fl, ‹ ¡ ⁄ and ‡ ¡ · ,
and P3 and P6 signify a symmetrization over the three graviton legs, generating three or
six terms respectively. The symmetrization over the three external legs ensures the Bose
symmetry of the vertex. In total, the vertex has of the order of 100 terms. This generally
undercounts the number of terms, because within a diagram each vertex momentum is a
linear combination of the independent momenta of that diagram.

We may contrast this to the three-gluon vertex in Feynman gauge,

V abc
3 µ‹‡(p1, p2, p3) = gfabc

5
(p1 ≠ p2)‡÷µ‹ + cyclic

6
. (1.7)

which does not appear to bear any obvious relation to the corresponding three-graviton
vertex (1.6). These considerations seemingly suggest that gravity is much more complicated
than gauge theory. Moreover, the three-graviton vertex immediately appears to conflict with
the simple factorization of Lorentz indices into left and right sets visible in Eq. (1.4). The
first term in Eq. (1.6), for example, contains a factor ÷µfl which explicitly contracts a left
graviton index with a right one.

The reason why the three-graviton vertex is so complicated is that it is gauge-dependent.1
With special gauge choices and appropriate field redefinitions [94, 95, 98, 99], it is possible
to considerably simplifying the Feynman rules. Still, direct perturbative gravity calculations
in a Feynman diagram approach are rather nontrivial, especially beyond leading order, even
with modern computers. To eliminate the gauge dependence we should instead focus on
the three-vertex with on-shell conditions imposed on external legs, by demanding that the

1While somewhat less complicated than the three-graviton vertex, the three-gluon vertex is also gauge-
dependent.
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2

Ô
≠gR . (1.5)
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corrections. For the Yang-MiOs Geld it takes the form

V( T""')p ~ —ic.p,P"= —ic.~p(P +P'") . (2.3)
The propagators for the normal and Gctitious quanta
are, respectively,

G~v'v"/p',
G~~aP/P2

(2.4)

(2 5)

with p' being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

6eld are much more complicated. In this case we shall
employ the momentum-index combinations pq4, p'OT'',
p"p'9", p"'4'"z"'. The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
turn-index triplets. At least 171 separate terms are
required in the complete expression for S3 in order to
exhibit this full symmetry, and for 54 the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms~
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way S3 is
reduced to j.1 terms and S4 to 28 terms, as follows:

~ Pyv~'Po' r'~ Pp"X"

symL l~.(p—A""n"~ ") lI'4(p-p'~""~ ")+lI'4(p AP ~" ~ ")+lI'4(p A""~"~ ")+~4(P'P"~""~")
'I'4(p'P "-0" 0"")+'I'3(p'P "-0"'6"')+'~4(p'P"0"'0"')+~ (P'P "n'"0"')+f' (P'P'"0"n"")'

I' (p -p'~" ~"~"")j, (26)

ql p"y"~pc"'x"'

symL —l& (p p'~""0"~'"~'")—l~ (p'p'~""~'"~'")—:I' (p'p'"~"—'I'"~'")+lI' (p p'~"'~"'~'"~'")
y ~P4(p pg»g«g pic~*)+—'P»(prpr7J»g pcg~ 4)+ 'P, (prp'-pyJvrrj pcg& 4) 4p, (p—p'gl rqvr. g pc/&v)
+4~24(p P'n""n"n'"n")+'~24(p'P'n"'n""~")+ '&»(P'P'"n"-'n"'n'")+&24(p P"~'"n""~'")

kI'»(p p—'~"'I"~""~") k&»(p'p—'"~"~""~'")+i~»(pp'0'"9""n'")—2&24(p p'~""~"~"'~")
p2 (prp rgv pg x cg Kcc) P»(p pp Agv cgKP gru') I 24 (p p pg rcrjrpgv x) p~ (p pp cg Alvin

rpriv cc)

+I'4(p p'~"p~" ~"~"") I'»(p'p'~""~—"~"") 2I'»(p p'~"p—~""~"~'") I'»(p'p'—~'"~"'n"")
P (ppp c~hcc~pcr~vr) P (pap p~rp~vc~ccX) P (pcrpvp~rp~Xc~rv)+2+ (p.p ~vcr~rp~kc~ccp) j (2 7)

The "Sym" standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pp, a.r, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.
Expressions (2.6) and (2.7) can be obtained in a

straightforward manner by repeated functional diGer-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more eKcient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once 52' is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

G~ (~P.n-+~P.~- n»~-)/P'-
G~n""/P'.

(2.9)
(2.10)

' The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved} to be the
expressions containing the smallest number of terms.

him best we shall not shackle him by describing one
here. V(e also make no attempt to display S& or any
higher vertices.
The vertex V(;)p has the following form for the

gravitational Geld:
aIIr"

(p )v'

,'Symrt2P" pP"8„'—-P"pP'„g"
+(p.p" p'.p )4'+p'P'4—& 'j (2 g)

where the momentum-index combinations are pp, PY,
p"0"T", and the symmetrization is to be performed on
the index pair o.r. The propagators for the normal and
Gctitious quanta are given by
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Figure 1: Gauge theories have three- and four-point vertices in a Feynman diagrammatic descrip-
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Figure 2: Gravity theories have an infinite number of higher-point contact interactions in a Feynman
diagrammatic description.

where Atree
4 (1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude,

Mtree
4 (1, 2, 3, 4) is a four-graviton tree amplitude and Ÿ is the gravitational coupling to related

to Newton’s constant via Ÿ2 = 32fi2GN and, for reasons that will become clear shortly, the
polarization vectors of gluons on the right-hand side of Eq. (1.4) are taken to be null. We
will suppress the gravitational coupling by setting Ÿ = 2 throughout this review. The color-
ordered partial tree amplitudes are the coe�cients of basis elements once the amplitude’s
color factors are expressed in the trace color basis, and the coupling g is set to unity. They are
gauge invariant—see e.g. Refs. [88–92] for further details. Equation (1.4) is rather striking,
asserting that tree-level four-graviton scattering is described completely by gauge-theory
four-gluon scattering, bypassing the usual machinery of general relativity. Similar relations
were later derived for higher-point string-theory tree-level amplitudes [86], and generalized in
the field-theory limit to an arbitrary number of external particles [93]. Besides the remarkable
implication that the detailed dynamics of the gravitational field can be described in terms of
the dynamics of gauge fields, Eq. (1.4) has other surprising features not visible in standard
Lagrangian formulations. For example, Eq. (1.4) implies that the four-graviton amplitude
can be re-arranged so that Lorentz indices factorize [94, 95] into “left” indices belonging to
one gauge-theory amplitude and “right” indices belonging to another gauge theory.

1.1 Motivation: Complexity of gravity versus gauge theory
It is interesting to contrast the remarkable simplicity encoded in the relation (1.4) with the
much more complicated expressions that arise from standard Lagrangian methods. Scat-
tering amplitudes for gauge and gravity theories can be obtained using the Feynman rules
derived from their respective Lagrangians

LYM = ≠1
4F a

µ‹F a µ‹ , LEH = 2
Ÿ2

Ô
≠gR . (1.5)
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We conclude that it is impossible to a single self-interacting massless spin 1 particle! But

suppose we have many of these particles labelled by the index a; thus the self-interaction of

a
1

, a
2

, a
3

is further proportional to a coupling constant fa1a2a3 . Considering the four particle

amplitude with the same helicities and labels a
1

, a
2

, a
3

, a
4

, the residues in the s, t, u channels

have additional factors of fa1a2ef ea3a4 and similarly in the t, u channels. Now the ansatz for

the four-particle amplitude has the form

h13i2[24]2
✓

Aa1a2a3a4

st
+

Ba1a2a3a4

tu
+

Ca1a2a3a4

us

◆

(3.9)

and matching the residues in s, t, u tells us that

Ca1a2a3a4 �Aa1a2a3a4 = fa1a2ef ea3a4

Aa1a2a3a4 �Ba1a2a3a4 = fa2a3ef ea4a1

Ba1a2a3a4 � Ca1a2a3a4 = fa3a1ef ea2a4 (3.10)

and now, we can solve for Aa1a2a3a4 , Ba1a2a3a4 , Ca1a2a3a4 if and only if the fa1a2a3 satisfies the

Jacobi identity

fa1a2ef ea3a4 + fa2a3ef ea4a1 + fa3a1ef ea2a4 = 0 (3.11)

Let’s now move on to a single particle with s = 2. Naively, since the residue in the

s�channel is proportional to 1/u2, we might think that it is impossible for the four-particle

amplitude to have crucial properties of having only single poles! However, this 1/u2 is the

residue just as s ! 0, and so it could also be represented as � 1

tu . Thus there is a unique

possibility for the four-particle amplitude for a single massless spin two particle:

� h13i4[24]4
stu

(3.12)

which evidently has all the correct residues in all three channels! We can further investigate

the possibility on several massless spin two particles, with a coupling constant ga1a2a3 ; the

same analysis as for spin one then gives us quadratic constraints on the ga1a2a3 that are solved

only by g’s that, up to change of basis, are only non-vanishing for a
1

= a
2

= a
3

, i.e. which

are mutually non-interacting.

We have thus seen that the only consistently interacting massless spin one particles must

have a Yang-Mills structure, and the only consistent massless spin 2 particles does not non-

trivially allow more than one such particle, and gives us the standard gravity amplitude. Of

course we have done more than simply show the amplitudes are consistent, we have computed

them!

For spin s > 2, the residue in the s-channel is at least 1/u3, and so there is no way to

have a consistent four particle amplitude with only simple poles in s, t, u. We thus conclude

that there are no consistent theories of self-interacting massless particles of spin higher than

two.

Let’s move on to determine what sorts of self-consistent interactions other particles can

have with massless spin 1, 2 particles. Let’s start with the coupling of a spin s particles to
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Trivial to see by on-shell amplitude methods



1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

(assuming lepton & baryon number)

SM leading deviations  
from the SM

One-loop operator mixing important:   
(tells us how BSM enter in observables)

5 Running e↵ects from ⇤ to MW

So far, we have implicitly assumed that the Wilson coe�cients were evaluated at the elec-

troweak scale, at which their e↵ects can be eventually measured. However, particular UV

completions predict the values of those coe�cients at the scale ⇤ where the heavy BSM is

integrated out. The RG evolution from ⇤ down to the electroweak scale, described by the

corresponding anomalous dimensions, can be important in many cases.

Our main interest is to calculate the anomalous dimensions of the Wilson coe�cients that

can have the largest impact on Higgs physics. As we explained in the previous section, these

are the coe�cients listed in Eq. (37). In Ref. [7] we already calculated the most relevant

anomalous dimensions of the i in Eq. (37). We showed that tree-level Wilson coe�cients do

not enter, at the one-loop level, in the RGEs of the i, a property that allowed us to complete

the calculation of [6] for the anomalous dimensions relevant for h ! ��, Z�. In this section

we extend the analysis by calculating the anomalous dimensions for the 5 tree-level Wilson

coe�cients:

{cH , c6, cyt , cyb , cy⌧} . (51)

We notice that even in the future, with better measurements of the Higgs couplings, and

then better bounds on Eq. (51), we still expect Eq. (51) to give the main BSM contributions

to Higgs physics, since other Wilson coe�cients, such as cW , are expected to receive even

stronger constraints from LHC (for a given ⇤).

Generically, the anomalous dimensions are functions of other Wilson coe�cients:

�ci =
dci

d log µ
= �ci(cj) , (52)

where µ is the renormalization scale. In the RHS of Eq. (52) we keep the cj coe�cients

that can potentially give the most significant contributions to the RG running. We keep the

following cj. First, those of Eq. (51) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g⇤ large. We also keep the Wilson

coe�cients of operators involving the top quark, departing from the MFV assumption. These

are Oq3
L , Ot

R, O(3) q3
L and Otb

R , in addition to the 4-fermion operators, Oq3
LL, O(8) q3

LL , Ot
LR,

O(8) t
LR , Oytyb , O(8)

ytyb , Oyty⌧ and O0
yty⌧ . We have several motivations to keep them. First, they

have no large constraints from experiments. Second, they can induce large e↵ects on the

anomalous dimensions of Eq. (51), since they are proportional to the top Yukawa coupling.

Also their Wilson coe�cients can be sizable in many BSM models, such as composite Higgs

or supersymmetric theories, as we will discuss. To summarize, we consider in the RHS of

Eq. (52) the following Wilson coe�cients:

{cj} = {cH , c6, cyt , cyb , cy⌧ , cL, cR, c(3)L , ctbR, cLL, c
(8)

LL, cLR, c
(8)

LR, cytyb , c
(8)

ytyb
, cyty⌧ , c

0
yty⌧} , (53)

where, from now on, we suppress the q
3

and t superindices in the coe�cients for simplicity.

We would like to mention that, even for those Wilson coe�cients that receive experimental

constraints, as those discussed in the previous section, the fact that the constraints apply
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1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

(assuming lepton & baryon number)

SM leading deviations  
from the SM

One-loop operator mixing important:   
(tells us how BSM enter in observables)

5 Running e↵ects from ⇤ to MW

So far, we have implicitly assumed that the Wilson coe�cients were evaluated at the elec-

troweak scale, at which their e↵ects can be eventually measured. However, particular UV

completions predict the values of those coe�cients at the scale ⇤ where the heavy BSM is

integrated out. The RG evolution from ⇤ down to the electroweak scale, described by the

corresponding anomalous dimensions, can be important in many cases.

Our main interest is to calculate the anomalous dimensions of the Wilson coe�cients that

can have the largest impact on Higgs physics. As we explained in the previous section, these

are the coe�cients listed in Eq. (37). In Ref. [7] we already calculated the most relevant

anomalous dimensions of the i in Eq. (37). We showed that tree-level Wilson coe�cients do

not enter, at the one-loop level, in the RGEs of the i, a property that allowed us to complete

the calculation of [6] for the anomalous dimensions relevant for h ! ��, Z�. In this section

we extend the analysis by calculating the anomalous dimensions for the 5 tree-level Wilson

coe�cients:

{cH , c6, cyt , cyb , cy⌧} . (51)

We notice that even in the future, with better measurements of the Higgs couplings, and

then better bounds on Eq. (51), we still expect Eq. (51) to give the main BSM contributions

to Higgs physics, since other Wilson coe�cients, such as cW , are expected to receive even

stronger constraints from LHC (for a given ⇤).

Generically, the anomalous dimensions are functions of other Wilson coe�cients:

�ci =
dci

d log µ
= �ci(cj) , (52)

where µ is the renormalization scale. In the RHS of Eq. (52) we keep the cj coe�cients

that can potentially give the most significant contributions to the RG running. We keep the

following cj. First, those of Eq. (51) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g⇤ large. We also keep the Wilson

coe�cients of operators involving the top quark, departing from the MFV assumption. These

are Oq3
L , Ot

R, O(3) q3
L and Otb

R , in addition to the 4-fermion operators, Oq3
LL, O(8) q3

LL , Ot
LR,

O(8) t
LR , Oytyb , O(8)

ytyb , Oyty⌧ and O0
yty⌧ . We have several motivations to keep them. First, they

have no large constraints from experiments. Second, they can induce large e↵ects on the

anomalous dimensions of Eq. (51), since they are proportional to the top Yukawa coupling.

Also their Wilson coe�cients can be sizable in many BSM models, such as composite Higgs

or supersymmetric theories, as we will discuss. To summarize, we consider in the RHS of

Eq. (52) the following Wilson coe�cients:

{cj} = {cH , c6, cyt , cyb , cy⌧ , cL, cR, c(3)L , ctbR, cLL, c
(8)

LL, cLR, c
(8)

LR, cytyb , c
(8)

ytyb
, cyty⌧ , c

0
yty⌧} , (53)

where, from now on, we suppress the q
3

and t superindices in the coe�cients for simplicity.

We would like to mention that, even for those Wilson coe�cients that receive experimental

constraints, as those discussed in the previous section, the fact that the constraints apply
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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I.  No 4-fermion (ψγμψ)2  corrections to dipoles
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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thattheJJ-operatorsO4fandO�fdonotrenormalizetheloop-operators.Forthispurpose,

itisimportanttorecallthatwecanwritefour-fermionoperators,suchas(q†̄�µq)(u
†̄�µu),in

theequivalentformq†u†qu.Fromthis,itisobviousthatclosingaloopoffermionscanonly

giveoperatorscontainingtheLorentzstructuref†forquthatcannotbecompletedtogive

adipoleoperator(noritsequivalentforms,q�µ⌫�⇢D
⇢q†Fµ⌫orDµ�qDµuH).Forthecaseof

O�f,theabsenceofrenormalizationofthedipoleoperator,asforexamplefromdiagrams

liketheoneinFig.1,canbeprovedjustbyrealizingthatwecanalwayskeeptheLorentz

structure�̄µDµ(�f)externaltotheloop;thisLorentzstructurecannotbecompletedtoform

adipoleoperator.ThecontributionofO�ftoOFFisalsoabsent,ascanbededucedfrom

Eq.(14):thefirstterm,afterclosingthefermionloop,givesthewrongLorentzstructure

togenerateOFF,whilethesecondtermgivesaninteractionwithtoomanyfieldsifweuse

thefermionEOM.Finally,OyucanonlycontributetotheLorentzstructure�qu,nottothe

dipoleoneinEq.(15).

WecanbemoresystematicandcompleteusingourESFTapproach.Letusseefirsthow

theoperatorsofEq.(12)canbeembeddedinsuper-operators.Byembeddingqanduinthe

chiralsupermultipletsQandU,wefindthatthedipoleloop-operatormustarisefromthe

✓2-termofanon-chiralsuperfield:

�(Q
$
D↵U)W↵=�✓2OD+···.

(16)

AmongtheJJ-operatorsofEq.(13),twoofthemcanarisefromsupersymmetricD-terms

andarethensupersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

=✓̄2✓2O�q+···,
�

Q†eVQQ
�

�

Q†eVQQ
�

=�1

2
✓̄2✓2O4q+···,(17)

andsimilaroperatorsforQ!U,whereweagainusetheshort-handnotationVQ=2QqV.

Nevertheless,oneoftheJJ-operatorsmustcomefromthe✓2-componentofanon-chiral

superfieldthatisnotinvariantundersupersymmetry:

�

�†eV��
�

�QU=✓2Oyu+···.
(18)
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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�QU = ✓2Oyu + · · · .
(18)
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:
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D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
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✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:
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very different contributions 
from Feynman diagrams
give the same result !

(ψψ)2
_ F2H2

(up to color factors)

On-shell amplitude methods  
can explain straightforwardly these results!

Also



II. EFT (EFfective Theories) 
                 from amplitudes

convention: all particles incoming

hi = helicity of the amplitude

p1, h1

p2, h2

pi, hi

pj, hj
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the power of being on-shell !

only physical states (p2=0)Ghosts, Golstones,…
(p2≠0)  definite helicity

An important gain in simplicity:

One must eliminate redundancies
Many missed in original papers (Buchmuller,Wyler,…)!



Spinor-helicity formalism

momenta, it is convenient to write them back with positive momenta. Following the appendix
of Ref. [28], we define

|� pi↵ = i|pi↵ , |� p]↵̇ = i|p]↵̇ , (78)

that consistently leads to |� pi[�p| = �p.
The polarizations for incoming vectors with momentum p are given by

✏+µ =
hq|�µ|p]p
2hqpi , ✏�µ = �hp|�µ|q]p

2[qp]
, (79)

where q is a reference momentum [1]. We notice that when considering an internal vector in
Eq. (77), the polarizations come with opposite sign for the momentum in each amplitude A

1

and A
2

. Therefore we have

✏+µ (p)✏
�
⌫ (�p) + ✏�µ (p)✏

+

⌫ (�p) =
X

h

✏hµ(p)(✏
h
⌫(p))

⇤ , (80)

where we have used Eq. (78) and Eq. (79). Eq. (80) gives the proper sum over vector polar-
izations that we expect in a propagator. For fermions, however, the situation is di↵erent. We
have

u⌥(p) = P⌥

 
|pi↵
|p]↵̇

!
, v̄⌥(p) =

�hp|↵ [p|↵̇
�
P⌥ , (81)

respectively for incoming h = ⌥1/2 fermions and antifermions, where P⌥ = (1± �
5

)/2. There-
fore, for internal fermions, where the polarizations come with opposite sign for the momentum
in each amplitude A

1

and A
2

, we obtain

u
+

(p)ū
+

(�p) + u�(p)ū�(�p) = i/p , (82)

that leads to an extra i from the expected /p, that we have then to subtract. For this reason,
for each internal fermion line we must multiply by �i.

B.2 SM Amplitudes

The on-shell amplitude approach is based on building higher-point amplitudes from already
existing ones of lower n. The basic “blocks” are the n = 3 amplitudes, which are totally fixed
by their helicities. For the SM gauge boson interactions, using the indices a, b, ... for the adjoint
representation of the non-abelian groups, and i, j indices for the fundamental representation,
we have

A
SM

(1 j , 2 ¯ i
, 3V a

�
) = ga

h13i2
h12i (T

a)ij , A
SM

(1 j , 2 ¯ i
, 3V a

+

) = ga
[23]2

[12]
(T a)ij , (83)

A
SM

(1Hj , 2H†
i
, 3V a

�
) = ga

h13ih23i
h21i (T a)ij , A

SM

(1Hj , 2H†
i
, 3V a

+

) = ga
[13][23]

[12]
(T a)ij . (84)

For the abelian U(1)Y hypercharge we have similar expressions, with (T a)ij ! Yi�ij. We fix
our normalization as Tr[T aT b] = �ab/2, with YH = 1/2 and real ga. Let us comment that, in
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The polarizations for incoming vectors with momentum p are given by
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respectively for incoming h = ⌥1/2 fermions and antifermions, where P⌥ = (1± �
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)/2. There-
fore, for internal fermions, where the polarizations come with opposite sign for the momentum
in each amplitude A

1

and A
2

, we obtain
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+
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that leads to an extra i from the expected /p, that we have then to subtract. For this reason,
for each internal fermion line we must multiply by �i.
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Then, by making use of Eq. (67) we get (notice that only `+
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contributes to Eq. (70))
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where we also multiplied by �i due to the internal fermion line in Fig. 12, as explained in B.
We now want to use the above result to obtain Eq. (49), which corresponds to taking a 2-cut
in the (12)-channel (see Fig. 8, (a)). Using Eq. (63) with I = 1, J = 2 and K = 3, we get
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After dividing by AWHle and using Eq. (71), we find that Eq. (72) agrees with Eq. (49).

B SM on-shell amplitudes

B.1 Conventions

We start with the conventions taken in this article. We choose the metric ⌘µ⌫ = diag(+,�,�,�),
and the 2-component spinors with h = ⌥1/2 to be denoted respectively by |pi↵ and |p]↵̇. The
momentum is given by p↵↵̇ = |pi↵[p|↵̇, and the contractions are

hpqi ⌘ hp|↵|qi↵ and [pq] ⌘ [p|↵̇|q]↵̇ , (73)

where we follow the conventions of Ref. [27] for raising and lowering indices. We also define
hi|�µ|j] ⌘ hi|↵(�µ)↵↵̇|j]↵̇, that fulfill the property hi|�µ|j] = [j|�µ|ii. We also have

pµi =
1

2
hi|�µ|i] , 2 pi · pj = hiji[ji] , (74)

the Fierz relation
hi|�µ|j]hk|�µ|l] = �2hiki[jl] , (75)

and the Schouten identity
hijihkli = hikihjli � hilihjki . (76)

Amplitudes are defined with all states incoming. Therefore outgoing states are considered
incoming states with opposite momentum, helicity and particle $ antiparticle. The ordering
of the fermions in the amplitudes is important. After a 2-cut of a loop amplitude, we have
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where in the second line we have reversed the order of the internal fermions to take into account
the minus sign in fermion loops [2]. Since in the amplitudes we encounter spinors with negative
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where in the second line we have reversed the order of the internal fermions to take into account
the minus sign in fermion loops [2]. Since in the amplitudes we encounter spinors with negative
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momenta, it is convenient to write them back with positive momenta. Following the appendix
of Ref. [28], we define

|� pi↵ = i|pi↵ , |� p]↵̇ = i|p]↵̇ , (78)

that consistently leads to |� pi[�p| = �p.
The polarizations for incoming vectors with momentum p are given by
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where q is a reference momentum [1]. We notice that when considering an internal vector in
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where we have used Eq. (78) and Eq. (79). Eq. (80) gives the proper sum over vector polar-
izations that we expect in a propagator. For fermions, however, the situation is di↵erent. We
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respectively for incoming h = ⌥1/2 fermions and antifermions, where P⌥ = (1± �
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)/2. There-
fore, for internal fermions, where the polarizations come with opposite sign for the momentum
in each amplitude A

1

and A
2

, we obtain

u
+

(p)ū
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that leads to an extra i from the expected /p, that we have then to subtract. For this reason,
for each internal fermion line we must multiply by �i.

B.2 SM Amplitudes

The on-shell amplitude approach is based on building higher-point amplitudes from already
existing ones of lower n. The basic “blocks” are the n = 3 amplitudes, which are totally fixed
by their helicities. For the SM gauge boson interactions, using the indices a, b, ... for the adjoint
representation of the non-abelian groups, and i, j indices for the fundamental representation,
we have
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For the abelian U(1)Y hypercharge we have similar expressions, with (T a)ij ! Yi�ij. We fix
our normalization as Tr[T aT b] = �ab/2, with YH = 1/2 and real ga. Let us comment that, in
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At O(E2/Λ2):

When the theory is also invariant under some internal symmetry group, amplitudes behave
as invariant tensors under its action on particle multiplets. In this section we will not bother
to specify the form of group-tensors, reducing to the so-called “color-stripped” amplitudes [1].
In Section 4 we will however consider explicit examples for SM amplitudes, and the invariant
tensors will be provided. Several SM examples can also be found in Refs. [4–6].

Similarly as it is done for operators, we can consider the building-block amplitudes that
define the theory as organized according to an expansion in E/⇤, which means an expansion
in powers of hiji/⇤ and [ij]/⇤. When we go beyond the ordinary interactions that arise
from dimensionless couplings (the equivalent of dimension-4 operators), we find now extra
interactions at any order in E/⇤. Since we will pay special attention to applications in the SM,
we will concentrate here in E2/⇤2 terms, which are the leading corrections to the SM when
lepton number is conserved. We leave for Appendix D the discussion on terms of order E/⇤.

For a generic theory of (i) vector bosons V± with helicity h = ±1, (ii) Weyl fermions  
with h = �1/2, and (iii) scalars �, we have the following building-block amplitudes at order
E2/⇤2 (up to complex conjugation):

• n=3:

AF 3(1V� , 2V� , 3V�) =
CF 3

⇤2

h12ih23ih31i , (2)

that has h = �3. It is quite straightforward to see that this is the only amplitude at
n = 3. Since n = 3 amplitudes have mass dimension one, they must contain 3 powers
of either brackets hiji or squares [ij] in the numerator. Moreover, we have the condition
hiji[ji] = 2pi ·pj = 0 (i, j = 1, 2, 3), that forces the vanishing of either all [ij], in which case
we can only have Eq. (2), or all hiji, that leaves its complex-conjugated version as the only
possibility. It is important to notice that Eq. (2) is antisymmetric under i $ j, and can
only arise for non-abelian gauge bosons, in which case the full amplitude is proportional
to the structure constants.

• n=4: These amplitudes are dimensionless, so they must contain 2 powers of brackets or
squares. We have the following possibilities, with total helicity h = �2:
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possibility. It is important to notice that Eq. (2) is antisymmetric under i $ j, and can
only arise for non-abelian gauge bosons, in which case the full amplitude is proportional
to the structure constants.

• n=4: These amplitudes are dimensionless, so they must contain 2 powers of brackets or
squares. We have the following possibilities, with total helicity h = �2:

AF 2�2(1V� , 2V� , 3�, 4�) =
CF 2�2

⇤2

h12i2 , (3)

AF 2�(1V� , 2 , 3 , 4�) =
CF 2�

⇤2

h12ih13i , (4)

A 4(1 , 2 , 3 , 4 ) =
�
C 4h12ih34i+ C 0

 4

h13ih24i� 1

⇤2

. (5)

With h = 0, we have:

A⇤�4(1�, 2�, 3�, 4�) =
�
C⇤�4h12i[12] + C 0

⇤�4h13i[13]
� 1

⇤2

, (6)

A ¯ �2(1 , 2 ¯ , 3�, 4�) =
C ¯ �2

⇤2

h13i[23] , (7)

A 2

¯ 2

(1 , 2 , 3 ¯ , 4 ¯ ) =
C 2

¯ 2

⇤2

h12i[34] . (8)

3

n=3
h=-3

n=4
h=-2

n=4
h=0

n = number of external states 
h = helicity of the amplitude

}

}

}



n=5
h=-1

n=6
h=0

• n=5: On dimensional grounds, these amplitudes must have one power of brackets (or
squares). We have only one possibility, with h = �1:

A 2�3(1 , 2 , 3�, 4�, 5�) =
C 2�3

⇤2

h12i . (9)

• n=6: This has dimension mass�2, so it cannot carry any power of momentum. The only
possibility is a 6-scalar amplitude, with h = 0:

A�6(1�, 2�, 3�, 4�, 5�, 6�) =
C�6

⇤2

. (10)

The corresponding complex-conjugated amplitudes are obtained by the exchange hiji $ [ji],
and have opposite helicities, h ! �h. We notice that these amplitudes can be unambiguously
specified by assigning (n, h, nF ), where nF = 0, 2, 4 labels the fermion content.

As we said, the approach followed here is equivalent to that with operators. In fact, if we
choose a basis of higher-dimensional operators written in Weyl spinor notation (see for instance
[7] for the case of the SM), the correspondence between dimension-6 operators and the above
amplitudes is one-to-one. For example, the amplitudes of Eq. (2) and Eq. (4) correspond to
the tree-level amplitudes with the lowest number of legs that can be made, respectively, from
the dimension-6 operators F ↵�F��F �

↵ ⌘ F 3 and F ↵� ↵ �� ⌘ F 2�, and similarly for all the
others. In Appendix C we give the explicit relation of some dimension-6 operators, written
in the more usual Dirac notation [8], with the on-shell amplitudes. An advantage of on-shell
amplitudes versus operators is that we do not need to bother in specifying the operator basis,
nor to eliminate redundancies by field redefinitions.

We will generically refer to the amplitudes (2)–(10) as AOi , and their corresponding coe�-
cients as COi . These last play a similar role as the Wilson coe�cients. At the loop level, they
can mix and lead to an anomalous-dimension matrix equivalent to that in Eq. (1). Below, we
discuss how to calculate �i using unitarity methods.

3 Anomalous dimensions from on-shell methods

At the one-loop level, any amplitude can have a Passarino-Veltman decomposition, given by

A
loop

=
X

a

C(a)
2

I(a)
2

+
X

b

C(b)
3

I(b)
3

+
X

c

C(c)
4

I(c)
4

+R , (11)

where Im are master scalar integrals with m propagators1 (m = 2, 3, 4) and Cm are kinematic-
dependent coe�cients, rational functions of hiji and [ij]. The master integrals are given by

Im = (�1)mµ4�D

Z
dD`

i(2⇡)D
1

`2(`� P
1

)2(`� P
1

� P
2

)2 · · · , (12)

1Tadpole contributions cancel for massless theories, when using dimensional regularization.
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III. One-loop renormalization 
            from amplitude methods
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RadCor-Loopfest

Passarino-Veltman Decomposition

• Recycling known scalar integrals: 
 
 

• UV (log) divergence only from bubble integrals: 
 

• Tadpole and “massless” bubble,                , are scaleless. 

‣ vanish in dimensional regularization 

‣ Important caveat in massless bubble
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divergent  ☛  c2 = anomalous dimensions

●

After one-loop reduction to Passarino-Veltman integrals

Aj
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After one-loop reduction to Passarino-Veltman integrals

double cut
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●

After one-loop reduction to Passarino-Veltman integrals

double cut

P. Baratella, C. Fernandez, AP    2005.07129

Zero contribution
(after extracting IR-div)

Aj
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After one-loop reduction to Passarino-Veltman integrals

phase-space integration & sum over internal states

P. Baratella, C. Fernandez, AP    2005.07129
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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also explained by susy techniques: arXiv:1412.7151
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Figure 3: Tree-level contribution to the W a
�H

†le amplitude.

(up to self-renormalization). This is equivalent to calculate the anomalous dimension of the
coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.

The amplitude to consider is W a
�H

†le, where W a
� is an SU(2)L gauge boson with h = �1,

H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
singlet leptons, with h = �1/2 and hypercharges Yl = �1/2 and Ye = 1. At tree-level, following
the notation of Fig. 3, the only contribution to this amplitude is given by

A(1e, 2lj , 3Wa
�
, 4H†

i
) =

CWHle

⇤2

h31ih32i(T a)ij ⌘ AWHle , (27)

with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].

4.1 One-loop contribution from C 4, CF 2�2 and CF 2�

Let us start with the contributions from n = 4 AOj amplitudes. We first consider A 4 . We
require at least two SM leptons in order to contribute to W a

�H
†le. This leaves, as the only

possible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = �1/2 and hypercharges
Yq = �1/6 and Yu = 2/3. We have then two possible amplitudes6

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe

⇤2

h23ih41i✏ij , (28)

6A third possibility / h13ih42i can be reduced to the given ones by the Schouten identity, Eq. (76).

11
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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Figure 3: Tree-level contribution to the W a
�H

†le amplitude.

(up to self-renormalization). This is equivalent to calculate the anomalous dimension of the
coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.

The amplitude to consider is W a
�H

†le, where W a
� is an SU(2)L gauge boson with h = �1,

H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
singlet leptons, with h = �1/2 and hypercharges Yl = �1/2 and Ye = 1. At tree-level, following
the notation of Fig. 3, the only contribution to this amplitude is given by

A(1e, 2lj , 3Wa
�
, 4H†

i
) =

CWHle

⇤2

h31ih32i(T a)ij ⌘ AWHle , (27)

with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].

4.1 One-loop contribution from C 4, CF 2�2 and CF 2�

Let us start with the contributions from n = 4 AOj amplitudes. We first consider A 4 . We
require at least two SM leptons in order to contribute to W a

�H
†le. This leaves, as the only

possible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = �1/2 and hypercharges
Yq = �1/6 and Yu = 2/3. We have then two possible amplitudes6

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe

⇤2

h23ih41i✏ij , (28)

6A third possibility / h13ih42i can be reduced to the given ones by the Schouten identity, Eq. (76).

11

-1/2

-1

1/2 1/2

-1/2-1/2

�AWHle = � 1

4⇡3

Z
dLIPSAluqe(1e, 2l, 3

0
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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Figure 3: Tree-level contribution to the W a
�H

†le amplitude.

(up to self-renormalization). This is equivalent to calculate the anomalous dimension of the
coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.

The amplitude to consider is W a
�H

†le, where W a
� is an SU(2)L gauge boson with h = �1,

H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
singlet leptons, with h = �1/2 and hypercharges Yl = �1/2 and Ye = 1. At tree-level, following
the notation of Fig. 3, the only contribution to this amplitude is given by

A(1e, 2lj , 3Wa
�
, 4H†

i
) =

CWHle

⇤2

h31ih32i(T a)ij ⌘ AWHle , (27)

with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].

4.1 One-loop contribution from C 4, CF 2�2 and CF 2�

Let us start with the contributions from n = 4 AOj amplitudes. We first consider A 4 . We
require at least two SM leptons in order to contribute to W a

�H
†le. This leaves, as the only

possible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = �1/2 and hypercharges
Yq = �1/6 and Yu = 2/3. We have then two possible amplitudes6

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe

⇤2

h23ih41i✏ij , (28)

6A third possibility / h13ih42i can be reduced to the given ones by the Schouten identity, Eq. (76).
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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thattheJJ-operatorsO4fandO�fdonotrenormalizetheloop-operators.Forthispurpose,

itisimportanttorecallthatwecanwritefour-fermionoperators,suchas(q†̄�µq)(u
†̄�µu),in

theequivalentformq†u†qu.Fromthis,itisobviousthatclosingaloopoffermionscanonly

giveoperatorscontainingtheLorentzstructuref†forquthatcannotbecompletedtogive
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O�f,theabsenceofrenormalizationofthedipoleoperator,asforexamplefromdiagrams

liketheoneinFig.1,canbeprovedjustbyrealizingthatwecanalwayskeeptheLorentz

structure�̄µDµ(�f)externaltotheloop;thisLorentzstructurecannotbecompletedtoform

adipoleoperator.ThecontributionofO�ftoOFFisalsoabsent,ascanbededucedfrom

Eq.(14):thefirstterm,afterclosingthefermionloop,givesthewrongLorentzstructure

togenerateOFF,whilethesecondtermgivesaninteractionwithtoomanyfieldsifweuse

thefermionEOM.Finally,OyucanonlycontributetotheLorentzstructure�qu,nottothe

dipoleoneinEq.(15).

WecanbemoresystematicandcompleteusingourESFTapproach.Letusseefirsthow

theoperatorsofEq.(12)canbeembeddedinsuper-operators.Byembeddingqanduinthe

chiralsupermultipletsQandU,wefindthatthedipoleloop-operatormustarisefromthe

✓2-termofanon-chiralsuperfield:
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$
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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thattheJJ-operatorsO4fandO�fdonotrenormalizetheloop-operators.Forthispurpose,

itisimportanttorecallthatwecanwritefour-fermionoperators,suchas(q†̄�µq)(u
†̄�µu),in

theequivalentformq†u†qu.Fromthis,itisobviousthatclosingaloopoffermionscanonly

giveoperatorscontainingtheLorentzstructuref†forquthatcannotbecompletedtogive

adipoleoperator(noritsequivalentforms,q�µ⌫�⇢D
⇢q†Fµ⌫orDµ�qDµuH).Forthecaseof

O�f,theabsenceofrenormalizationofthedipoleoperator,asforexamplefromdiagrams

liketheoneinFig.1,canbeprovedjustbyrealizingthatwecanalwayskeeptheLorentz

structure�̄µDµ(�f)externaltotheloop;thisLorentzstructurecannotbecompletedtoform

adipoleoperator.ThecontributionofO�ftoOFFisalsoabsent,ascanbededucedfrom

Eq.(14):thefirstterm,afterclosingthefermionloop,givesthewrongLorentzstructure

togenerateOFF,whilethesecondtermgivesaninteractionwithtoomanyfieldsifweuse

thefermionEOM.Finally,OyucanonlycontributetotheLorentzstructure�qu,nottothe

dipoleoneinEq.(15).

WecanbemoresystematicandcompleteusingourESFTapproach.Letusseefirsthow

theoperatorsofEq.(12)canbeembeddedinsuper-operators.Byembeddingqanduinthe

chiralsupermultipletsQandU,wefindthatthedipoleloop-operatormustarisefromthe

✓2-termofanon-chiralsuperfield:

�(Q
$
D↵U)W↵=�✓2OD+···.

(16)

AmongtheJJ-operatorsofEq.(13),twoofthemcanarisefromsupersymmetricD-terms
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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thattheJJ-operatorsO4fandO�fdonotrenormalizetheloop-operators.Forthispurpose,

itisimportanttorecallthatwecanwritefour-fermionoperators,suchas(q†̄�µq)(u
†̄�µu),in

theequivalentformq†u†qu.Fromthis,itisobviousthatclosingaloopoffermionscanonly
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O�f,theabsenceofrenormalizationofthedipoleoperator,asforexamplefromdiagrams
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structure�̄µDµ(�f)externaltotheloop;thisLorentzstructurecannotbecompletedtoform

adipoleoperator.ThecontributionofO�ftoOFFisalsoabsent,ascanbededucedfrom
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dipoleoneinEq.(15).
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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= ✓̄2✓2O�q + · · · ,
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2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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�QU = ✓2Oyu + · · · .
(18)
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
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But the on-shell methods also tell us
 about the non-zero result
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:
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But the on-shell methods also tell us
 about the non-zero result
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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�QU = ✓2Oyu + · · · .
(18)
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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= ✓̄2✓2O�q + · · · ,
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2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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But the on-shell methods also tell us
 about the non-zero result
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)

7

-1/2 -1/2

-1 ●

�⇤

q†

�

q

u

Aµ

Figure 1:
A

p

o

t

e

n

t

i

a

l

c

o

n

t

r

i

b

u

t

i

o

n

f

r

o

m O�q t

o OD.

that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:
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�QU = ✓2Oyu + · · · .
(18)
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At O(E2/Λ2):

When the theory is also invariant under some internal symmetry group, amplitudes behave
as invariant tensors under its action on particle multiplets. In this section we will not bother
to specify the form of group-tensors, reducing to the so-called “color-stripped” amplitudes [1].
In Section 4 we will however consider explicit examples for SM amplitudes, and the invariant
tensors will be provided. Several SM examples can also be found in Refs. [4–6].

Similarly as it is done for operators, we can consider the building-block amplitudes that
define the theory as organized according to an expansion in E/⇤, which means an expansion
in powers of hiji/⇤ and [ij]/⇤. When we go beyond the ordinary interactions that arise
from dimensionless couplings (the equivalent of dimension-4 operators), we find now extra
interactions at any order in E/⇤. Since we will pay special attention to applications in the SM,
we will concentrate here in E2/⇤2 terms, which are the leading corrections to the SM when
lepton number is conserved. We leave for Appendix D the discussion on terms of order E/⇤.

For a generic theory of (i) vector bosons V± with helicity h = ±1, (ii) Weyl fermions  
with h = �1/2, and (iii) scalars �, we have the following building-block amplitudes at order
E2/⇤2 (up to complex conjugation):

• n=3:

AF 3(1V� , 2V� , 3V�) =
CF 3

⇤2

h12ih23ih31i , (2)

that has h = �3. It is quite straightforward to see that this is the only amplitude at
n = 3. Since n = 3 amplitudes have mass dimension one, they must contain 3 powers
of either brackets hiji or squares [ij] in the numerator. Moreover, we have the condition
hiji[ji] = 2pi ·pj = 0 (i, j = 1, 2, 3), that forces the vanishing of either all [ij], in which case
we can only have Eq. (2), or all hiji, that leaves its complex-conjugated version as the only
possibility. It is important to notice that Eq. (2) is antisymmetric under i $ j, and can
only arise for non-abelian gauge bosons, in which case the full amplitude is proportional
to the structure constants.

• n=4: These amplitudes are dimensionless, so they must contain 2 powers of brackets or
squares. We have the following possibilities, with total helicity h = �2:

AF 2�2(1V� , 2V� , 3�, 4�) =
CF 2�2

⇤2

h12i2 , (3)

AF 2�(1V� , 2 , 3 , 4�) =
CF 2�

⇤2

h12ih13i , (4)

A 4(1 , 2 , 3 , 4 ) =
�
C 4h12ih34i+ C 0

 4

h13ih24i� 1

⇤2

. (5)

With h = 0, we have:

A⇤�4(1�, 2�, 3�, 4�) =
�
C⇤�4h12i[12] + C 0

⇤�4h13i[13]
� 1

⇤2

, (6)

A ¯ �2(1 , 2 ¯ , 3�, 4�) =
C ¯ �2

⇤2

h13i[23] , (7)

A 2

¯ 2

(1 , 2 , 3 ¯ , 4 ¯ ) =
C 2

¯ 2

⇤2

h12i[34] . (8)
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But there is more to say by 
angular-momentum decomposition (partial-waves)

Figure 3: Tree-level contribution to the W a
�H

†le amplitude.

(up to self-renormalization). This is equivalent to calculate the anomalous dimension of the
coe�cient CF 2�, defined in Eq. (4), for the particular case of the SM.

The amplitude to consider is W a
�H

†le, where W a
� is an SU(2)L gauge boson with h = �1,

H is the Higgs of hypercharge YH = 1/2, and l, e are respectively the SM SU(2)L-doublet and
singlet leptons, with h = �1/2 and hypercharges Yl = �1/2 and Ye = 1. At tree-level, following
the notation of Fig. 3, the only contribution to this amplitude is given by

A(1e, 2lj , 3Wa
�
, 4H†

i
) =

CWHle

⇤2

h31ih32i(T a)ij ⌘ AWHle , (27)

with T a = �a/2 here. We recall that, for amplitudes involving fermions, respecting the order
of labels is crucial for getting the signs correct (see Appendix B and references therein). At
the loop level, the coe�cient CWHle receives an anomalous dimension, that we will denote by
�WHle. Using Eq. (26) we can easily see that only a few COi can contribute to this anomalous
dimension. Indeed, since Eq. (27) has n = 4 and h = �2, only AOj with n = 3 or n = 4,
h = �2 can contribute. This leaves only the coe�cients of Eq. (2) and Eqs. (3)–(5) as potential
candidates to contribute to the anomalous dimension of CWHle. We already see the usefulness
of the amplitude method approach, allowing here to easily understand that there are many
vanishing contributions to the dipole operators. In working within the usual Feynman diagram
approach, these zeros appear as mysterious cancellations between di↵erent one-loop diagrams.

We also notice that Eq. (27) is symmetric under the interchange of spinors 1 and 2. As
we will see, this property also provides useful selection rules for non-renormalizations, that are
often not apparent when using higher-dimensional operators in Dirac notation [8].

4.1 One-loop contribution from C 4, CF 2�2 and CF 2�

Let us start with the contributions from n = 4 AOj amplitudes. We first consider A 4 . We
require at least two SM leptons in order to contribute to W a

�H
†le. This leaves, as the only

possible set of negative-helicity fermions forming a SM singlet, the set e, l, q, u, where q and u
are respectively the SM SU(2)L-doublet and singlet quark, with h = �1/2 and hypercharges
Yq = �1/6 and Yu = 2/3. We have then two possible amplitudes6

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe

⇤2

h23ih41i✏ij , (28)

6A third possibility / h13ih42i can be reduced to the given ones by the Schouten identity, Eq. (76).
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)
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it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
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D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:
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✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�
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☛ angular-momentum selection rules:

J=1 J=1

aJ=1
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J=1

J=1

Not needed the full  
SM amplitude, only:

Amplitudes with J≠1cannot contribute to dipoles
see also arXiv:2001.04481 
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Color factors & signs from fermions

Although from the ordinary Feynman approach the anomalous dimensions of Eq. (18) arise
from very di↵erent diagrams, from on-shell methods we can easily understand that the di↵erent
mixings are in fact related. Indeed, from Eq. (1) one can realize that the mixings between the
amplitudes in Eq. (18) can only proceed through the same type of SM amplitude. This is given
by [3]

A
SM

(1
¯ R
, 2

¯ Li
, 3Wa

�
, 4Hj) = y g2 (T

a)ij
h13ih43i
h14ih12i , (19)

or its complex conjugate, where  L ( R) refers to the SM SU(2)L-doublet (singlet) lepton, or
to the up-type quark upon the replacement Hj ! H†

j and (T a)ij ! (T a)ij0✏j0j.
The partial-wave decomposition can tell us even more. First, we notice that the mixing

between the amplitudes in Eq. (18) proceeds only through the s-channel (no product of ampli-
tudes can be found in the t- and u-channel which can generate these mixings). In this channel,
the partial-wave coe�cients of Eq. (19) are given by (using Eq. (4))

aJ=0

SM

= 0 , aJ�1

SM

= y g2(T
a)ij

1

2

Z ⇡

0

d✓s✓ d
J
0,1(✓)

s✓/2
c✓/2

=
y g2(T a)ijp
J(J + 1)

, (20)

while for the amplitudes of Eq. (18), we report them in Table 1. Notice that Aeluq,0, having
only a J = 0 partial-wave component, cannot mix with the rest of the amplitudes which have
only J = 1 components (this angular momentum selection rule was already pointed out in
Refs. [3, 10]). The other amplitudes of Eq. (18) can mix among themselves, but always through
the J = 1 partial wave. Therefore all mixings are proportional to aJ=1

SM

.
We can explicitly calculate these mixing using Eq. (13). We obtain

0

BB@

�WHle C
�1

WHlea
1

WHle

�eluq,1 C�1

eluq,1a
1

eluq,1

�W 2H2 C�1

W 2H2a1W 2H2

1

CCA = �eaJ=1

SM

8⇡2

0

BB@

⇥ �Ncyu ye

�yu ⇥ 0

ye 0 ⇥

1

CCA

0

BB@

a1WHle

a1eluq,1
a1W 2H2

1

CCA , (21)

where we have defined aJ
SM

= y eaJ
SM

, and omitted the diagonal entries as they correspond to self-
renormalizations which we do not consider here. In Eq. (21), the matrix is trivially determined
by color factors, signs due to fermion permutations and di↵erent Yukawa couplings. The non-
trivial part of the one-loop calculation has gone into the product of the coe�cients a1 of the
amplitudes of Eq. (18) with that of the SM amplitude in Eq. (19). By plugging the values of
Table 1 into Eq. (21), we obtain

0

BB@

�WHle

�eluq,1

�W 2H2

1

CCA =
g
2

16⇡2

0

BB@

⇥ Ncyu �2ye
3

2

yu ⇥ 0

�1

4

ye 0 ⇥

1

CCA

0

BB@

CWHle

Celuq,1

CW 2H2

1

CCA . (22)

This property of all mixings being proportional to the same coe�cient aJ
SM

occurs for 4-point
amplitudes at O(E2/⇤2) having the same total helicity h. Here, we have shown it for h = �2,
but the same is true for 4-point amplitudes with h = 0, which in this case are proportional to
the J = 1 partial wave of the SM   ̄HH† amplitude.

8

where we have left color/flavor indices implicit. Eq. (16) gives the generalization of Eq. (8)
when there are soft IR divergencies. In other words, when the coe�cients aJ of an amplitude
are ill-defined, signaling the presence of soft IR divergencies, we can still use Eq. (9), but with
the regularized coe�cients given in Eq. (15). We will see examples in the next section.

We comment now on the possibility that amplitudes have singularities for both ✓ ! 0 and
✓ ! ⇡, i.e. A ⇠ 1/s2✓, which happens when the particles 10 and 20 are identical. In this case,
the divergent integral

R
s�2

✓0/2 in Eq. (15) must be replaced by 2
R
s�2

✓0 to make the integrand
well-behaved (see Appendix A). Moreover, Eq. (15) has to be evaluated only for even J , since
the coe�cients aJ for odd J are zero4 and do not need a subtraction.

When also collinear IR divergencies are present in the one-loop amplitude, one must add
the extra contribution (see Appendix A)

��i
Ai(1, 2, 3, 4)

Ci

= �
coll

Ai(1, 2, 3, 4) . (17)

This is always diagonal in amplitude space and depends only on the external legs, so that
�
coll

=
P

4

n=1

�(n)
coll

, where the �(n)
coll

are given for example in [2, 5].

3 Applications

3.1 The Standard Model EFT

In Refs. [2–5], several examples of the calculation of the anomalous dimensions in the SM EFT
via on-shell amplitude methods were presented.5 In particular, in [3] the renormalization of
the electron dipole operator was provided, and a similarity was shown in the contributions to
the anomalous dimension coming from very di↵erent Feynman diagrams. As we will see, the
angular-momentum analysis clarifies the origin of this similarity.

As a first example, let us consider the one-loop mixing between 4-point amplitudes of total
helicity h = �2 at O(E2/⇤2):

AWHle(1e, 2lj , 3Wa
�
, 4H†

i
) =

CWHle

⇤2

h31ih32i(T a)ij ,

Aeluq,0(1e, 2li , 3u, 4qj) =
Celuq,0

⇤2

h12ih34i ✏ij ,

Aeluq,1(1e, 2li , 3u, 4qj) =
Celuq,1

⇤2

1

2
(h23ih41i+ h13ih42i) ✏ij ,

AW 2H2(1Wa
�
, 2Hi , 3Wa

�
, 4H†

i
) =

CW 2H2

⇤2

h13i2 .

(18)

Notice that we have chosen Aeluq,0 (Aeluq,1) to be antisymmetric (symmetric) with respect to
1 $ 2. As we will see, its only non-vanishing partial-wave component then has J = 0 (J = 1).6

4This is because A is even in [0,⇡], i.e. A(✓) = A(⇡ � ✓) while, for odd J , s✓dJ
00

(✓) is odd. Nevertheless,

since A has singularities, the integral has to be performed carefully, by taking lim✏!0

R ⇡�✏
✏ d✓ s✓ A(✓)dJ

00

(✓).
5Amplitude methods have also been applied at tree-level in the SM EFT [13].
6In [3], the basis was Alequ ⇠ h12ih34i and Aluqe ⇠ h23ih41i.
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n=4 
h=-2

Anomalous dimension mixings:



After treating IR-div, shocking simplicity for gravity:
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aJ J = 0 J = 2 J = 4

A
GR+� 0 �6 �25

3

A
GR�

5

3

1

15

0 ⇥ r
16⇡2

bAR3
1

6

� 1

30

0 ⇥CR3

AR4
7

5

4

35

1

315

⇥CR4

Table 2: Values of the coe�cients aJ in the s-channel for the di↵erent 4-graviton amplitudes
defined in the text. For the tree-level GR amplitude A

GR+� = A
GR

(1
+

, 2
+

, 3�, 4�) we give the
regularized quantity defined in Eq. (52) up to J = 4.

and

A0
R4(1�, 2�, 3+, 4+) =

C 0
R4

M8

P

h12i4[34]4 . (49)

We are now in a position to calculate the anomalous dimensions of the coe�cients CR3 ,
CR4 and C 0

R4 at leading order. We start with CR3 . Its renormalization will be obtained from
the renormalization of the 4-graviton amplitude with equal helicities which arises from the
3-graviton amplitudes in Eqs. (43) and (47) at O(E6/⇤6):

bAR3(1�, 2�, 3�, 4�) =
CR3

M6

P

T 2stu . (50)

By simple dimensional analysis, one can realize that this amplitude cannot be renormalized
at the one-loop level, since no products of tree-level amplitudes can generate an amplitude of
four gravitons of equal helicity at order E6/⇤6. Indeed, it was shown in [9] that the leading
nonzero contribution to the renormalization of Eq. (50) arises from the product of the one-loop
amplitude in Eq. (45) and the amplitude in Eq. (44). The calculation has IR divergencies
which must be taken into account, as explained in Sec. 2.3, by using the regularized coe�cients
Eq. (15). From Eq. (9) we then get12

�R3 bAR3 = �CR3

8⇡2

✓
s

M2

P

◆
3 X

J

nJ a
J
GR�a

J
GR+� |reg PJ

✓
t� u

s

◆
+ crossing , (51)

where the coe�cients aJ
GR+� |reg are defined in Eq. (15), with T

soft

= �2s/M2

P and the replace-

ment
R
s�2

✓/2 ! 2
R
s�2

✓ due to the identical particles in the internal lines. Using Eq. (44), we
find

aJ
GR+� |reg = �4HJ , (52)

where HJ is the J-th harmonic number. The values of the coe�cients aJ
GR� and aJ

GR+� |reg are
given in Table 2, where we see that they are simultaneously nonzero only for J = 2. We then

12Notice that the statistical factor �
1

0
2

0 = 1/2 for identical particles in the internal lines is compensated in
Eq. (51) by the factor 2 coming from the two equal contributions

R
A

GR

(1�, 2�, 1̄0�, 2̄
0
�)AGR

(10
+

, 20
+

, 3�, 4�)
and

R
A

GR

(1�, 2�, 1̄0
+

, 2̄0
+

)A
GR

(10�, 2
0
�, 3�, 4�).
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get

�R3 bAR3 =
CR3

4⇡2

r

16⇡2

s3

M6

P

P
2

✓
t� u

s

◆
+ crossing . (53)

One can check that adding the crossed terms in Eq. (53) makes the RHS proportional to bAR3 ,
as it should be. Nevertheless, since we are only interested in the value of �R3 , it is simpler to
project both sides of Eq. (53) into some specific kinematics, e.g. t = u = �s/2. This gives

�R3 =
r

16⇡4

✓
P
2

(0)� 1

4
P
2

(3)

◆
= � 60r

(4⇡)4
. (54)

Although this result was already obtained in [9] by on-shell methods, our formula allows us to
understand the dependence of Eq. (53) on the Mandelstam variables: this is indeed determined
by the fact that, in the s-channel, only internal states with J = 2 contribute to �R3 .

Recycling the above result, we can easily obtain the anomalous dimension of CR4 . It can
again only arise from the partial waves of bAR3 and A

GR+� with J = 2, leading to

�R4AR4 = �CR4
5

8⇡2

✓
s

M2

P

◆
4

aJ=2

R3 aJ=2

GR+� |reg P2

✓
t� u

s

◆
+ crossing . (55)

Using Table 2, this gives

�R4 = �CR3

8⇡2

. (56)

At the one-loop level, we do not find any contribution to the anomalous dimension of C 0
R4 , due

to the helicities in A0
R4 .

4 Conclusions

We have here exploited the power of angular-momentum analysis to reduce the computation of
one-loop anomalous dimensions to a sum of products of partial-wave coe�cients, Eq. (9). For
the anomalous dimensions of contact interactions (higher-order amplitudes in EFTs), the sum
reduces to a few terms, making the calculation quite straightforward. We have also shown that
Eq. (9) remains valid in the presence of IR divergencies, once the partial-wave coe�cients are
regularized according to Eq. (15).

The classification of the possible angular momenta J contributing to the renormalization
of the EFT amplitudes Ai has turned out to be useful since it tells us about the origin of
the anomalous dimensions �i, possible selection rules, and potential relations between di↵er-
ent �i, not only inside the same theory but also between di↵erent theories. In this sense,
the angular-momentum analysis has provided a rational for the “universality” of some anoma-
lous dimensions, hinted at in [3, 5], which remains hidden when performing calculations with
ordinary Feynman diagrams.

We have shown this explicitly in several examples for the SM EFT, where a class of one-
loop mixings were found to be proportional to the same coe�cient aJ

SM

(see Eq. (21)). We have
also analyzed the renormalization of nonlinear sigma models, and shown how to use Eq. (9) to

16
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AR4
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Table 2: Values of the coe�cients aJ in the s-channel for the di↵erent 4-graviton amplitudes
defined in the text. For the tree-level GR amplitude A
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+

, 2
+

, 3�, 4�) we give the
regularized quantity defined in Eq. (52) up to J = 4.

and

A0
R4(1�, 2�, 3+, 4+) =

C 0
R4

M8

P

h12i4[34]4 . (49)

We are now in a position to calculate the anomalous dimensions of the coe�cients CR3 ,
CR4 and C 0

R4 at leading order. We start with CR3 . Its renormalization will be obtained from
the renormalization of the 4-graviton amplitude with equal helicities which arises from the
3-graviton amplitudes in Eqs. (43) and (47) at O(E6/⇤6):

bAR3(1�, 2�, 3�, 4�) =
CR3

M6

P

T 2stu . (50)

By simple dimensional analysis, one can realize that this amplitude cannot be renormalized
at the one-loop level, since no products of tree-level amplitudes can generate an amplitude of
four gravitons of equal helicity at order E6/⇤6. Indeed, it was shown in [9] that the leading
nonzero contribution to the renormalization of Eq. (50) arises from the product of the one-loop
amplitude in Eq. (45) and the amplitude in Eq. (44). The calculation has IR divergencies
which must be taken into account, as explained in Sec. 2.3, by using the regularized coe�cients
Eq. (15). From Eq. (9) we then get12

�R3 bAR3 = �CR3
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◆
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GR+� |reg PJ
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◆
+ crossing , (51)

where the coe�cients aJ
GR+� |reg are defined in Eq. (15), with T

soft

= �2s/M2

P and the replace-

ment
R
s�2

✓/2 ! 2
R
s�2

✓ due to the identical particles in the internal lines. Using Eq. (44), we
find

aJ
GR+� |reg = �4HJ , (52)

where HJ is the J-th harmonic number. The values of the coe�cients aJ
GR� and aJ

GR+� |reg are
given in Table 2, where we see that they are simultaneously nonzero only for J = 2. We then

12Notice that the statistical factor �
1

0
2

0 = 1/2 for identical particles in the internal lines is compensated in
Eq. (51) by the factor 2 coming from the two equal contributions
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In order to solve for the ��r, we next choose flavors such that �s = 1, �t = �u = 0. Then,
we act with

R ⇡

0

d✓s✓ Pr(c✓) on both sides of Eq. (38). This gives

��r = �CwLrLCwRrR

16⇡2

 
N

nr

�rLr �rRr + 2 �rLr 
r
wRrR

+ 2 �rRr 
r
wLrL

+ 4
min(

wL
2 ,

wR
2 )X

J=0

nJnr 
J
wLrL

J
wRrR

r
wJ

!
,

(39)
where nr = 2r + 1. Notice that in the chosen basis, the dependence on N only enters via the
contributions with rL = rR = r. The ��r therefore become very simple in the large-N limit.

As an application of Eq. (39), we next present the anomalous dimensions for amplitudes up
to O(E6). The two amplitudes at O(E4) are renormalized by the (single) amplitude at O(E2),
corresponding to wL = wR = 2 and rL = rR = 0 in Eq. (39). This gives (recall that C

2 0

= 1)

�
0

=
17

9

�N

16⇡2

, �
2

= � 1

72⇡2

. (40)

Similarly, the two amplitudes at O(E6) receive corrections from the product of an amplitude at
O(E4) and the one at O(E2). The corresponding contributions to the anomalous dimensions
in Eq. (39) either have wL = 2, wR = 4 with rL = 0 and rR = 0, 2, or wL = 4, wR = 2 with
rL = 0, 2 and rR = 0. Summing over all contributions we find

�
0

= C
4 0

11

36

�N

8⇡2

� C
4 2

325

288⇡2

,

�
2

= �C
4 0

5

288⇡2

� C
4 2

65

288⇡2

,

(41)

where C
4 0

and C
4 2

are the Wilson coe�cients of the two amplitudes at O(E4). Using the fact
that SU(2)⇥ SU(2)/SU(2) ⇠ SO(4)/SO(3), we can compare our results for the case N = 3
with existing calculations for pions. Upon translating to our basis Eq. (29), we find that the
anomalous dimensions of [18] agree with the above results.

Let us also make an observation. Using Eqs. (30) and (40), we find that
X

r=0,2

�r
A

2 r

C
2 r

= � 1

48⇡2F 4

⇡

�
(3N � 7)s2 + 2t2 + 2u2

�
�s + (s $ t) + (s $ u) . (42)

For the case N = 3, this has the interesting property that the only linear combination of
A

2 0

and A
2 2

that is renormalized is crossing symmetric separately in kinematics and flavor,
A ⇠ (s2 + t2 + u2)(�s + �t + �u).11

Finally, let us comment on the connection to the Lagrangian description of the nonlinear
sigma model with coset SO(N + 1)/SO(N). The series of amplitudes necessary to satisfy
Adler’s zero condition discussed above are equivalent to the series of contact interactions in
the Lagrangian description that arise from expanding SO(N + 1)-invariant operators in the
number of fields [16]. Each 4-point amplitude is thus in a one-to-one correspondence to an
operator in the Lagrangian approach. Similarly, the anomalous-dimension matrix for the 4-
point amplitudes that we have determined is equivalent to the anomalous-dimension matrix for
the corresponding operators.

11This was shown to also hold for any chiral SU(N), with flavor factor �s+ �t+ �u+N(ds+dt+du)/8, where
ds = dijmdklm, dt = dikmdjlm and du = dilmdjkl, dijk being the fully symmetric SU(N) constants [19].
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General formula for the anomalous dimensions 
for all terms of a non-linear sigma model:

After the decomposition according to isospin, we next decompose the amplitudes into com-
ponents with fixed angular momentum. Using Eq. (6), we can write

Awr =

✓
s

F 2

⇡

◆w/2 X

IJ

nJ PJ(c✓) a
IJ
wr �I , (34)

where we have used that dJ
00

(✓) = PJ(c✓) with PJ being the J-th Legendre polynomial. Inverting
this, the coe�cients are given by

aIJwr =
1

2

✓
s

F 2

⇡

◆�w/2Z ⇡

0

d✓ s✓ PJ(c✓)AI
wr . (35)

Obtaining AI
wr from Eq. (30) and Eq. (31), and inserting it into Eq. (35), we get

aIJwr = Cwr

✓
2J

wr +
N

nJ

�
0I �rJ

◆
, (36)

if I, J are both even or both odd, and aIJwr = 0 otherwise. We have introduced

J
wr ⌘ (�1)w/2+J [(w/2)!]2

(w/2� J)! (w/2 + J + 1)!
4

F
3

⇣
�r, 1 + r,�1� J � w

2
, J � w

2
; 1,�w

2
,�w

2
; 1
⌘
, (37)

where
4

F
3

is a generalized hypergeometric function.10 We find that aIJwr = 0 for J > w/2. This
means that only a finite number of angular-momentum states contribute in Awr.

We now consider the one-loop correction involving amplitudes AwLrL on the left and AwRrR

on the right of Eq. (9). Let us denote the resulting contribution to the anomalous dimension
of the amplitude Awr by ��r. We suppress the dependence of ��r on wL, rL, wR, rR to avoid
clutter. Since there are no IR divergencies, the total anomalous dimension �r is obtained by
summing the di↵erent ��r for all wL and wR such that w = wL + wR and for the ranges of rL
and rR as given below Eq. (29).

The s-channel contribution to the anomalous dimensions follows from Eq. (9) with �
1

0
2

0 = 1/2
to account for the case of identical particles in the internal legs (this factor is compensated by
the sum over flavors if they are not identical). The t- and u-channel contributions can be
obtained from this by crossing. We then find that the anomalous dimensions satisfy

X

r

��r
Awr

Cwr

= � 1

16⇡2

✓
s

F 2

⇡

◆w/2 X

IJ

nJ �I a
IJ
wLrL

aIJwRrR
PJ

✓
t� u

s

◆
+ (s $ t) + (s $ u) .

(38)
It is important to remark that the flavor structures �I also change under crossing, as follows
from Eq. (32). Also note that the LHS generically contains a sum over all amplitudes of O(Ew).

10This can alternatively be written as J
wr =

Pr
k=0

(�1)

w/2+J�k
(r+k)! [(w/2�k)!]2

[k!]2(r�k)! (w/2+J+1�k)! (w/2�J�k)! .
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that the JJ-operators O4f and O�f do not renormalize the loop-operators. For this purpose,
it is important to recall that we can write four-fermion operators, such as (q†�̄µq)(u†�̄µu), in
the equivalent form q†u†qu. From this, it is obvious that closing a loop of fermions can only
give operators containing the Lorentz structure f †f or qu that cannot be completed to give
a dipole operator (nor its equivalent forms, q�µ⌫�⇢D⇢q†F µ⌫ or Dµ�qDµuH). For the case of
O�f , the absence of renormalization of the dipole operator, as for example from diagrams
like the one in Fig. 1, can be proved just by realizing that we can always keep the Lorentz
structure �̄µDµ(�f) external to the loop; this Lorentz structure cannot be completed to form
a dipole operator. The contribution of O�f to OFF is also absent, as can be deduced from
Eq. (14): the first term, after closing the fermion loop, gives the wrong Lorentz structure
to generate OFF , while the second term gives an interaction with too many fields if we use
the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure �qu, not to the
dipole one in Eq. (15).

We can be more systematic and complete using our ESFT approach. Let us see first how
the operators of Eq. (12) can be embedded in super-operators. By embedding q and u in the
chiral supermultiplets Q and U , we find that the dipole loop-operator must arise from the
✓2-term of a non-chiral superfield:

� (Q
$
D↵U) W↵ = �✓2OD + · · · .

(16)Among the JJ-operators of Eq. (13), two of them can arise from supersymmetric D-terms
and are then supersymmetry-preserving:

�

�†eV��
�

�

Q†eVQQ
�

= ✓̄2✓2O�q + · · · ,
�

Q†eVQQ
�

�

Q†eVQQ
�

= �1

2
✓̄2✓2O4q + · · · , (17)and similar operators for Q ! U , where we again use the short-hand notation VQ = 2QqV .

Nevertheless, one of the JJ-operators must come from the ✓2-component of a non-chiral
superfield that is not invariant under supersymmetry:

�

�†eV��
�

�QU = ✓2Oyu + · · · .
(18)

7

-1/2 -1/2

-1

�
⇤ q†

�

q

u

A
µ

F
ig

u
re

1:
A

p

o

t

e

n

t

i

a

l

c

o

n

t

r

i

b

u

t

i

o

n

f

r

o

m

O�
q
t

o

OD
.

th
at

th
e

J
J
-o

p
er

at
or

s
O4

f
an

d
O�

f
d
o

n
ot

re
n
or

m
al

iz
e

th
e

lo
op

-o
p
er

at
or

s.
F
or

th
is

p
u
rp

os
e,

it
is

im
p
or

ta
nt

to
re

ca
ll

th
at

w
e

ca
n

w
ri
te

fo
u
r-

fe
rm

io
n

op
er

at
or

s,
su

ch
as

(q
† �̄

µ
q)

(u
† �̄

µ
u
),

in

th
e

eq
u
iv

al
en

t
fo

rm
q† u

† q
u
.

F
ro

m
th

is
,
it

is
ob

vi
ou

s
th

at
cl

os
in

g
a

lo
op

of
fe

rm
io

n
s

ca
n

on
ly

gi
ve

op
er

at
or

s
co

nt
ai

n
in

g
th

e
L
or

en
tz

st
ru

ct
u
re

f
† f

or
qu

th
at

ca
n
n
ot

b
e

co
m

p
le

te
d

to
gi

ve

a
d
ip

ol
e

op
er

at
or

(n
or

it
s

eq
u
iv

al
en

t
fo

rm
s,

q�
µ
⌫
�

⇢
D

⇢
q† F

µ
⌫

or
D

µ
�
qD

µ
u
H

).
F
or

th
e

ca
se

of

O�
f
,

th
e

ab
se

n
ce

of
re

n
or

m
al

iz
at

io
n

of
th

e
d
ip

ol
e

op
er

at
or

,
as

fo
r

ex
am

p
le

fr
om

d
ia

gr
am

s

li
ke

th
e

on
e

in
F
ig

.
1,

ca
n

b
e

p
ro

ve
d

ju
st

by
re

al
iz

in
g

th
at

w
e

ca
n

al
w

ay
s

ke
ep

th
e

L
or

en
tz

st
ru

ct
u
re

�̄
µ
D

µ
(�

f
)

ex
te

rn
al

to
th

e
lo

op
;
th

is
L
or

en
tz

st
ru

ct
u
re

ca
n
n
ot

b
e

co
m

p
le

te
d

to
fo

rm

a
d
ip

ol
e

op
er

at
or

.
T

h
e

co
nt

ri
b
u
ti
on

of
O�

f
to

OF
F

is
al

so
ab

se
nt

,
as

ca
n

b
e

d
ed

u
ce

d
fr

om

E
q.

(1
4)

:
th

e
fi
rs

t
te

rm
,

af
te

r
cl

os
in

g
th

e
fe

rm
io

n
lo

op
,

gi
ve

s
th

e
w

ro
n
g

L
or

en
tz

st
ru

ct
u
re

to
ge

n
er

at
e

OF
F
,
w

h
il
e

th
e

se
co

n
d

te
rm

gi
ve

s
an

in
te

ra
ct

io
n

w
it
h

to
o

m
an

y
fi
el

d
s

if
w

e
u
se

th
e

fe
rm

io
n

E
O

M
.
F
in

al
ly

,
Oy

u
ca

n
on

ly
co

nt
ri
b
u
te

to
th

e
L
or

en
tz

st
ru

ct
u
re

�
qu

,
n
ot

to
th

e

d
ip

ol
e

on
e

in
E

q.
(1

5)
.

W
e

ca
n

b
e

m
or

e
sy

st
em

at
ic

an
d

co
m

p
le

te
u
si

n
g

ou
r

E
S
F
T

ap
p
ro

ac
h
.

L
et

u
s

se
e

fi
rs

t
h
ow

th
e

op
er

at
or

s
of

E
q.

(1
2)

ca
n

b
e

em
b
ed

d
ed

in
su

p
er

-o
p
er

at
or

s.
B

y
em

b
ed

d
in

g
q

an
d

u
in

th
e

ch
ir
al

su
p
er

m
u
lt
ip

le
ts

Q
an

d
U

,
w

e
fi
n
d

th
at

th
e

d
ip

ol
e

lo
op

-o
p
er

at
or

m
u
st

ar
is

e
fr

om
th

e

✓2
-t

er
m

of
a

n
on

-c
h
ir
al

su
p
er

fi
el

d
:

�
(Q

$ D↵
U

)
W

↵
=

�✓
2
OD

+
··

·.
(1

6)

A
m

on
g

th
e

J
J
-o

p
er

at
or

s
of

E
q.

(1
3)

,
tw

o
of

th
em

ca
n

ar
is

e
fr

om
su

p
er

sy
m

m
et

ri
c

D
-t

er
m

s

an
d

ar
e

th
en

su
p
er

sy
m

m
et

ry
-p

re
se

rv
in

g:

�

�
† e

V
�
�
�

�

Q
† e

V
Q
Q

�

=
✓̄2

✓2
O�

q
+

··
·,

�

Q
† e

V
Q
Q

�

�

Q
† e

V
Q
Q

�

=
�1 2✓̄2

✓2
O4

q
+

··
·,

(1
7)

an
d

si
m

il
ar

op
er

at
or

s
fo

r
Q

!
U

,
w

h
er

e
w

e
ag

ai
n

u
se

th
e

sh
or

t-
h
an

d
n
ot

at
io

n
V

Q
=

2Q
q
V

.

N
ev

er
th

el
es

s,
on

e
of

th
e

J
J
-o

p
er

at
or

s
m

u
st

co
m

e
fr

om
th

e
✓2

-c
om

p
on

en
t

of
a

n
on

-c
h
ir
al

su
p
er

fi
el

d
th

at
is

n
ot

in
va

ri
an

t
u
n
d
er

su
p
er

sy
m

m
et

ry
:

�

�
† e

V
�
�
�

�
Q

U
=

✓2
Oy

u
+

··
·.

(1
8)

7

0806.4600

2005.06983
2005.12917

from 3-cut with massive internal particles

where we used the fact that the integral measure is invariant under y $ z to write the two color
orderings in a similar way, and that ifABC/2 = tr(TA[TB, TC ]) and �ij�ij = 2. The integral over
the phase space angles is straightforward to do and gives 1

2

h13ih23i/[12]. Finally, taking into
account a factor of 3 for the permutations of the three di↵erent gauge bosons, we get

�
3G qG = 12

yg2s
(16⇡2)2

. (4.12)

This computation, compared with the one loop reverse transition in 2.3, shows explicitly that the
complexity of the computations in this method does not scale strongly with the number of loops,
and two-loop computations can be easier than one-loop ones.

These two Lorentz structures, �2F 2 and  �F , are the only four-particle operators that mix
with the three-particle structure F 3 at two loops with a single log.

4.2 h · i ! h · i2: 5-point to 4-point

We start by computing a transition of the type  2�3 !  2�F . For concreteness we compute
the renormalisation of the hypercharge dipole of the leptons OeB = ¯̀

L�µ⌫eRHBµ⌫ + h.c. due to
the leptonic Yukawa Oye = |H|2 ¯̀LeRH + h.c., with other pairings being similar since the non-
abelian part of the amplitude plays no role in the computation. The potential contributions to the
 2�3 !  2�F mixing are given by

+ + . (4.13)

The second contribution with the three scalar in the cut is zero. This can be seen by explicit
computation, but also by noticing that the fermion structure h12i of the Yukawa is unaltered
by the integration and there is no dimension-six invariant with the F 2� particle content and
proportional to the fermion spinors h12i. The third contribution also vanishes, because the FF
loop vanishes as we showed in the previous section. We are left with the tree-level amplitude
contribution

4�

1�i

3j

2�
=

h14i[14]
(16⇡2)2

Z
d⌦

3

M(1�i x
+

a y
⇤
bzc4

�)Fy(x
�
a 2
�3jybz

⇤
c ) , (4.14)

The amplitude in (4.14) is given by

M(1�i 2
+

j 3k4
⇤
l 5
�) = �2

p
2g0(g02YLYH�ij�kl + g2TA

ij T
A
kl)

✓
YH

[23][24]

[12][35][45]
� YL

[23][24]

[15][25][34]

◆
, (4.15)

where we included both U(1)Y and SU(2)L contributions to the amplitude, YL refers to the lepton
doublet and YH the Higgs doublet Hypercharge. In first term in the parenthesis of (4.15) the U(1)Y
boson 5� is attached to the scalars, while in the second term the gauge boson is attached to the
fermions. The FF in (4.14) is

Fye(1
�
i 2
�3j4

⇤
k5l) = h12i (�ij�kl + �il�kj) (4.16)
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Conclusions

Amplitude methods seems quite suited for 
 dealing with EFTs for BSM

☛  many “emergent” selection rules

A lot to do! Stay Tuned!

☛  many relations between anomalous dimensions
where Feynman approach is quite obscure

Simpler with easy recycling

• Allows to construct BSM without Lagrangians: 

• Calculation of anomalous dimensions:


