EFT calculations from Amplitude methods

Alex Pomarol, IFAE \& UAB (Barcelona)

P. Baratella, C. Fernandez, AP +2005.07129
B. vonHarling, P. Baratella, C. Fernandez, AP 2010.I3809

Outline

- Some motivations for on-shell amplitude methods
- EFT (EFfective Theories) from amplitudes, instead of Lagrangians
- Renormalization of EFT using on-shell methods:

Loops from tree-level on-shell amplitudes

- Simple, elegant, and efficient
- Selection rules can explain many non-renormalizations
- Clean relations between different anomalous dimensions
* Easy recycling: Every calculation can be re-used!

I. Some motivation

Amplitude methods

Extremely useful for simplifying calculations

Example I: graviton + graviton \rightarrow graviton + graviton

à la Feynman!

$$
\begin{aligned}
& i \operatorname{Sym}\left[-\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \rho} \eta_{\nu \lambda} \eta_{\sigma \tau}\right)-\frac{1}{2} P_{6}\left(p_{1 \nu} p_{1 \lambda} \eta_{\mu \rho} \eta_{\sigma \tau}\right)+\frac{1}{2} P_{3}\left(p_{1} \cdot p_{2} \eta_{\mu \nu} \eta_{\rho \lambda} \eta_{\sigma \tau}\right)\right. \\
& \quad+P_{6}\left(p_{1} \cdot p_{2} \eta_{\mu \rho} \eta_{\nu \sigma} \eta_{\lambda \tau}\right)+2 P_{3}\left(p_{1 \nu} p_{1 \tau} \eta_{\mu \rho} \eta_{\lambda \sigma}\right)-P_{3}\left(p_{1 \lambda} p_{2 \mu} \eta_{\rho \nu} \eta_{\sigma \tau}\right) \\
& \quad+P_{3}\left(p_{1 \sigma} p_{2 \tau} \eta_{\mu \nu} \eta_{\rho \lambda}\right)+P_{6}\left(p_{1 \sigma} p_{1 \tau} \eta_{\mu \nu} \eta_{\rho \lambda}\right)+2 P_{6}\left(p_{1 \nu} p_{2 \tau} \eta_{\lambda \mu} \eta_{\rho \sigma}\right) \\
& \left.\quad+2 P_{3}\left(p_{1 \nu} p_{2 \mu} \eta_{\lambda \sigma} \eta_{\tau \rho}\right)-2 P_{3}\left(p_{1} \cdot p_{2} \eta_{\rho \nu} \eta_{\lambda \sigma} \eta_{\tau \mu}\right)\right]
\end{aligned}
$$

Amplitude methods

Extremely useful for simplifying calculations

Example I: graviton + graviton \rightarrow graviton + graviton

à la Feynman!

$$
\pm \omega \mathrm{h}= \pm 2
$$

$$
\begin{aligned}
& \left.\lambda_{\sigma \tau}\right) \\
& \mathcal{A}\left(1^{+} 2^{+} 3^{+} 4^{+}\right)=0 \\
& \operatorname{Sym}\left[-\frac{1}{8} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \omega} \eta^{\sigma \tau} \eta^{\rho \lambda} \eta^{(x)}\right)-\frac{1}{8} P_{12}\left(p^{\sigma} p^{\tau} \eta^{\mu \nu} \eta^{\rho \eta^{\prime \kappa}} \eta^{\frac{1}{4}} P_{6}\left(p^{\sigma} p^{\prime \mu} \eta^{\nu \tau} \eta^{\rho \lambda} \eta^{(\kappa)}\right)+\frac{1}{8} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \sigma} \eta^{p \tau} \eta^{\rho \lambda} \eta^{(\kappa)}\right)\right.\right. \\
& +\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \sigma} \eta^{\rho \sigma} \eta^{\lambda_{k}}\right)+\frac{1}{4} P_{12}\left(p^{\sigma} p^{\tau} \eta^{\mu \nu} \eta^{\rho \epsilon} \eta^{\lambda \kappa}\right)+\frac{1}{2} P_{6}\left(p^{\sigma} p^{\prime \mu} \eta^{\nu \tau} \eta^{\rho \sigma} \eta^{\lambda_{k}}\right)-\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\rho t} \eta^{\lambda \kappa}\right) \\
& +\frac{1}{4} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \rho} \eta^{\tau \lambda} \eta^{\kappa \kappa}\right)+\frac{1}{4} P_{24}\left(p^{\sigma} p^{\tau} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\iota \kappa}\right)+\frac{1}{4} P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\kappa \kappa}\right)+\frac{1}{2} P_{24}\left(p^{\sigma} p^{\prime} \rho^{\tau \mu} \eta^{\tau \mu} \eta^{\nu \lambda} \eta^{\kappa \kappa}\right) \\
& -\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\prime \sigma} \eta^{\tau \rho} \eta^{\lambda \mu} \eta^{\kappa \kappa}\right)-\frac{1}{2} P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \nu} \eta^{\kappa \kappa}\right)+\frac{1}{2} P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu \omega} \eta^{\prime \kappa}\right)-\frac{1}{2} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\tau \rho} \eta^{\lambda \lambda} \eta^{\kappa \sigma}\right) \\
& -P_{12}\left(p^{\sigma} p^{\tau} \eta^{\nu \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)-P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\nu \nu} \eta^{\kappa \sigma} \eta^{\tau \mu}\right)-P_{24}\left(p_{o} p^{\prime \rho} \eta^{\tau} \eta^{\kappa \mu} \eta^{\nu \lambda}\right)-P_{12}\left(p^{\rho} p^{\prime} \eta^{\lambda \sigma} \eta^{\tau \mu} \eta^{\kappa x}\right) \\
& +P_{6}\left(p \cdot p^{\prime} \eta^{\nu \rho} \eta^{\lambda \sigma} \eta^{\tau i} \eta^{\alpha \mu}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\mu \nu} \eta^{\tau i} \eta^{\kappa \lambda}\right)-\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\sigma \omega} \eta^{\tau \kappa}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu t} \eta^{\nu \kappa}\right) \\
& \left.-P_{6}\left(p^{\rho} p^{\prime} \eta^{\lambda \lambda} \eta^{\mu \sigma} \eta^{\nu \tau}\right)-P_{24}\left(p^{\sigma} p^{\prime} \eta^{\tau \mu} \eta^{\tau \nu} \eta^{\kappa \lambda}\right)-P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\alpha \nu}\right)+2 P_{6}\left(p \cdot p^{\prime} \eta^{v \sigma} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)\right]
\end{aligned}
$$

Amplitude methods

Extremely useful for simplifying calculations

Example I: graviton + graviton \rightarrow graviton + graviton

à la Feynman!

$$
\pm \omega \mathrm{h}= \pm 2
$$

$$
\mathcal{A}\left(1^{-} 2^{+} 3^{-} 4^{+}\right)=\frac{\langle 13\rangle^{4}[24]^{4}}{\text { stu }}
$$

$$
+\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \sigma} \eta^{\rho \rho} \eta^{\lambda_{k}}\right)+\frac{1}{4} P_{12}\left(p^{\sigma} p^{\top} \eta^{\mu \nu} \eta^{\rho \rho} \eta^{\lambda_{k}}\right)+\frac{1}{2} P_{6}\left(p^{\sigma} p^{\prime \mu} \eta^{\nu \tau} \eta^{\rho \rho} \eta^{\lambda_{k}}\right)-\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\rho \cdot} \eta^{\lambda_{k}}\right)
$$

$$
+\frac{1}{4} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \rho} \eta^{\tau \lambda} \eta^{\kappa \kappa}\right)+\frac{1}{4} P_{24}\left(p^{\sigma} p^{\top} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\kappa \kappa}\right)+\frac{1}{4} P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\prime \kappa}\right)+\frac{1}{2} P_{24}\left(p^{\sigma} p^{\prime} \rho^{\tau \mu} \eta^{\nu \lambda} \eta^{\kappa \kappa}\right)
$$

$$
-\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\gamma \sigma} \eta^{\tau \rho} \eta^{\lambda \mu} \eta^{\kappa \kappa}\right)-\frac{1}{2} P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \nu} \eta^{\epsilon \kappa}\right)+\frac{1}{2} P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu \mu} \eta^{\prime \kappa}\right)-\frac{1}{2} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\tau \rho} \eta^{\lambda \lambda} \eta^{\kappa \sigma}\right)
$$

$$
-P_{12}\left(p^{\sigma} p^{\tau} \eta^{\nu \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)-P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\nu \nu} \eta^{k \sigma} \eta^{\tau \mu}\right)-P_{24}\left(p_{0} p^{\prime \rho} \eta^{\tau} \eta^{\kappa \mu} \eta^{\nu \lambda}\right)-P_{12}\left(p^{\rho} p^{\prime} \eta^{\lambda \sigma} \eta^{\tau \mu} \eta^{\nu \kappa}\right)
$$

$$
+P_{6}\left(p \cdot p^{\prime} \eta^{\nu \rho} \eta^{\lambda \sigma} \eta^{\tau \iota} \eta^{\kappa \mu}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\mu \nu} \eta^{\tau i} \eta^{\kappa \lambda}\right)-\frac{1}{2} P_{12}\left(p \cdot p^{\prime} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\sigma \cdot} \eta^{\tau \kappa}\right)-P_{12}\left(p^{\sigma} p^{\rho} \eta^{\tau \lambda} \eta^{\mu \mu} \eta^{\gamma^{\kappa}}\right)
$$

$$
\left.-P_{6}\left(p^{\rho} p^{\prime} \eta^{\lambda \star} \eta^{\mu \sigma} \eta^{\nu \tau}\right)-P_{24}\left(p^{\sigma} p^{\prime} \eta^{\tau \mu} \eta^{\nu!} \eta^{\kappa \lambda}\right)-P_{12}\left(p^{\sigma} p^{\prime \mu} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \nu}\right)+2 P_{6}\left(p \cdot p^{\prime} \eta^{v \sigma} \eta^{\tau \rho} \eta^{\lambda \iota} \eta^{\kappa \mu}\right)\right]
$$

Amplitude methods

Extremely useful for simplifying calculations

Example I: graviton + graviton \rightarrow graviton + graviton

...end of Feynman realm?

$$
\pm \omega \mathrm{h}= \pm 2
$$

$$
\mathcal{A}\left(1^{-} 2^{+} 3^{-} 4^{+}\right)=\frac{\langle 13\rangle^{4}[24]^{4}}{\text { stu }}
$$

$$
+\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \mu} \eta^{\sigma \tau} \eta^{\rho t} \eta^{\lambda \kappa}\right)+\frac{1}{4} P_{12}\left(p^{\sigma} p^{\tau} \eta^{\mu \nu} \eta^{\rho \rho} \eta^{\lambda \kappa}\right)+\frac{1}{2} P_{6}\left(p^{\sigma} p^{\prime \mu} \eta^{\nu \tau} \eta^{\rho t} \eta^{\wedge \kappa}\right)-\frac{1}{4} P_{6}\left(p \cdot p^{\prime} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\rho \rho} \eta^{\wedge \kappa}\right)
$$

$$
+\frac{1}{4} P_{24}\left(p \cdot p^{\prime} \eta^{\mu \nu} \eta^{\sigma \rho} \eta^{\tau \lambda} \eta^{\prime \kappa}\right)+\frac{1}{4} P_{24}\left(p^{\sigma} p^{\top} \eta^{\mu \rho} \eta^{\nu \lambda} \eta^{\kappa \kappa}\right)+\frac{1}{4} P_{12}\left(p^{\rho} p^{\prime \lambda} \eta^{\mu \sigma} \eta^{\nu \tau} \eta^{\kappa \kappa}\right)+\frac{1}{2} P_{24}\left(p^{\sigma} p^{\prime \rho} \eta^{\tau \mu} \eta^{\nu \lambda} \eta^{\prime \kappa}\right)
$$

Trivial to see by on-shell amplitude methods

Example II:
 SM as an EFT

(assuming lepton \& baryon number)

$$
\mathcal{L}_{\text {eff }}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}} f_{L, R}}{\Lambda^{3 / 2}}, \frac{g F_{\mu \nu}}{\Lambda^{2}}\right) \simeq \mathcal{L}_{4}+\mathcal{L}_{6}+\cdots
$$ $\mathcal{O}_{i}, \mathcal{O}_{j}, \ldots$ from the SM

One-loop operator mixing important:
(tells us how BSM enter in observables)
mw - \mathcal{O}_{i}
m_{e} \longrightarrow

$$
\gamma_{c_{i}}=\frac{d c_{i}}{d \log \mu}=\gamma_{c_{i}}\left(c_{j}\right)
$$

$c_{i}=$ Wilson coefficient

Example II:
 SM as an EFT

(assuming lepton \& baryon number)
$\mathcal{L}_{\text {eff }}=\frac{\Lambda^{4}}{g_{*}^{2}} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda}, \frac{g_{H} H}{\Lambda}, \frac{g_{f_{L, R}} f_{L, R}}{\Lambda^{3 / 2}}, \frac{g F_{\mu \nu}}{\Lambda^{2}}\right) \simeq \mathcal{L}_{4}+\mathcal{L}_{6}+\cdots$
$\Lambda-\mathcal{O}_{i}, \mathcal{O}_{j}, \ldots$ from the SM

One-loop operator m:--

m_{w} - Many non-trivial zeros in γ_{i} m_{e} found from explicit calculations! $d \log \mu$

$$
c_{i}=\text { Wilson coefficient }
$$

I. No 4-fermion $\left(\bar{\Psi} \gamma^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
F^{\mu \nu} \psi \sigma_{\mu \nu} \psi H
$$

II. No $\mathbf{p}^{2} \mathrm{H}^{4}$ corrections to $\mathrm{H} \gamma \gamma \quad F_{\alpha \beta} F^{\alpha \beta} h^{2}$

$$
\begin{array}{cc}
\text { e.g. } \left./ H^{\dagger} D_{\mu} H\right)^{2}
\end{array}
$$

I. No 4-fermion $\left(\bar{\Psi} \gamma^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
F^{\mu \nu} \psi \sigma_{\mu \nu} \psi H
$$

II. No $\mathrm{p}^{2} \mathrm{H}^{4}$ corrections to $\mathrm{H} \gamma \gamma \quad F_{\alpha \beta} F^{\alpha \beta} h^{2}$

e.g.

$$
\left(H^{\dagger} D_{\mu} H\right)^{2}
$$

Zeros not seen from Feyman diagrams!

Also

very different contributions from Feynman diagrams give the same result !
(up to color factors)

On-shell amplitude methods can explain straightforwardly these results!

II. EFT (EFfective Theories) from amplitudes

convention: all particles incoming

$h_{i}=$ helicity of the amplitude

An important gain in simplicity:

the power of being on-shell!

Ghosts, Golstones, ...
only physical states $\left(p^{2}=0\right)$

$$
\left(p^{2} \neq 0\right)
$$

\hookrightarrow definite helicity
One must eliminate redundancies
Many missed in original papers (Buchmuller,Wyler,...)!

Spinor-helicity formalism

Lorentz

"angle" spinor

"squared" spinor
Momenta \& helicities as a function of spinors:

$$
\begin{array}{ll}
u_{\mp}(p)=P_{\mp}\binom{|p\rangle_{\alpha}}{\mid p]^{\dot{\alpha}}}, \quad \bar{v}_{\mp}(p)=\left(\left\langle\left.p\right|^{\alpha}\left[\left.p\right|_{\dot{\alpha}}\right) P_{\mp}, \quad P_{\mp}=\left(1 \pm \gamma_{5}\right) / 2\right.\right. \\
\epsilon_{\mu}^{+}=\frac{\left.\langle q| \sigma_{\mu} \mid p\right]}{\sqrt{2}\langle q p\rangle}, \quad \epsilon_{\mu}^{-}=-\frac{\left.\langle p| \sigma_{\mu} \mid q\right]}{\sqrt{2}[q p]} & 2 p_{i} \cdot p_{j}=\langle i j\rangle[j i]
\end{array}
$$

keep complex momenta!

The SM as an EFT = Effective Theory

Expansion: $\langle p q\rangle / \Lambda^{2}$

SM "Building-blocks":

At $O\left(E^{2} / \Lambda^{2}\right)$:

$$
\left.\mathcal{A}_{F^{3}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{V_{-}}\right)=\frac{C_{F^{3}}}{\Lambda^{2}}\langle 12\rangle\langle 23\rangle\langle 31\rangle \quad\right\} \begin{gathered}
\mathrm{n}=3 \\
\mathrm{~h}=-3
\end{gathered}
$$

$$
\left.\begin{array}{rl}
\mathcal{A}_{F^{2} \phi^{2}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{\phi}, 4_{\phi}\right) & =\frac{C_{F^{2} \phi^{2}}}{\Lambda^{2}}\langle 12\rangle^{2}, \\
\mathcal{A}_{F \psi^{2} \phi}\left(1_{V_{-}}, 2_{\psi}, 3_{\psi}, 4_{\phi}\right) & =\frac{C_{F \psi^{2} \phi}}{\Lambda^{2}}\langle 12\rangle\langle 13\rangle, \\
\mathcal{A}_{\psi^{4}}\left(1_{\psi}, 2_{\psi}, 3_{\psi}, 4_{\psi}\right) & =\left(C_{\psi^{4}}\langle 12\rangle\langle 34\rangle+C_{\psi^{4}}^{\prime}\langle 13\rangle\langle 24\rangle\right) \frac{1}{\Lambda^{2}} \\
\mathcal{A}_{\square \phi^{4}}\left(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}\right) & =\left(C_{\square \phi^{4}}\langle 12\rangle[12]+C_{\square \phi^{4}}^{\prime}\langle 13\rangle[13]\right) \frac{1}{\Lambda^{2}} \\
\mathcal{A}_{\psi \bar{\psi} \phi^{2}}\left(1_{\psi}, 2_{\bar{\psi}}, 3_{\phi}, 4_{\phi}\right) & =\frac{C_{\psi \bar{\psi} \phi^{2}}}{\Lambda^{2}}\langle 13\rangle[23], \\
\mathbf{n}=\mathbf{n}=\mathbf{- 2} \\
\mathcal{A}_{\psi^{2} \bar{\psi}^{2}}\left(1_{\psi}, 2_{\psi}, 3_{\bar{\psi}}, 4_{\bar{\psi}}\right) & =\frac{C_{\psi^{2} \bar{\psi}^{2}}^{\Lambda^{2}}}{\Lambda^{2}}\langle 12\rangle[34] .
\end{array}\right\} \begin{gathered}
\mathrm{n}=4 \\
\mathrm{~h}=\mathbf{0}
\end{gathered}
$$

$$
\begin{array}{ll}
\mathcal{A}_{\psi^{2} \phi^{3}}\left(1_{\psi}, 2_{\psi}, 3_{\phi}, 4_{\phi}, 5_{\phi}\right)=\frac{C_{\psi^{2} \phi^{3}}}{\Lambda^{2}}\langle 12\rangle & \begin{array}{l}
\mathrm{n}=5 \\
\mathrm{~h}=-\mathrm{l}
\end{array} \\
& \\
\mathcal{A}_{\phi^{6}}\left(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}, 5_{\phi}, 6_{\phi}\right)=\frac{C_{\phi^{6}}}{\Lambda^{2}} & \begin{array}{l}
\mathrm{n}=6 \\
\mathrm{~h}=0
\end{array}
\end{array}
$$

III. One-loop renormalization from amplitude methods

One-loop mixing (anomalous dimensions)

$$
\mathcal{A}_{\mathrm{i}}^{1-\text { loop }}=\mathcal{S}^{\mathcal{A}_{\mathrm{i}}}+\underbrace{\mathcal{A}_{\mathrm{j}}}
$$

After one-loop reduction to Passarino-Veltman integrals

After one-loop reduction to Passarino-Veltman integrals

double cut

After one-loop reduction to Passarino-Veltman integrals

After one-loop reduction to Passarino-Veltman integrals

phase-space integration \& sum over internal states

I. No 4-fermion $\left(\bar{\Psi} \gamma^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
\mathcal{A}\left(1_{e}, 2_{l_{j}}, 3_{W_{-}}, 4_{H_{i}^{\dagger}}\right)
$$

$$
F^{\mu \nu} \psi \sigma_{\mu \nu} \psi H
$$

I. No 4-fermion $\left(\bar{\Psi} \gamma^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
\mathcal{A}\left(1_{e}, 2_{l_{j}}, 3_{W_{-}}, 4_{H_{i}^{\dagger}}\right)
$$

$$
F^{\mu \nu} \psi \sigma_{\mu \nu} \psi H
$$

$$
\gamma \mathcal{A}_{W H l e}=-\frac{1}{4 \pi^{3}} \int d \operatorname{LIPS} \mathcal{A}_{\text {luqe }}\left(1_{e}, 2_{l}, 3_{\bar{e}}^{\prime}, 4_{\bar{l}}^{\prime}\right) \times \mathcal{A}_{\mathrm{SM}}\left(4_{e}^{\prime}, 3_{l}^{\prime}, 3_{W_{-a}^{a}}, 4_{H^{\dagger}}\right)
$$

I. No 4-fermion $\left(\bar{\Psi} \gamma^{\mu} \Psi\right)^{2}$ corrections to dipoles

$$
\gamma \mathcal{A}_{W H l e}=-\frac{1}{4 \pi^{3}} \int d \operatorname{LIPS} \mathcal{A}_{l u q e}\left(1_{e}, 2_{l}, 3_{\bar{e}}^{\prime}, 4_{\bar{l}}^{\prime}\right) \times \mathcal{A}_{\mathrm{SM}}\left(4_{e}^{\prime}, 3_{l}^{\prime}, 3_{W_{-}^{a}}, 4_{H^{\dagger}}\right)
$$

II. No $p^{2} \mathrm{H}^{4}$ corrections to $\mathrm{H} \gamma \mathrm{Y}$
$F_{\alpha \beta} F^{\alpha \beta} h^{2}$
II. No $\mathbf{p}^{2} \mathrm{H}^{4}$ corrections to $\mathrm{H} \mathrm{\gamma} \mathrm{\gamma} \quad F_{\alpha \beta} F^{\alpha \beta} h^{2}$
II. No $\mathrm{p}^{2} \mathrm{H}^{4}$ corrections to $\mathrm{H} \gamma \gamma \quad F_{\alpha \beta} F^{\alpha \beta} h^{2}$

Absent in the SM

But the on-shell methods also tell us about the non-zero result

Contributions to dipoles from Feynman approach:

very different contributions

But the on-shell methods also tell us about the non-zero result

From on-shell approach: $\quad \gamma \mathcal{A}_{\mathbf{i}} \sim \int \mathcal{A}_{\mathbf{j}} \mathcal{A}_{\mathrm{SM}}$

But the on-shell methods also tell us about the non-zero result

From on-shell approach: $\quad \gamma \mathcal{A}_{\mathbf{i}} \sim \int \mathcal{A}_{\mathbf{j}} \mathcal{A}_{\mathrm{SM}}$

from the same SM amplitude!

But the on-shell methods also tell us about the non-zero result

From on-shell approach: $\gamma \mathcal{A}_{\mathbf{i}} \sim \sum \mathcal{A}_{\mathbf{j}} \mathcal{A}_{\mathrm{SM}}$
No calculation wasted

$$
\mathcal{A}_{\mathrm{SM}}\left(1_{\bar{\psi}}, 2_{\bar{\psi}}, 3_{V_{-}}, 4_{H^{\dagger}}\right)
$$ in the on-shell method

from the same SM amplitude!

At $O\left(E^{2} / \Lambda^{2}\right):$

$$
\mathcal{A}_{F^{3}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{V_{-}}\right)=\frac{C_{F^{3}}}{\Lambda^{2}}\langle 12\rangle\langle 23\rangle\langle 31\rangle
$$

$$
\begin{aligned}
& \mathcal{A}_{F^{2} \phi^{2}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{\phi}, 4_{\phi}\right)=\frac{C_{F^{2} \phi^{2}}}{\Lambda^{2}}\langle 12\rangle^{2}, \\
& \mathcal{A}_{F \psi^{2} \phi}\left(1_{V_{-}}, 2_{\psi}, 3_{\psi}, 4_{\phi}\right)=\frac{C_{F \psi^{2} \phi}}{\Lambda^{2}}\langle 12\rangle\langle 13\rangle,
\end{aligned}
$$

$$
\mathrm{n}=4
$$

$$
\mathcal{A}_{\psi^{4}}\left(1_{\psi}, 2_{\psi}, 3_{\psi}, 4_{\psi}\right)=\left(C_{\psi^{4}}\langle 12\rangle\langle 34\rangle+C_{\psi^{4}}^{\prime}\langle 13\rangle\langle 24\rangle\right) \frac{1}{\Lambda^{2}}
$$

$$
h=-2
$$

$$
\begin{aligned}
\mathcal{A}_{\square \phi^{4}}\left(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}\right) & =\left(C_{\square \phi^{4}}\langle 12\rangle[12]+C_{\square \phi^{4}}^{\prime}\langle 13\rangle[13]\right) \frac{1}{\Lambda^{2}} \\
\mathcal{A}_{\psi \bar{\psi} \phi^{2}}\left(1_{\psi}, 2_{\bar{\psi}}, 3_{\phi}, 4_{\phi}\right) & =\frac{C_{\psi \psi \bar{\psi} \phi^{2}}}{\Lambda^{2}}\langle 13\rangle[23], \\
\mathcal{A}_{\psi^{2} \bar{\psi}^{2}}\left(1_{\psi}, 2_{\psi}, 3_{\bar{\psi}}, 4_{\bar{\psi}}\right) & =\frac{C_{\psi \psi^{2} \bar{\psi}^{2}}}{\Lambda^{2}}\langle 12\rangle[34] .
\end{aligned}
$$

At $O\left(E^{2} / \Lambda^{2}\right):$

$$
\mathcal{A}_{F^{3}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{V_{-}}\right)=\frac{C_{F^{3}}}{\Lambda^{2}}\langle 12\rangle\langle 23\rangle\langle 31\rangle
$$

$$
\begin{aligned}
& \mathcal{A}_{F^{2} \phi^{2}}\left(1_{V_{-}}, 2_{V_{-}}, 3_{\phi}, 4_{\phi}\right)=\frac{C_{F^{2} \phi^{2}}}{\Lambda^{2}}\langle 12\rangle^{2}, \\
& \mathcal{A}_{F \psi^{2} \phi}\left(1_{V_{-}}, 2_{\psi}, 3_{\psi}, 4_{\phi}\right)=\frac{C_{F \psi^{2} \phi}}{\Lambda^{2}}\langle 12\rangle\langle 13\rangle, \\
& \underbrace{\mathcal{A}_{S M\left(I_{\psi}\right.}, 2_{\psi}, 3_{\left.H, 4_{H+}\right)}}_{(24\rangle) \frac{1}{12}} \\
& \mathcal{A}_{\psi^{4}}\left(1_{\psi}, 2_{\psi}, 3_{\psi}, 4_{\psi}\right)=\left(C_{\psi^{4}}\langle 12\rangle\langle 34\rangle+C_{\psi^{4}}^{\prime}\langle 13\rangle\langle 24\rangle\right) \frac{1}{\Lambda^{2}} \\
& \mathcal{A}_{\square \phi^{4}}\left(1_{\phi}, 2_{\phi}, 3_{\phi}, 4_{\phi}\right)=\left(C_{\square \phi^{4}}\langle 12\rangle[12]+C_{\square \phi^{4}}^{\prime}\langle 13\rangle[13]\right) \frac{1}{\Lambda^{2}} \\
& \mathcal{A}_{\psi \psi \bar{\psi} \phi^{2}}\left(1_{\psi}, 2_{\bar{\psi}}, 3_{\phi}, 4_{\phi}\right)=\frac{C_{\psi \psi \bar{\psi} \phi^{2}}}{\Lambda^{2}}\langle 13\rangle[23], \\
& \mathcal{A}_{\psi^{2} \bar{\psi}^{2}}\left(1_{\psi}, 2_{\psi}, 3_{\bar{\psi}}, 4_{\bar{\psi}}\right)=\frac{C_{\psi^{2} \bar{\psi}^{2}}}{\Lambda^{2}}\langle 12\rangle[34] . \\
& \mathrm{n}=4 \\
& h=0
\end{aligned}
$$

number of states

But there is more to say by

 angular-momentum decomposition (partial-waves)$$
\mathcal{A}\left(1_{h_{1}}, 2_{h_{2}}, 3_{h_{3}}, 4_{h_{4}}\right)=e^{i \phi\left(h_{12}-h_{43}\right)}\left(\frac{\sqrt{s}}{\Lambda}\right)^{w} \sum_{J} n_{J} d_{h_{12} h_{43}}^{J}(\theta) a^{J}
$$

Example of dipoles:

$$
\begin{gathered}
\mathcal{A}\left(1_{e}, 2_{l}, 3_{W_{-}}, 4_{H^{\dagger}}\right)=3 e^{-i \phi} d_{01}^{J=1}(\theta) a^{J=1} \\
\text { only one partial-wave! }
\end{gathered}
$$

But there is more to say by

 angular-momentum decomposition (partial-waves)$$
\mathrm{J=I}
$$

Not needed the full SM amplitude, only:

$$
a_{\mathrm{SM}}^{J=1}
$$

- angular-momentum selection rules:

Amplitudes with J \neq I cannot contribute to dipoles

Anomalous Dimensions as a product of partial waves

$$
\gamma_{i} \sim a_{\mathrm{SM}}^{J} a_{\mathrm{BSM}}^{J}
$$

$$
\begin{aligned}
\mathcal{A}_{W H l e}\left(1_{e}, 2_{l_{j}}, 3_{W_{-}}, 4_{H_{i}^{\dagger}}\right) & =\frac{C_{W H l e}}{\Lambda^{2}}\langle 31\rangle\langle 32\rangle\left(T^{a}\right)_{i j}, \\
\mathcal{A}_{\text {eluq }, 0}\left(1_{e}, 2_{l_{i}}, 3_{u}, 4_{q_{j}}\right) & =\frac{C_{\text {eluq }, 0}}{\Lambda^{2}}\langle 12\rangle\langle 34\rangle \epsilon_{i j}, \\
\mathcal{A}_{\text {eluq }, 1}\left(1_{e}, 2_{l_{i}}, 3_{u}, 4_{q_{j}}\right) & =\frac{C_{\text {eluq, },}}{\Lambda^{2}} \frac{1}{2}(\langle 23\rangle\langle 41\rangle+\langle 13\rangle\langle 42\rangle) \epsilon_{i j}, \\
\mathcal{A}_{W^{2} H^{2}}\left(1_{W_{-}^{a}}, 2_{H_{i}}, 3_{W_{-}^{a}}, 4_{H_{i}^{\dagger}}\right) & =\frac{C_{W^{2} H^{2}}}{\Lambda^{2}}\langle 13\rangle^{2} .
\end{aligned}
$$

$$
n=4
$$

$$
h=-2
$$

Anomalous dimension mixings:

$\left(\begin{array}{c}\gamma_{W H l e} \\ C_{W H l e}^{-1} a_{W H l e}^{1} \\ \gamma_{\text {eluq }, 1}\end{array} C_{\text {eluq, } 1}^{-1} a_{\text {eluq }, 1}^{1}{ }_{1}\right)=-\frac{\widetilde{a}_{\mathrm{SM}}^{J=1}}{8 \pi^{2}}\left(\begin{array}{ccc}\times & -N_{c} y_{u} & y_{e} \\ \gamma_{W^{2} H^{2}} & C_{W^{2} H^{2}}^{-1} a_{W^{2} H^{2}}^{1}\end{array}\right)\left(\begin{array}{c}a_{W H l e}^{1} \\ -y_{u} \\ y_{e} \\ a_{\text {eluq, } 1}^{1} \\ a_{W^{2} H^{2}}^{1}\end{array}\right)$

Color factors \& signs from fermions

After treating IR-div, shocking simplicity for gravity:

$$
\begin{array}{l||c||c|c|c|c||}
\hline \mathbf{a}^{\mathbf{J}} & J=0 & J=2 & J=4 & \\
\hline \hline \mathcal{A}_{\mathrm{GR}_{+-}} & 0 & -6 & -\frac{25}{3} & \\
\hline \mathcal{A}_{\mathrm{GR}_{-}} & \frac{5}{3} & \frac{1}{15} & 0 & \times \frac{r}{16 \pi^{2}} \\
\hline \hline \widehat{\mathcal{A}}_{R^{3}} & \frac{1}{6} & -\frac{1}{30} & 0 & \times C_{R^{3}} \\
\hline \mathcal{A}_{R^{4}} & \frac{7}{5} & \frac{4}{35} & \frac{1}{315} & \times C_{R^{4}} \\
\hline
\end{array}
$$

General formula for the anomalous dimensions for all terms of a non-linear sigma model:

$$
\Delta \gamma_{r}=-\frac{C_{w_{L} r_{L}} C_{w_{R} r_{R}}}{16 \pi^{2}}\left(\frac{N}{n_{r}} \delta_{r_{L} r} \delta_{r_{R} r}+2 \delta_{r_{L} r} \kappa_{w_{W^{2} r_{R}}^{r}}^{r}+2 \delta_{r_{R} r} \kappa_{w_{L_{L} r_{L}}^{r}}^{r}+4 \sum_{J=0}^{\min \left(\frac{w_{L}}{2}, \frac{w_{R}}{2}\right)} n_{J} n_{r} \kappa_{w_{L} r_{L}}^{J} \kappa_{w_{R} r_{R}}^{J} \kappa_{w_{J}}^{r}\right)
$$

$$
\kappa_{w r}^{J}=\sum_{k=0}^{r} \frac{(-1)^{w / 2+J-k}(r+k)![(w / 2-k)!]^{2}}{[k!]^{2}(r-k)!(w / 2+J+1-k)!(w / 2-J-k)!}
$$

Bright future ahead

two-loop:

2005.06983 2005.I2917
0806.4600
from 3-cut with massive internal particles

Conclusions

Amplitude methods seems quite suited for dealing with EFTs for BSM

- Allows to construct BSM without Lagrangians:
- Calculation of anomalous dimensions:

Simpler with easy recycling

* many "emergent" selection rules
- many relations between anomalous dimensions
where Feynman approach is quite obscure
A lat to da! Stay Tuned!

