Parton distributions in the SMEFT from high-energy Drell-Yan tails

Admir Greljo, Shayan Iranipour, Zahari Kassabov, Maeve Madigan James Moore, Juan Rojo, Maria Ubiali, **Cameron Voisey**

> HEFT 2021 14/4/21

Parton distributions in the SMEFT from high-energy Drell-Yan tails

Admir Greljo,^{*a,f*} Shayan Iranipour,^{*b*} Zahari Kassabov,^{*b*} Maeve Madigan,^{*b*} James Moore,^b Juan Rojo,^{d,e} Maria Ubiali,^b Cameron Voisey^c

- Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland The Netherlands
- ^eNikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands ^f CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland

For more information see arXiv: 2104.02723

^aAlbert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität

^bDAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom ^cCavendish Laboratory (HEP), JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom ^dDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam,

Background: PDFs

- Parton distribution functions (PDFs) describe partonic **content** of protons
- Depend on Bjorken-x (non-pert.) and energy scale (pert.). \bullet Extract via **fit**:

$$\sigma = f_1 \otimes f_2 \otimes \hat{\sigma}$$

$$\rightarrow f_i(x,Q^2) \pm \Delta_i(x,Q^2)$$

Process-independent but more data → higher precision

1. PDFs assume SM cross sections

2. EFT analyses assume SM PDFs

$$f_i \equiv f_{i, \text{SM}} \longrightarrow F_v$$

HEFT 2021, Cameron Voisey

The problem

w valid is this assumption, especially when looking for subtle deviations?

Question raised

Can the SMEFT be constrained correctly using SM PDFs?

HEFT 2021, Cameron Voisey

First studied in arXiv:1905.05215

The playground: Drell-Yan tails

- Drell-Yan (DY) tails, a.k.a. high-mass DY
- DY used in **both PDF and EFT determinations**:
 - 1. Important constraints on $q\bar{q}$
 - 2. New physics could **distort tails**

Choose two benchmark scenarios, described via SMEFT:

1. Flavour-universal electroweak oblique corrections: \hat{W}, \hat{Y}

2. Flavour-specific 4-fermion operator coupling muons and b-quarks

HEFT 2021, Cameron Voisey

The models

$$T = \mathscr{L}_{SM} + ?$$

$$\mathscr{L}_{\text{SMEFT}} \supset -\frac{\hat{W}}{4m_W^2} (D_{\rho} W^a_{\mu\nu})^2 - \frac{\hat{Y}}{4m_W^2} (\partial_{\rho} B_{\mu\nu})^2 \qquad \begin{array}{c} \text{Studied in e.g.} \\ 1609.08157, 200 \end{array}$$

- Four operators that can be matched to dim-6 in SMEFT: \hat{S} , \hat{T} , \hat{W} , \hat{Y}

-
$$\hat{S}, \hat{T}$$
 well constrained, weaker q^2 -

The models: \hat{W}, \hat{Y}

Electroweak (EW) oblique corrections: parametrise self-energy of EW gauge bosons

-dependence

HEFT 2021, Cameron Voisey

. arXiv: 08.12978

Standard procedure: SM PDFs

- 1. Take data, make predictions accounting for operators with fixed SM PDF set
- 2. Compute χ^2 for set of Wilson coefficients (WCs)

 $\chi^2 = \frac{1}{n_{\text{dat}}} \sum_{i \neq 1} (D)$

3. Fit function

4. Extract bounds

14/4/21

$$D_i - T_i (\text{cov}^{-1})_{ij} (D_j - T_j)$$

$$T = f_{1,\text{SM}} \otimes f_{2,\text{SM}} \otimes \hat{\sigma}_{\text{BSM}}$$

The methodology

Our procedure: SMEFT PDFs

- Same as previously, but...
- For each value of WC do a consistent PDF fit $\Rightarrow N_{WCS}$ SMEFT PDF sets

$$T = f_{1,BSM} \otimes f_{2,BSM} \otimes \hat{\sigma}_{BSM}$$

Data

- **DIS & low-mass/on-shell DY** data from NNPDF3.1
- Plus high-mass DY:

- LHC NC data: ATLAS 7, 8 TeV; CMS 7, 8, 13 TeV

- HL-LHC projections (later)

Settings

11

Example: SMEFT corrections

14/4/21

Question raised

Can the SMEFT be constrained correctly using SM PDFs?

14/4/21

HEFT 2021, Cameron Voisey

-> Current data

Results: current data

- 95% CL bounds:
 - broaden by 15% (\hat{W}), 12% (\hat{Y})
- PDF unc. included:
 - becomes shrinking by 11% (\hat{W}), 13% (\hat{Y})

- Complementary investigation with search data (not included in PDF fits!)
- ATLAS 13 TeV Z' search with full Run II luminosity
- 95% CL bounds (PDF unc. inc. or not):

- broaden by 7% (\hat{W} & \hat{Y})

Results: current data

Summary: current data

Unfolded data (inc. in fits)

Effects visible but within uncertainties (when PDF unc. inc.)

Search data (not inc. in fits)

- Bounds widen beyond uncertainties (when PDF unc. inc.) \bullet
- Even at this luminosity & \sqrt{s} we start to see impact

Question raised

Can the SMEFT be constrained correctly using SM PDFs?

14/4/21

HEFT 2021, Cameron Voisey

-> Future data

17

• Consider an optimistic scenario

•
$$\sqrt{s} = 14$$
 TeV, $\mathscr{L} = 6$ ab⁻¹
 $f_{red,sys} = 0.2$ (arXiv:1810.03639)

Data generated via fluctuating theory \bullet

HL-LHC projections

Results: future data

- 95% CL bounds:
 - broaden by 940% (\hat{W}), 190% (\hat{Y})
- PDF unc. included:
 - broaden by 620% (\hat{W}), 110% (\hat{Y})
- Neglecting PDF-EFT interplay would lead to significant underestimate of uncertainty on EFT parameters

Summary

— consistent treatment suggests only mild improvement versus current bounds!

Using SM PDFs to find optimal reach leads to significant underestimate of uncertainties

Conclusions

Can the SMEFT be constrained correctly using SM PDFs?

- Ideal solution is simultaneous fit of WCs & PDFs

Next steps

- Generalise e.g. more general EFT scenarios + other processes
- Build more powerful methodology goal: truly simultaneous fit

14/4/21

HEFT 2021, Cameron Voisey

Care must be taken! Inconsistent use of PDFs can lead to artificially precise bounds

Thank you for listening!

Backup

Unfolded high-mass Drell-Yan data

Exp.	\sqrt{s} (TeV)	Ref.	\mathcal{L} (fb ⁻¹)	Channel	$1\mathrm{D}/2\mathrm{D}$	$n_{ m dat}$	$m_{\ell\ell}^{ m max}~({ m TeV})$
ATLAS	7	[118]	4.9	e^-e^+	1D	13	[1.0, 1.5]
ATLAS (*)	8	[84]	20.3	$\ell^-\ell^+$	$2\mathrm{D}$	46	[0.5, 1.5]
CMS	7	[119]	9.3	$\mu^-\mu^+$	$2\mathrm{D}$	127	[0.2,1.5]
CMS (*)	8	[85]	19.7	$\ell^-\ell^+$	1D	41	[1.5, 2.0]
CMS (*)	13	[<mark>120</mark>]	5.1	$e^-e^+,\mu^-\mu^+$ $\ell^-\ell^+$	1D	$\begin{array}{c} 43,43\\ 43\end{array}$	[1.5, 3.0]
Total						270 (313)	

Left-handed muon-philic lepton-quark interactions

• Motivated by $R(K^{(*)})$ anomaly

The models: $C_{33}^{D\mu}$

 $\mathcal{L}_{\text{SMEFT}} \supset \frac{\mathsf{C}_{33}^{D\mu}}{v^2} (\bar{d}_L \gamma_\mu d_L) (\bar{\mu}_L \gamma^\mu \mu_L)$

HEFT 2021, Cameron Voisey

Results: $C_{33}^{D\mu}$

• Little current high-mass muon-only data \rightarrow look at projections only

95% CL bounds broaden by 27%

• Smaller shift than with \hat{W}, \hat{Y}

Luminosities (current data)

Luminosities (projections)

14/4/21

Absorption of new physics effects

 $R_{\chi^2}(m_{\ell\ell}^{(\text{max})}, \hat{W}, \hat{Y}) \equiv \frac{\chi^2(m_{\ell\ell}^{(\text{max})}, \hat{W}, \hat{Y})}{\chi^2(120 \text{ GeV}, \hat{W}, \hat{Y})}$

Absorption of new physics effects

14/4/21

