Higher order effects in SMEFT for the LHC **Eleni Vryonidou University of Manchester**

HEFT2021 online, 15/4/21

What's the path to NP through EFT? How to maximise the reach of EFT?

Use SMEFT to look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Use the best SM predictions QCD/EW corrections

Use precise SMEFT predictions to maximise sensitivity

HEFT2021, 14/4/21, online

Aspects of EFT predictions And how to improve them

- * Higher Orders in $1/\Lambda^4$
 - * squared dim-6 contributions
 - * double insertions of dim-6
 - * dim-8 contributions

* Higher Orders in QCD and EW * EFT is a QFT, renormalisable $\mathcal{O}(\alpha_s, \alpha_{ew}) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}$

· · /

order-by-order
$$1/\Lambda^2$$

 $\left(\frac{\alpha_s}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_{ew}}{\Lambda^2}\right)$

Why bother with higher orders?

Higher orders in SMEFT bring:

- Accuracy *
- Precision *
- Improved sensitivity *
 - observables, etc.) can be the key to disentangle them from the SM.
 - * Loop-induced new sensitivity: operators entering at one-loop

* Accurate knowledge of the deviations (distribution shapes, correlations between

Higher orders in Monte Carlo SMEFT@NLO

Automated one-loop computations in the SMEFT

Céline Degrande,^{1,*} Gauthier Durieux,^{2,†} Fabio Maltoni,^{1,3,‡} Ken Mimasu,^{1,§} Eleni Vryonidou,^{4,¶} and Cen Zhang^{5,6,**}

We present the automation of one-loop computations in the standard-model effective field theory at dimension six. Our implementation, dubbed SMEFT@NLO, contains ultraviolet and rational counterterms for bosonic, two- and four-fermion operators. It presently allows for fully differential predictions, possibly matched to parton shower, up to one-loop accuracy in QCD. We illustrate the potential of the implementation with novel loop-induced and next-to-leading order computations relevant for top-quark, electroweak, and Higgs-boson phenomenology at the LHC and future colliders.

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

Standard Model Effective Theory at One-Loop in QCD

Céline Degrande, Gauthier Durieux, Fabio Maltoni, Ken Mimasu, Eleni Vryonidou & Cen Zhang, marXiv:2008.11743

The implementation is based on the Warsaw basis of dimension-six SMEFT operators, after canonical normalization. Electroweak input parameters are taken to be G_F , M_Z , M_W . The CKM matrix is approximated as a unit matrix, and a $U(2)_q \times U(2)_u \times U(3)_d \times (U(1)_l \times U(1)_e)^3$ flavor symmetry is enforced. It forbids all fermion masses and Yukawa couplings except that only of the top quark. The model therefore implements the five-flavor scheme for PDFs.

A new coupling order, NP=2, is assigned to SMEFT interactions. The cutoff scale Lambda takes a default value of 1 TeV⁻² and can be modified along with the Wilson coefficients in the param_card. Operators definitions, normalisations and coefficient names in the UFO model are specified in definitions.pdf \therefore . The notations and normalizations of top-quark operator coefficients comply with the LHC TOP WG standards of \Rightarrow 1802.07237. Note however that the flavor symmetry enforced here is slightly more restrictive than the baseline assumption there (see the dim6top page for more information). This model has been validated at tree level against the dim6top implementation (see \Rightarrow 1906.12310 and the \Rightarrow comparison details).

Current implementation

UFO model: SMEFTatNLO_v1.0.tar.gz

• 2020/08/24 - v1.0: Official release including notably four-quark operators at NLO.

Support

Please direct any questions to smeftatnlo-dev[at]cern[dot]ch.

http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

What's included?

Warsaw basis

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Q_{earphi}	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$	Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$\frac{f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}}{f^{ABC}\widetilde{G}^{\mu}_{\mu}G^{\mu}_{\nu}G^{\mu}_{\rho}}$	$Q_{arphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$	$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left \left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi ight) ight $	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
QW	<u>ε ΙJΚῖλ/Ινιλ/Ιοιλ/Κ</u> μ					$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
$V^2 \sim 2$		$a/v^2 \mathbf{Y} = a/v^2 \mathbf{Y}$		a/2/2	$ Q_{lq}^{(3)} $	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
	$\Lambda \varphi$		$\psi \Lambda \varphi$	o(1)	$\begin{array}{c c} & \psi^- \varphi^- D \\ \hline & \end{array}$			$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $
$Q_{arphi G}$	$arphi^{\dagger}arphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$\left((l_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu} \right)$	$Q_{\varphi l}^{(1)}$	$\left \begin{array}{c} (\varphi^{\dagger}iD_{\mu}\varphi)(l_{p}\gamma^{\mu}l_{r})\\ \leftrightarrow\end{array}\right $			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$
$\mathcal{Q}_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{C}^{A}_{\mu\nu} C^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$\left \begin{array}{c} (\varphi^{\dagger}i D^{I}_{\mu} \varphi)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}) \\ \end{array} \right $					$Q_{qd}^{(8)}$	$\left((\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right)$
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$\left \begin{array}{c} (\varphi^{\dagger}i \overset{{}_{}}{D}_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r}) \\ \vdots \\ \vdots \\ \end{array} \right $	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating			
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu} W^{I}_{\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$\left(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})\right)$	Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha) ight]$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k \right]$
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar{q}_p \sigma^{\mu u} u_r) \widetilde{arphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left (\varphi^{\dagger} i \overleftrightarrow{D}^{I}_{\mu} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right $	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_{\circ}^{\gamma})^T C e_t \right]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_{p}^{lpha}%)+(q_{p}^{lpha}$	$^{j})^{T}Cq_{r}^{lpha}$	$\left[(q_s^{\gamma m})^T C l_t^n \right]$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{arphi d}$	$\left(arphi^{\dagger}i\overleftrightarrow{D}_{\mu}arphi)(ar{d}_{p}\gamma^{\mu}d_{r}) ight. ight.$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$arepsilon^{lphaeta\gamma}(au^Iarepsilon)_{Jk}(au^Iarepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T ight]$	$\left[Cq_r^{\beta k}\right] \left[(q_s^{\gamma m})^T Cl_t^n\right]$
$Q_{arphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(3)}$	$\left(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})\right)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$Cu_r^{\beta}] \Big $	$\left[(u_s^{\gamma})^T C e_t \right]$

CP-even, B and flavour-conserving

Flavour assumptions Singling out the top quark

 $U(3)_{L} \times U(3)_{e} \times U(2)_{Q} \times U(2)_{u} \times U(3)_{d}_{\bar{L}R}(\bar{R}L) \& \mathcal{O}_{oud}$

Chirality-flipping interactions involving Q3 & tR

Chirality-conserving interactions: universal gen. 1 & 2 + 3rd gen univ

• Four-fermions: 2-heavy-2-light & 4-heavy (no 4-light)^{//mal} top

Yukawa	$\psi^2 H^3$:	$(\varphi^{\dagger}\varphi)^2(ar{Q}t ilde{arphi})$
Dipoles	$\psi^2 XH$:	$(\bar{Q}\sigma^{\mu\nu}t\tilde{\varphi})B_{\mu\nu}\left[W^{I}_{\mu\nu},G^{a}_{\mu\nu}\right]$
3rd gen. currents	$\psi^2 H^2 D$:	$(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{Q} \gamma^{\mu} Q) \ [(\bar{Q} \gamma^{\mu} \tau^{I} Q), \ (\bar{t} \gamma^{\mu} t),$
3rd gen.	4F ψ^4 :	$(\bar{Q} \gamma^{\mu} Q)(\bar{q} \gamma_{\mu} q), (\bar{Q} \gamma^{\mu} Q)(\bar{Q} \gamma_{\mu} Q), \dots$

• • •

[Buras et al.; PLB 500 (2001) 161] [D'Ambrosio et al.; NPB 645 (2002) See also dim6top

See dim6to₁[Aguilar-Saavedra et al. arXiv:1802.07237]

[Aguilar-Saavedra et al.; arXiv:1802.07237]

What can the code do? Examples

Drell Yan

>	р	р	>	mu+	mu-	-		QCD=0	QED=2	NP=2	[QCD]
>	р	р	>	mu+	vm			QCD=0	QED=2	NP=2	[QCD]
>	р	р	>	W+	j	\$\$	t	QCD=1	QED=1	NP=2	[QCD]
>	р	р	>	W-	j	\$\$	t~	QCD=1	QED=1	NP=2	[QCD]
>	р	р	>	Z	j			QCD=1	QED=1	NP=2	[QCD]

Multi-boson production

quark-initiated

> p p > W+ W- QED=2 QCD=0 NP=2 [QCD] > p p > W+ Z QED=2 QCD=0 NP=2 [QCD] > p p > Z Z QED=2 QCD=0 NP=2 [QCD]

loop-induced

> g g > W+ W- QED=2 QCD=2 NP=2 [QCD] > g g > Z Z QED=2 QCD=2 NP=2 [QCD]> g g > W+ W- Z QED=3 QCD=2 NP=2 [QCD] > g g > Z Z Z QED=3 QCD=2 NP=2 [QCD]

E. Vryonidou

Higgs production

loop-induced

>	g	g	>	Η			QED=1	QCD=2	NP=2	[QCD]
>	g	g	>	н	Η		QED=2	QCD=2	NP=2	[QCD]
>	g	g	>	Н	Н	Η	QED=3	QCD=2	NP=2	[QCD]
>	g	g	>	Η	j		QED=1	QCD=3	NP=2	[QCD]

Top quark production

> e+ e- > t t~	QED=2	QCD=0 NP=2	[QCD]
> p p > t t~	QED=0	QCD=2 NP=2	[QCD]
> p p > t t~ h	QED=1	QCD=2 NP=2	[QCD]
> p p > t t~ Z	QED=1	QCD=2 NP=2	[QCD]
> p p > t t~ \\+	QED=1	QCD=2 NP=2	[QCD]
>pp>tW- \$	\$\$ t~ QED=1	QCD=1 NP=2	[QCD]
>pp>tW-j \$	\$\$ t~ QED=1	QCD=2 NP=2	[QCD]
>pp>tj \$	\$\$ W- QED=2	QCD=0 NP=2	[QCD]
>pp>thj \$	\$\$ W- QED=3	QCD=0 NP=2	[QCD]
>pp>tZj \$	\$\$ W- QED=3	QCD=0 NP=2	[QCD]
>pp>taj \$	\$\$ W- QED=3	QCD=0 NP=2	[QCD]

Including 4-fermion operators

And many more...

Applications at NLO Triboson production

NEW

First computation of VVV@NLO in the SMEFT c.f. first observation by CMS: arXiv:2006.11191

E. Vryonidou

HEFT2021, 14/4/21, online

Applications at NLO Triboson production

NEW

First computation of VVV@NLO in the SMEFT c.f. first observation by CMS: arXiv:2006.11191

E. Vryonidou

HEFT2021, 14/4/21, online

Interference resurrection

Applications at NLO EFT in top pair production

EFT

4-fermion operators

 $O_{Qq}^{1,8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})$ $O_{Qq}^{3,8} = (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i})$ $O_{tu}^8 = (\bar{t}\gamma_\mu T^A t)(\bar{u}_i\gamma^\mu T^A u_i)$ $O_{td}^8 = (\bar{t}\gamma^\mu T^A t)(\bar{d}_i\gamma_\mu T^A d_i)$ $O_{Qu}^8 = (\bar{Q}\gamma^\mu T^A Q)(\bar{u}_i \gamma_\mu T^A u_i)$ $O_{Qd}^8 = (\bar{Q}\gamma^{\mu}T^AQ)(\bar{d}_i\gamma_{\mu}T^Ad_i)$ $O_{tq}^8 = (\bar{q}_i \gamma^\mu T^A q_i) (\bar{t} \gamma_\mu T^A t)$

 $O_{Qq}^{1,1} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i})$ $O_{Qq}^{3,1} = (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i})$ $O_{tu}^1 = (\bar{t}\gamma_\mu t)(\bar{u}_i\gamma^\mu u_i)$ $O_{td}^1 = (\bar{t}\gamma^\mu t)(\bar{d}_i\gamma_\mu d_i) ;$ $O^1_{Qu} = (\bar{Q}\gamma^\mu Q)(\bar{u}_i\gamma_\mu u_i)$ $O_{Qd}^1 = (\bar{Q}\gamma^\mu Q)(\bar{d}_i\gamma_\mu d_i)$ $O_{tq}^1 = (\bar{q}_i \gamma^\mu q_i)(\bar{t}\gamma_\mu t) ;$

Singlets Octets Different chiralities and colour structures Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

E. Vryonidou

HEFT2021, 14/4/21, online

~		$O(\Lambda^{-2})$		$\mathcal{O}(\Lambda^{-}$	-4)
<i>c</i> 1	LO	NLO		LO	NLO
c_{tu}^8	$4.27^{+11\%}_{-9\%}$	$4.06^{+1\%}_{-3\%}$		$1.04^{+6\%}_{-5\%}$	$1.03^{+2\%}_{-2\%}$
c_{td}^8	$2.79^{+11\%}_{-9\%}$	$2.77^{+1\%}_{-3\%}$		$0.577^{+6\%}_{-5\%}$	$0.611^{+3\%}_{-2\%}$
c_{tq}^8	$6.99^{+11\%}_{-9\%}$	$6.67^{+1\%}_{-3\%}$		$1.61^{+6\%}_{-5\%}$	$1.29^{+3\%}_{-2\%}$
c_{Qu}^8	$4.26^{+11\%}_{-9\%}$	$3.93^{+1\%}_{-4\%}$		$1.04^{+6\%}_{-5\%}$	$0.798^{+3\%}_{-3\%}$
c_{Qd}^8	$2.79^{+11\%}_{-9\%}$	$2.93^{+0\%}_{-1\%}$		$0.58^{+6\%}_{-5\%}$	$0.485^{+2\%}_{-2\%}$
$c_{Qq}^{8,1}$	$6.99^{+11\%}_{-9\%}$	$6.82^{+1\%}_{-3\%}$		$1.61^{+6\%}_{-5\%}$	$1.69^{+3\%}_{-3\%}$
$c_{Qq}^{8,3}$	$1.50^{+10\%}_{-9\%}$	$1.32^{+1\%}_{-3\%}$		$1.61^{+6\%}_{-5\%}$	$1.57^{+2\%}_{-2\%}$
c_{tu}^1	$[0.67^{+1\%}_{-1\%}]$	$-0.078(7)^{+31\%}_{-23\%}$ [0.4	$1^{+13\%}_{-17\%}]$	$4.66^{+6\%}_{-5\%}$	$5.92^{+6\%}_{-5\%}$
c_{td}^1	$[-0.21^{+1\%}_{-2\%}]$	$-0.306^{+30\%}_{-22\%}$ [-0.3	$15^{+10\%}_{-13\%}]$	$2.62^{+6\%}_{-5\%}$	$3.46^{+5\%}_{-5\%}$
c_{tq}^1	$[0.39^{+0\%}_{-1\%}]$	$-0.47^{+24\%}_{-18\%}$ [0.3	$50^{+3\%}_{-2\%}]$	$7.25^{+6\%}_{-5\%}$	$9.36^{+6\%}_{-5\%}$
c_{Qu}^1	$[0.33^{+0\%}_{-0\%}]$	$-0.359^{+23\%}_{-17\%}$ [0.5	$57^{+6\%}_{-5\%}$]	$4.68^{+6\%}_{-5\%}$	$5.96^{+6\%}_{-5\%}$
c_{Qd}^1	$[-0.11^{+0\%}_{-1\%}]$	$0.023(6)^{+114\%}_{-75\%}$ [-0.	$19^{+6\%}_{-5\%}]$	$2.61^{+6\%}_{-5\%}$	$3.46^{+5\%}_{-5\%}$
$c_{Qq}^{1,1}$	$[0.57^{+0\%}_{-1\%}]$	$-0.24^{+30\%}_{-22\%}$ [0.3	$9^{+9\%}_{-12\%}]$	$7.25^{+6\%}_{-5\%}$	9.34 ^{+5%}
$c_{O_{a}}^{1,3}$	$[1.92^{+1\%}_{-1\%}]$	$0.088(7)^{+28\%}_{-20\%}$ [1.0	$5^{+17\%}_{-22\%}$]	$7.25^{+6\%}_{-5\%}$	$9.32^{+5\%}_{-5\%}$

Interesting interference patterns

Improved sensitivity New operators opening up at NLO

4-heavy operators in top pair production


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-2070	_	11/0	-1070	
$c_{Qt}^8$	$0.0583^{+27\%}_{-25\%}$	-0.107(6)	$0.00619^{+13\%}_{-16\%}$	0.01	
$c_{QQ}^1$	$[-0.11^{+15\%}_{-18\%}]$	$-0.039(4)^{+51\%}_{-33\%}$	$[-0.12^{+7\%}_{-5\%}]$	$0.0282^{+13\%}_{-16\%}$	0.06
$c_{Qt}^1$	$[-0.068^{+16\%}_{-18\%}]$	$-2.51^{+29\%}_{-21\%}$	$[-0.12^{+3\%}_{-6\%}]$	$0.0283^{+13\%}_{-16\%}$	0.0
$c_{tt}^1$	×	$0.215^+_{}$	×		

Complimentary information to ttbb and 4top production

![](_page_11_Picture_5.jpeg)

### E. Vryonidou

![](_page_11_Figure_7.jpeg)

![](_page_11_Figure_8.jpeg)

![](_page_12_Picture_0.jpeg)

 $\Delta \mathcal{L}_6 = \frac{c_H}{\Lambda^2} \partial_\mu (\phi^{\dagger} \phi) \partial^\mu (\phi^{\dagger} \phi) + \frac{c_u}{\Lambda^2} \phi^{\dagger} \phi \,\bar{q}_L \tilde{\phi} t_R + \frac{c_6}{\Lambda^2} (\phi^{\dagger} \phi)^3$  $+ \frac{c_{tG}}{\Lambda^2} \bar{q}_L \sigma^{\mu\nu} G_{\mu\nu} \tilde{\phi} t_R + \frac{c_{\phi G}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{a\mu\nu} .$ 

![](_page_12_Figure_2.jpeg)

E. Vryonidou

![](_page_12_Figure_4.jpeg)

H FIG. 3. Linear and quadratic contributions of the five

![](_page_12_Figure_6.jpeg)

![](_page_12_Picture_7.jpeg)

# Loop & tree sensitivity **Higgs production and decay**

![](_page_13_Figure_1.jpeg)

#### E. Vryonidou

![](_page_13_Picture_5.jpeg)

# Global Higgs-top fit

### Higgs data

Run I & 2 signal strengths (CMS+ATLAS):

- gluon fusion
- * VH
- * VBF
- ∗ ttH
- H decays

Differential distributions & STXS

### Top data

Run I & 2 results (CMS+ATLAS):

- pair production
- ★ tt+V, tttt, ttbb
- single top
- **∗** tZj

E. Vryonidou

W helicity fractions

Cross-sections & Differential distributions

![](_page_14_Figure_17.jpeg)

Ethier, Maltoni, Mantani, Nocera, Rojo, EV and Zhang in preparation For more details see Luca's talk yesterday

### PRELIMINARY

14

# **Global Higgs-top fit Tree-loop interplay**

		Processes								
Class	Coefficient	tt	ttV	t	tV	Hrun1	Hrun2	Hdiff		
	O81qq	81.7(96.0)	16.4(2.4)	×(×)	X(X)	0.1(-0.0)	1.7(0.8)	0.1(0.7)	$\square$	
	O11qq	100.0(98.8)	0.0(0.5)	×(×)	×(×)	×(0.0)	0.0(0.6)	×(0.2)	$\vdash$	
	O83qq	48.3(46.2)	25.9(50.6)	23.9(2.6)	0.0(0.3)	0.1(-0.0)	1.7(0.2)	0.1(0.1)	$\square$	
	O13qq	0.4(13.8)	0.0(1.2)	96.5(82.7)	3.1(2.1)	×(-0.1)	0.0(0.1)	×(0.2)		
	O8qt	56.1(47.0)	38.9(31.4)	×(×)	×(×)	0.3(0.2)	4.5(12.2)	0.2(9.2)		
	O1qt	100.0(94.6)	0.0(3.3)	×(×)	×(×)	×(0.0)	0.0(1.7)	×(0.4)		
91.911	O8ut	97.7(97.9)	0.4(0.3)	×(×)	×(×)	0.1(0.0)	1.7(0.8)	0.1(0.9)		
2121	O1ut	100.0(98.3)	0.0(0.3)	×(×)	×(×)	×(0.0)	0.0(1.1)	×(0.3)		
	O8qu	88.8(80.1)	3.6(5.2)	×(×)	×(×)	0.4(0.1)	6.8(8.3)	0.4(6.2)		
	O1qu	100.0(97.9)	0.0(0.7)	×(×)	×(×)	×(0.0)	0.0(1.1)	×(0.3)		
	O8dt	95.0(97.9)	1.4(0.7)	×(×)	×(×)	0.2(0.0)	3.3(0.9)	0.2(0.5)		
	Oldt	100.0(98.9)	0.0(0.2)	×(×)	×(×)	×(0.0)	0.0(0.7)	×(0.2)		
	O8qd	94.3(69.0)	2.6(9.5)	×(×)	×(×)	0.1(0.3)	2.8(12.6)	0.1(8.6)		
	O1qd	100.0(97.6)	0.0(1.0)	×(×)	×(×)	×(0.0)	0.0(1.2)	$\times(0.2)$		
	Otp	×(×)	×(×)	×(×)	×(×)	13.7(18.6)	46.2(67.9)	40.1(13.4)		
	OtG	61.1(23.2)	0.2(0.1)	×(×)	×(×)	5.9(10.4)	17.5(29.5)	15.2(36.8)		
	Obp			- ×(×)		26.6(26.8)	73.4(73.2)			
	Оср	×(×)	×(×)	×(×)	×(×)	26.8(26.3)	73.2(73.7)	×(×)		
OFD	Otap	×(×)	×(×)	$\times(\times)$	×(×)	39.1(38.5)	60.9(61.5)	×(×)		
21 D	OtW	9.1(0.4)	0.0(0.0)	0.4(0.0)	0.2(0.0)	18.9(20.8)	71.5(78.7)	×(×)		
	OtZ	×(×)	0.0(0.0)	×(×)	0.0(0.0)	21.0(21.0)	79.0(79.0)	×(×)		
	O3pQ3	$\times(0.0)$	0.0(0.0)	80.0(4.7)	14.3(0.8)	1.2(18.2)	4.5(76.1)	0.0(0.1)		
	OpQM	×(×)	41.8(0.0)	×(×)	0.6(0.0)	11.9(20.0)	45.7(79.9)	0.0(0.0)		
	Opt	×(×)	64.5(0.0)	$\times(\times)$	0.2(0.0)	7.4(21.0)	27.9(79.0)	0.0(0.0)		
	OpG	×(×)	×(×)	×(×)	×(×)	15.3(15.5)	42.9(42.3)	41.8(42.2)		
	OpB	×(×)	×(×)	×(×)	×(×)	21.0(21.0)	79.0(79.0)	0.0(0.0)		
	OpW	×(×)	×(×)	×(×)	×(×)	21.0(21.1)	78.9(78.9)	0.0(0.0)		
в	Opd	×(×)	×(×)	$\times(\times)$	×(×)	25.4(27.4)	67.2(72.6)	7.4(0.0)		
	owww	×(×)	$\times(\times)$	$\times(\times)$	×(×)	$\times(\times)$	×(×)	×(×)	10	
	OpWB	×(×)	×(×)	$\times(\times)$	$\times(\times)$	21.1(21.1)	78.8(78.8)	0.1(0.1)		
	OpD	×(×)	×(×)	×(×)	$\times(\times)$	21.1(21.1)	78.8(78.8)	0.1(0.1)		

Ethier, Maltoni, Mantani, Nocera, Rojo, EV and Zhang in preparation

### E. Vryonidou

![](_page_15_Picture_4.jpeg)

![](_page_15_Figure_5.jpeg)

HEFT2021, 14/4/21, online

# Impact of NLO predictions in global fits Marginalised constraints

![](_page_16_Figure_1.jpeg)

**Posterior distributions** 

E. Vryonidou

Significant impact of NLO for some operators

HEFT2021, 14/4/21, online

# Outlook

SMEFT@NLO finally released

- Fully automated one-loop computations: NLO+PS and loop-induced
- Allows using results in global fits

Planned Extensions:

- More general flavour structure
- Light 4-f operators
- CPV

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_9.jpeg)

HEFT2021, 14/4/21, online