Recent EFT interpretations of Higgs (and diboson) measurements at ATLAS

Philipp Windischhofer

University of Oxford For the ATLAS Collaboration

HEFT 2021, April 14-16, 2021, USTC

What can you expect?

A summary of our activities in using Higgs boson measurements to constrain the Standard Model EFT (SMEFT)

See Lailin's overview talk yesterday

(Our) answers to questions such as

How to ensure our measurements can reliably probe SMEFT effects?

How to extract SMEFT constraints?

How to present these results?

from the point of view of two recent results:

Higgs combination

[ATLAS-CONF-2020-053]

 $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^* \rightarrow 4I$ VH, H→bb **Higgs + diboson combination**

[ATL-PHYS-PUB-2021-010]

H→WW*

pp→WW

From event distributions to SMEFT constraints

A typical trajectory of an ATLAS Higgs EFT result

"Inputs for EFT interpretation"

Note: all systematic uncertainties kept for EFT result!

Philipp Windischhofer

From event distributions to SMEFT constraints

A typical trajectory of an ATLAS Higgs EFT result

Behaviour can be modified in SMEFT! (e.g. signal acceptance changes, see later)

Parametrisation of **SMEFT** modifications

Generator-level simulation sufficient (detector effects already removed!)

Note: all systematic uncertainties kept for EFT result!

Philipp Windischhofer

From event distributions to SMEFT constraints

A typical trajectory of an ATLAS Higgs EFT result

Generator-level simulation sufficient (detector effects already removed!)

Note: all systematic uncertainties kept for EFT result!

Simplified template cross-sections (STXS)

STXS = Higgs production cross-sections in well-defined fiducial volumes

Compromise between exp. sensitivity and model-dependence

Isolate regions with possible BSM effects (e.g. p_T^V)

Staged definition: more data → more STXS bins

Original definition from $\underline{YR4}$, more granular bins in use now

The Standard Model EFT (SMEFT)

The Standard Model as an effective theory

Cross-sections in the SMEFT

Multiplicative modification of SM cross-section

Observables (also decay rates) are polynomial in Wilson coefficients $C_i^{(6)}$

Parametrisation of SMEFT modifications

(Expanded further in powers of Λ^{-2})

Parametrisation of SMEFT modifications

(Expanded further in powers of Λ^{-2})

Coefficients for linear and quadratic contributions obtained from simulation:

MadGraph + SMEFT@NLO for loop-induced processes (e.g. $gg \rightarrow ZH$, $H \rightarrow gg$)

MadGraph + SMEFTsim for tree-level processes (LO)

Analytic results where available

(e.g. H→yy from <u>Phys. Rev. D 98, 095005</u>)

Use Warsaw basis, {m_w, m_z, G_F} input scheme, U(3)⁵ flavour symmetry, Λ=1TeV

Parametrisation of SMEFT modifications

Higgs combination

[ATLAS-CONF-2020-053]

STXS measurement

SMEFT modifications to $\sigma \, x \, Br$

Higher impact for processes at higher scales (~ p_T^v)

SMEFT modifications to $\sigma \, x \, Br$

Modifications to Higgs vev and g_{EW}

All operators at a glance

All operators at a glance

Acceptance modifications in $H \rightarrow ZZ^* \rightarrow 4I$

m₃₄-distribution can change significantly in SMEFT (e.g. caused by снw)

Analysis signal acceptance drops!

H→4I analysis applies cut on inv. mass of off-shell Z (m₃₄)

Acceptance modifications in $H \rightarrow ZZ^* \rightarrow 4I$

Analysis signal acceptance drops!

Parametrisation of $\sigma x Br$

Acceptance modification totally changes trend!

SMEFT-modifications to analysis acceptance significant!

All operators at a glance

Principal components

Group together operators with similar effects (on the available data) ...

... drop combinations that cannot be well constrained (on the available data) ...

... and keep the rest

"Principal component analysis"

Can "simultaneously" constrain 10 operator combinations

(with manageable correlations)

— Warsaw basis operators ——

Principal components

Warsaw basis

Principal components

One-dimensional limits

1d-limits on Wilson coefficients from simultaneous fit to10 operator combinations

Limits on Wilson coefficients range from $\mathcal{O}(0.1)$ to $\mathcal{O}(5)$

Impact of parametrisation

Compare 1d-limits for linear and linear + quadratic parametrisations

(all other Wilson coefficients profiled)

Limits generally in good agreement ...

... but significant differences for few operator combinations

... indicative of sensitivity to Λ -4 effects ("theory uncertainty")

Higgs + diboson combination

[ATL-PHYS-PUB-2021-010]

Higgs + diboson combination

Combined measurement of H \rightarrow **WW*** \rightarrow **e** ν µ ν (ggH and VBF) **and pp** \rightarrow **WW** \rightarrow **e** ν µ ν , **based on existing analyses** (36 fb⁻¹)

Challenging combination:

Orthogonal signal (region) **definition** (m_{eµ} ≥ 55 GeV) (CRs originally overlapping; made orthogonal)

WW as background of $H \rightarrow WW^*$

Acceptance modifications O(10%) for \mathcal{O}_{HW}

... paving the way for future global fits

pp→WW: differential cross-section w.r.t. p_T of leading lepton

 $H \rightarrow WW^*$: inclusive ggH and VBF signal strengths

 $d\sigma$

 $dp_T^{\text{lead. lep.}}$

All operators at a glance

One-dimensional limits

1d-limits on Wilson coefficients of individual Warsaw-basis operators

Only linear parametrisation considered

(principal components listed in backup)

Exploit complementarity of different measurements

pp→WW

H→WW*

V

Η -

SMEFT is a global scheme!

Summary and outlook

EFT interpretations of Higgs measurements at ATLAS advancing rapidly!

Starting from existing measurements of STXS or differential cross-sections

Modifications to analysis acceptance included where relevant "An analysis is not a black box!"

Moving towards larger-scale combinations (ATLAS global EFT fit) with the full dataset "SMEFT is a global scheme!"

Stay tuned for more results!

Backup

The letter lambda was used by the Spartan army as a symbol of Lacedaemon (900s–192 BC).

https://en.wikipedia.org/wiki/Sparta

Higgs combination

[ATLAS-CONF-2020-053]

Observables in the SMEFT

Multiplicative modification of SM cross-section

Partial decay widths:

Total decay widths:

$$\frac{\Gamma(H \to f)_{\text{SMEFT}}}{\Gamma(H \to f)_{\text{SM}}} = 1 + A_i^f c_i^{(6)} + B_{ij}^f c_i^{(6)} c_j^{(6)}$$

$$\frac{\Gamma(H)_{\text{SMEFT}}}{\Gamma(H)_{\text{SM}}} = 1 + A_i c_i^{(6)} + B_{ij} c_i^{(6)} c_j^{(6)}$$

Observables are polynomial in Wilson coefficients C_i

Philipp Windischhofer

Merging of STXS bins

STXS Region	STXS Region	$H{ ightarrow}\gamma\gamma$	$H{\rightarrow} ZZ^*{\rightarrow} 4\ell$	$H \to b\bar{b} \ (VH)$
Stage-0	Stage-1.2			
	$N_{\rm iets} = 0, \ p_{\rm T}^H < 10$	$N_{\rm iets} = 0, \ p_{\rm T}^{H} < 10$	$N_{\rm jets} = 0, p_{\rm T}^H < 10$	
	$N_{\text{jets}} = 0, \ 10 < p_{\text{T}}^H$	$N_{\text{iets}} = 0, \ 10 < p_{\text{T}}^H$	$N_{\rm jets} = 0, \ 10 < p_{\rm T}^H$	
	$N_{\rm iets} = 1, \ p_{\rm T}^H < 60$	$N_{\text{iets}} = 1, \ p_{\text{T}}^H < 60$	$N_{\rm jets} = 1, p_{\rm T}^H < 60$	
	$N_{\rm iets} = 1,60 < p_{\rm T}^H < 120$	$N_{\rm iets} = 1, \ 60 < p_{\rm T}^H < 120$	$N_{\rm iets} = 1,60 < p_{\rm T}^H < 120$	
	$N_{\text{iets}} = 1,120 < p_{\text{T}}^H < 200$	$N_{\text{jets}} = 1,120 < p_{\text{T}}^{H} < 200$	$N_{\rm jets} = 1,120 < p_{\rm T}^H < 200$	
	$N_{\text{iets}} \ge 2, \ m_{ij} < 350, \ p_{\mathrm{T}}^H < 60$	$N_{\text{jets}} \ge 2, \ m_{jj} < 350, \ p_{\text{T}}^{H} < 120$	$N_{\text{iets}} \ge 2, \ p_{\mathrm{T}}^H \le 200$	
	$N_{\text{iets}} \ge 2, \ m_{ii} < 350, \ 60 < p_T^H < 120$	$N_{\text{jets}} \ge 2, \ m_{jj} < 350, \ p_{\text{T}}^{H} < 120$	$N_{\text{iets}} \ge 2, p_{\text{T}}^H \le 200$	
Ξ	$N_{\text{iets}} \ge 2, \ m_{ii} < 350, \ 120 < p_{\text{T}}^H < 200$	$N_{\text{iets}} \ge 2, m_{ij} < 350, 120 < p_{\text{T}}^H < 200$	$N_{\text{iets}} \ge 2, p_{\mathrm{T}}^{H} \le 200$	
50 50	$N_{\text{iets}} \ge 2,350 < m_{jj} < 700, p_{\text{T}}^{H} < 200, p_{\text{T}}^{H_{jj}} < 25$	$N_{\text{jets}} \ge 2,350 < m_{jj}, p_{\text{T}}^{H} < 200$	$N_{\text{iets}} \ge 2, p_{\text{T}}^H \le 200$	
	$N_{\text{iets}} > 2, 350 < m_{jj} < 700, p_{\text{T}}^{H} < 200, 25 < p_{\text{T}}^{Hjj}$	$N_{\text{iets}} > 2,350 < m_{ii}, p_{\text{T}}^{H} < 200$	$N_{\text{iets}} > 2, \ p_{\text{T}}^{H} < 200$	
	$N_{\text{iets}} > 2,700 < m_{jj}, p_T^H < 200, p_T^{Hjj} < 25$	$N_{\text{iets}} > 2,350 < m_{ii}, p_{\text{T}}^{H} < 200$	$N_{\text{iets}} > 2, \ p_{\text{T}}^{\text{H}} < 200$	
	$N_{\text{iets}} \ge 2,700 < m_{jj}, p_T^H < 200,25 < p_T^{Hjj}$	$N_{\text{iets}} > 2,350 < m_{ii}, p_{\text{T}}^{H} < 200$	$N_{\text{iets}} > 2, \ p_{\text{T}}^{\text{H}} < 200$	
	$200 < p_T^H < 300$	$200 < p_{\rm T}^H < 300$	$200 < p_{\rm T}^H$	
	$300 < p_T^H < 450$	$300 < p_T^H < 450$	$200 < p_{T}^{H}$	
	$450 < p_T^H < 650$	$450 < p_{T}^{H}$	$200 < p_{T}^{H}$	
	$650 < p_T^H$	$450 < p_{\rm T}^{H}$	$200 < p_{\rm T}^{H}$	
	$N_{\text{iets}} = 0$	$N_{\text{iets}} < 1$	× 1	
	$N_{\text{iets}} = 1$	$N_{\text{iets}} \leq 1$		
ad"	$N_{\text{iets}} > 2, m_{ii} < 60$	$N_{\text{iets}} > 2, \ m_{ij} < 60 \lor 120 < m_{ij} < 350$	VBF	
$\frac{q}{1}$ ha	$N_{\text{iets}} > 2, \ 60 < m_{ii} < 120$	$N_{\text{iets}} > 2, 60 < m_{ij} < 120$	$N_{\rm iets} > 2, 60 < m_{ii} < 120$	
H_{q}	$N_{\text{iets}} > 2, \ 120 < m_{jj} < 350$	$N_{\text{iets}} > 2, m_{ij} < 60 \lor 120 < m_{ij} < 350$	VBF	
\uparrow^{5b} "	$N_{\text{iets}} > 2, 350 < m_{jj} 200 < p_{\text{T}}^H$	$N_{\text{iets}} > 2,350 < m_{ij},200 < p_{\text{T}}^H$	$N_{\text{iets}} > 2, 350 < m_{ii}, 200 < p_{\text{T}}^H$	
99 F",	$N_{\text{iets}} > 2, 350 < m_{jj} < 700, p_{\text{T}}^{H} < 200, p_{\text{T}}^{Hjj} < 25$	$N_{\text{iets}} > 2, 350 < m_{ii} < 700, p_{\text{T}}^{H} < 200$	VBF	
VBI	$N_{\text{iets}} > 2, 350 < m_{jj} < 700, p_{\text{T}}^{H} < 200, 25 < p_{\text{T}}^{Hjj}$	$N_{\text{iets}} > 2,350 < m_{ii} < 700, p_{\text{T}}^{H} < 200$	VBF	
5,	$N_{\text{iets}} \ge 2,700 < m_{jj}, p_T^H < 200, p_T^{Hjj} < 25$	$N_{\text{iets}} > 2,700 < m_{ij}, p_{H}^{H} < 200$	VBF	
	$N_{\text{iets}} > 2,700 < m_{jj}, p_T^H < 200,25 < p_T^{Hjj}$	$N_{\text{iets}} > 2,700 < m_{ii}, p_{\text{T}}^{H} < 200$	VBF	
	$p_T^V < 75 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$WH p_T^V < 150$	VH lep	$WH \ p_{T}^{V} < 250$
$\ell \nu$ lep'	$75 < p_T^V < 150 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} \ge 2)$	$WH p_T^V < 150$	VH lep	$WH p_{\rm T}^V < 250$
$H \neq H$	$150 < p_T^V < 250 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$WH 150 < p_{\rm T}^V$	VH lep	$WH p_{\rm T}^V < 250$
$- \frac{b}{b}$	$250 < p_T^V < 400 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$WH \ 150 < p_T^V$	VH lep	$WH \ 250 < p_{\rm T}^V$
$b_{,,}^{b}$	$400 < p_T^V (N_{\text{iets}} = 0 / N_{\text{iets}} = 1 / N_{\text{iets}} > 2)$	$WH \ 150 < p_T^V$	VH lep	WH 250 $< p_{T}^{V}$
	$p_T^V < 75 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$ZH p_T^V < 150$	VH lep	$ZH p_{\rm T}^V < 150$
"de	$75 < p_T^V < 150 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$ZH p_{T}^{V} < 150$	VH lep	$ZH p_{\rm T}^V < 150$
$H_{\rm l}$	$150 < p_T^V < 250$ (N _{iets} = 0 / N _{iets} = 1 / N _{iets} > 2)	$ZH 150 < p_T^V$	VH lep	$ZH \ 150 < p_T^V < 250$
-b	$250 < p_T^V < 400 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$ZH 150 < p_T^V$	VH lep	$ZH \ 250 < p_{\rm T}^V$
b, b	$400 < p_T^V (N_{\text{iets}} = 0 / N_{\text{iets}} = 1 / N_{\text{iets}} > 2)$	$ZH \ 150 < p_T^V$	VH lep	$ZH \ 250 < p_{\rm T}^V$
	$p_T^V < 75 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$ZH p_T^V < 150$	VH lep	$ZH p_{\rm T}^V < 150$
.te	$75 < p_T^V < 150 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{ieto}} > 2)$	$ZH p_{\rm T}^V < 150$	VH lep	$ZH p_{\rm T}^V < 150$
$H \to H$	$150 < p_T^V < 250 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$ZH 150 < p_T^V$	VH lep	$ZH \ 150 < p_T^V < 250$
$\frac{g}{gZ_{I}}$	$250 < 400 \ (N_{\text{iets}} = 0 \ / \ N_{\text{iets}} = 1 \ / \ N_{\text{iets}} > 2)$	$ZH \ 150 < p_{T}^{V}$	VH lep	$ZH \ 250 < p_{\rm T}^V$
<i>6</i> , <i>6</i> ,	$250 < p_{\rm T}^V (N_{\rm iets} = 0 / N_{\rm iets} = 1 / N_{\rm iets} > 2)$	$ZH \ 150 < p_T^V$	VH lep	$ZH \ 250 < p_{\rm T}^V$
	$p_T^H < 60$	$p_{\mathrm{T}}^{H} < 60$	t(t)H	<u> </u>
	$60 < p_T^H < 120$	$60 < p_{rr}^{H} < 120$	t(t)H	
$H^{\frac{1}{2}}$	$120 < p_{\rm T}^H < 200$	$120 < p_T^H < 200$	t(t)H	
t_{1}	$200 < p_{\rm T}^{\mu} < 300$	$200 < p_{T}^{H}$	t(t)H	
	$300 < p_{\rm T}^{\mu}$	$200 < p_{T}^{H}$	t(t)H	
	$b\bar{b}H$	merged with	n ggH	
	tH	tH	t(t)H	
			× /	

Correlations of combined STXS measurement

Operator definitions

Wilson coefficient	Operator	Wilson coefficient	Operator
$c_{H\Box}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$
c_{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$
c_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	$C_{u}B$	$(\bar{a}_n \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$
c_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	c'_{μ}	$(\bar{l}_{r}\gamma_{\mu}l_{t})(\bar{l}_{r}\gamma^{\mu}l_{s})$
c_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	$c_{aa}^{(1)}$	$(\bar{q}_{r}\gamma_{\mu}q_{t})(\bar{q}_{r}\gamma^{\mu}q_{s})$
c_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$c_{qq}^{(3)}$	$(\bar{q}_{r}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$
c_{eH}	$(H^{\dagger}H)(l_{p}e_{r}H)$	C_{qq}	$(\overline{q}_{r}\gamma_{\mu}q_{t})(\overline{q}_{r}\gamma^{\mu}q_{s})$ $(\overline{q}_{r}\gamma_{\mu}q_{t})(\overline{q}_{r}\gamma^{\mu}q_{s})$
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}H)$	$c_{qq}^{(31)}$	$(\bar{q}_{r}\gamma_{\mu}\tau^{I}q_{t})(\bar{q}_{r}\gamma^{\mu}\tau^{I}q_{s})$ $(\bar{q}_{r}\gamma_{\mu}\tau^{I}q_{t})(\bar{q}_{r}\gamma^{\mu}\tau^{I}q_{s})$
c_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	C_{qq}	$(\overline{y}_{\mu}\gamma_{\mu}\eta_{\nu})(\overline{y}_{\ell}\gamma^{\mu}\eta_{\ell})$ $(\overline{y}_{\mu}\gamma_{\nu}\eta_{\mu})(\overline{y}_{\mu}\gamma^{\mu}\eta_{\ell})$
$c_{Hl}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{uu}^{(1)}$	$(\overline{u}_{p}\gamma_{\mu}u_{r})(\overline{u}_{s}\gamma^{\mu}u_{t})$ $(\overline{u}_{r}\gamma_{\mu}u_{t})(\overline{u}_{r}\gamma^{\mu}u_{s})$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$c_{uu}^{(1)}$	$(a_p \gamma_\mu a_l)(a_l \gamma^\mu a_s)$ $(\bar{a}_n \gamma_\mu a_l)(\bar{u}_n \gamma^\mu u_s)$
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c_{qu}^{(8)}$	$(\bar{u}_{\mu}\gamma_{\mu}T^{A}u_{\mu})(\bar{d}_{\tau}\gamma^{\mu}T^{A}d_{t})$
$c_{Ha}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c^{(8)}$	$(\overline{a}_{r}\gamma_{\mu}T^{A}a_{r})(\overline{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\overline{a}_{r}\gamma_{\mu}T^{A}a_{r})(\overline{u}_{s}\gamma^{\mu}T^{A}u_{t})$
$C^{(3)}_{\mu}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{q}_{n}\tau^{I}\gamma^{\mu}q_{r})$	$c_{qu}^{(8)}$	$(\overline{q}_{p}/\mu^{T} q_{r})(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $(\overline{d}_{s}\gamma^{\mu}T^{A}d_{t})$
пų Сна	$(H^{\dagger}i\overleftrightarrow{D},H)(\bar{u}_{m}\gamma^{\mu}u_{m})$	⊂qd	$(\Psi P / \mu + \Psi P / (W s / F W t))$ $\epsilon^{IJK} W^{I\nu} W^{J\rho} W^{K\mu}$
	$(H^{\dagger}i\overleftrightarrow{D},H)(\overline{d}_{r}\gamma^{\mu}d_{r})$	C_W	$f^{ABC}G^{A\nu}G^{B\rho}G^{C\mu}$
c_{Hd}	$(H^{\dagger}i D_{\mu}H)(d_p\gamma^{\mu}d_r)$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$

Linear vs. linear+quadratic parametrisation

1) Find eigenbasis of Hessian of likelihood around SM: $(H_{\text{SMEFT}})_{ij} = \frac{\partial^2 \log L}{\partial c_i \partial c_i}$

sens.

Higgs wave-function ~ renormalisation (scales inclusive cross-section)

sens.

2) Find eigenbases in physics-motivated subspaces of operators:

	$\{c_i\} =$	$ \{c_{Hq}^{(3)}\} \times \{c_{HG}, c_{uG}, c_{uH}, c_{qq}^{(1)}, c_{qq}, c_{qq}^{(3)}, c_{qq}^{(31)}, c_{uu}, c_{uu}^{(1)}, c_{ud}^{(8)}, c_{qu}^{(1)}, c_{qu}^{(8)}, c_{qu}^{(2)}, c_{qu}^{(2$	$_{ld}^{s_{0}}, c_{G}\} imes$	
Parameter	r	Definition	Eigenvalue	Fit Para- meter
$c_{Hq}^{\scriptscriptstyle (3)}$		$c_{Hq}^{\scriptscriptstyle (3)}$	1900	✓
B	1	$-0.27c_{HW} - 0.84c_{HB} + 0.47c_{HWB} - 0.02c_{uW} - 0.05c_{uB}$	245000	\checkmark
, uW, u	2	$-0.96c_{HW} + 0.19c_{HB} - 0.20c_{HWB} + 0.02c_{uB}$	33	\checkmark
HWB,HDL	3	$-0.08c_{HW} + 0.50c_{HB} + 0.86c_{HWB} + 0.07c_{HDD} + 0.03c_{uW} + 0.06c_{uB}$	4	✓
V,HB,H	4	$0.03c_{HWB} - 0.85c_{HDD} + 0.32c_{uW} + 0.43c_{uB}$	0.017	
$c_{HV}^{[i]}$	5	$-0.01c_{HW} + 0.07c_{HB} + 0.05c_{HWB} - 0.44c_{HDD} - 0.86c_{uW} - 0.23c_{uB}$	0.0077	Low sensitivity
	6	$-0.01c_{HW} + 0.06c_{HB} + 0.04c_{HWB} - 0.29c_{HDD} + 0.39c_{uW} - 0.87c_{uB}$	0.0025	

2) Find eigenbases in physics-motivated subspaces of operators:

2) Find eigenbases in physics-motivated subspaces of operators:

$$\{c_i\} = \{c_{Hq}^{(3)}\} \times \\ \{c_{HG}, c_{uG}, c_{uH}, c_{qq}^{(1)}, c_{qq}, c_{qq}^{(3)}, c_{qq}^{(31)}, c_{uu}, c_{uu}^{(1)}, c_{ud}^{(8)}, c_{qu}^{(1)}, c_{qd}^{(8)}, c_{G}\} \times \\ \{c_{HW}, c_{HB}, c_{HWB}, c_{HDD}, c_{uW}, c_{uB}, \} \times \\ \{c_{Hl}^{(1)}, c_{He}\} \times \\ \{c_{Hl}^{(3)}, c_{ll}^{'}\} \times \\ \{c_{Hu}, c_{Hd}, c_{Hq}^{(1)}\}$$

Parameter	Definition	Eigenvalue	Fit Para- meter
$c^{[1]}_{Hl^{(1)},He}$	$+0.78c_{Hl}^{_{(1)}}-0.62c_{He}$	2.6	✓
$c^{[2]}_{Hl^{(1)},He}$	$+0.62 c_{Hl}^{_{(1)}}+0.78 c_{He}$	0.056	
$c^{[1]}_{Hu,Hd,Hq^{(1)}}$	$-0.87c_{Hu} + 0.26c_{Hd} + 0.42c_{Hq}^{\scriptscriptstyle (1)}$	59	1
$c^{[2]}_{Hu,Hd,Hq^{(1)}}$	$+0.41c_{Hu}-0.09c_{Hd}+0.91c_{Hq}^{_{(1)}}$	0.10	
$c^{[3]}_{Hu,Hd,Hq^{(1)}}$	$-0.28c_{Hu} - 0.96c_{Hd} + 0.03c_{Hq}^{ m {}^{(1)}}$	0.0018	
$c^{[1]}_{Hl^{(3)},ll^{\prime}}$	$0.87 c_{Hl}^{\scriptscriptstyle (3)} - 0.50 c_{ll}^{\prime}$	27	1
$c^{[2]}_{Hl^{(3)},ll^{\prime}}$	$0.50c_{Hl}^{\scriptscriptstyle (3)} + 0.87c_{ll}^{\prime}$	0.33	

Correlations from simultaneous fit to 10 operator combinations

	ATI	LAS	S Pre	elim	inar m _H =	'y √ = 12	s = 5.09	13 T Ge ^v	ëV, √, l <i>y</i>	139 _ا <	fb⁻¹ 2.5	
$C_{Hq}^{(3)}$	1	-0.74	0.28	0.75	-0.38	0.24	0.07	0.12	0.64	0.70		$\begin{vmatrix} 1 \\ \Sigma \end{vmatrix}$
$c^{[1]}_{{HI}^{^{(1)}},He}$	-0.74	1	-0.19	-0.91	0.19	-0.05	0.05	0.00	-0.44	-0.95		
$c^{[1]}_{HI^{(3)},II'}$	0.28	-0.19	1	0.25	-0.54	0.47	0.05	0.95	-0.40	0.44		0.0
С ^[1] Нd,Нq ⁽¹⁾ ,Ни	0.75	-0.91	0.25	1	-0.24	0.12	0.06	0.09	0.30	0.90		0.4
$c^{[1]}_{HG, uG, uH, top}$	-0.38	0.19	-0.54	-0.24	1	-0.69	-0.20	-0.66	-0.09	-0.33		0.2
С ^[2] НG,иG,иH,top	0.24	-0.05	0.47	0.12	-0.69	1	0.19	0.58	0.00	0.18		_02
С ^[3] НG,иG,иH,top	0.07	0.05	0.05	0.06	-0.20	0.19	1	0.11	0.09	-0.03		_0.2
C ^[1] HW,HB,HWB,HDD,uB,uW	0.12	0.00	0.95	0.09	-0.66	0.58	0.11	1	-0.49	0.27		_0.4
C ^[2] HW,HB,HWB,HDD,uB,uW	0.64	-0.44	-0.40	0.30	-0.09	0.00	0.09	-0.49	1	0.21		_0.0
C ^[3] HW,HB,HWB,HDD,uB,uW	0.70	-0.95	0.44	0.90	-0.33	0.18	-0.03	0.27	0.21	1		1
	$c_{Hq}^{(3)}$	$c^{[1]}_{HI^{(1)},He}$	$c_{HI^{(3)},II'}^{[1]}$	$c^{[1]}_{Ha,Ha^{(1)},Hu}$	$c^{[1]}_{{\cal H}{\cal G},u{\cal G},u{\cal H},top}$	С ^[2] НG,uG,uH,top	$c^{[3]}_{{\sf HG},uG,uH,top}$	С ^[1] С НW,НВ,НWВ,НDD,иВ,иW	С ^[2] СНW,НВ,НWВ,НDD,иВ,иW	$oldsymbol{c}^{[3]}_{HW,HB,HWB,HDD,uB,uW}$		-1

Likelihood scans

Operator combination with no sensitivity *"flat direction", fixed in fit*

Operator combination with good sensitivity

Importance of acceptance modifications

HZZ standalone constraints:

Combined constraints:

Higgs + diboson combination

[ATL-PHYS-PUB-2021-010]

Correlations of input measurements

	~'			101				0 - 1	0 10	•, 00							 _ 1	
$\mu_{\it VBF}^{\it HWW}$	1	-0.07	0.06	0.07	0.08	0.07	0.05	0.06	0.06	0.04	0.03	0.03	0.03	0.02	0.03	0.03		
μ_{ggH}^{HWW}	-0.07	1	-0.16	-0.14	-0.19	-0.17	-0.09	-0.15	-0.16	-0.17	-0.1	-0.08	-0.06		-0.05	-0.04	0	.8
$\mu_{p_T^{lead.lep.}}^{WW}$ 27-40 GeV	0.06	-0.16	1	0.77	0.63	0.57	0.18	0.49	0.57	0.45	0.38	0.24	0.31	-0.08	0.18	0.12		
$\mu_{p_T^{lead.lep.}}^{WW}$ 40-50 GeV	0.07	-0.14	0.77	1	0.72	0.59	0.13	0.48	0.59	0.45	0.41	0.23	0.32	-0.11	0.21	0.11	0	.6
$\mu_{p_T^{\textit{lead.lep.}}}^{WW}$ 50-60 GeV	0.08	-0.19	0.63	0.72	1	0.73	0.42	0.59	0.65	0.6	0.55	0.42	0.43	0.21	0.35	0.25	0	.4
$\mu_{p_T^{lead.lep.}}^{WW}$ 60-70 GeV	0.07	-0.17	0.57	0.59	0.73	1	0.6	0.67	0.65	0.61	0.49	0.45	0.44	0.28	0.31	0.23		
$\mu_{p_T^{lead.lep.}}^{WW}$ 70-80 GeV	0.05	-0.09	0.18	0.13	0.42	0.6	1	0.62	0.41	0.46	0.33	0.46	0.34	0.52	0.27	0.2	0	.2
$\mu_{p_T^{lead.lep.}}^{WW}$ 80-90 GeV	0.06	-0.15	0.49	0.48	0.59	0.67	0.62	1	0.63	0.59	0.4	0.44	0.4	0.25	0.23	0.17		
$\mu_{p_T^{\textit{lead.lep.}}}^{\textit{WW}}$ 90-100 GeV	0.06	-0.16	0.57	0.59	0.65	0.65	0.41	0.63	1	0.7	0.55	0.44	0.46	0.19	0.3	0.23	0	
$\mu_{p_T^{\textit{lead.lep.}}}^{WW}$ 100-110 GeV	0.04	-0.17	0.45	0.45	0.6	0.61	0.46	0.59	0.7	1	0.6	0.49	0.46	0.31	0.33	0.25	-	-0.2
$\mu_{p_T^{lead.lep.}}^{WW}$ 110-130 GeV	0.03	-0.1	0.38	0.41	0.55	0.49	0.33	0.4	0.55	0.6	1	0.6	0.53	0.37	0.4	0.28		
$\mu_{p_T^{lead.lep.}}^{WW}$ 130-150 GeV	0.03	-0.08	0.24	0.23	0.42	0.45	0.46	0.44	0.44	0.49	0.6	1	0.57	0.46	0.34	0.27	-	-0.4
$\mu_{p_T^{lead.lep.}}^{WW}$ 150-175 GeV	0.03	-0.06	0.31	0.32	0.43	0.44	0.34	0.4	0.46	0.46	0.53	0.57	1	0.46	0.33	0.25	_	-0.6
$\mu_{p_T^{lead.lep.}}^{WW}$ 175-220 GeV	0.02		-0.08	-0.11	0.21	0.28	0.52	0.25	0.19	0.31	0.37	0.46	0.46	1	0.37	0.27		
$\mu_{p_T^{lead.lep.}}^{WW}$ 220-300 GeV	0.03	-0.05	0.18	0.21	0.35	0.31	0.27	0.23	0.3	0.33	0.4	0.34	0.33	0.37	1	0.28	-	-0.8
$\mu_{p_T^{\textit{lead.lep.}}}^{\textit{WW}} > 300~{\rm GeV}$	0.03	-0.04	0.12	0.11	0.25	0.23	0.2	0.17	0.23	0.25	0.28	0.27	0.25	0.27	0.28	1		1
	HWWW	HNNH	Cer	Cer	cer	Cer	Cer	Cer	Cer	Cer	Ger	cer	Ger	Cer	Ger	Cer		- 1
	Υ.	27.49	40-36	'30-6 ⁰	60-10	10-80	80°90	00-100	100-110	110-130	1301136	150-170	175-22	220-300	7306			
	WWW lead	IEP. NNN IEZO	IEP. WW Lead	IEP. NNN IE20	iep. WN lead	iep. WN lead	lep.	p.	WW ad lep	WW ad lep	WW ad lef	WW ad lep	WW ad lef	WN lead!	⁸ 6.			

 $\begin{array}{c} {}^{4} {}^{6} {}^{6} {}^{9} {}^{1} {}^{10} {}^$

ATIAS Preliminary $\sqrt{s} = 13$ TeV 36.1 fb⁻¹

Selected operators

Wilson	coefficient and operator	Affected Pro	DCESSES			
$\overline{c_i^{(6)}}$	$\mathcal{O}_i^{(6)}$	$qq \rightarrow e \nu \mu \nu$	$qq \rightarrow Hqq$	$gg \to H$	$\Gamma^f_{H \to e \mu \nu \nu}$	Γ_H^{tot}
$\overline{c_W}$	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	\checkmark			,	\checkmark
c_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$		\checkmark		\checkmark	\checkmark
c_{HWB}	$(H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu})$	\checkmark	\checkmark			\checkmark
c_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$		\checkmark			\checkmark
c_{HDD}	$(H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$		\checkmark	\checkmark	\checkmark	\checkmark
c_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$			\checkmark		\checkmark
$\overline{c_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$					\checkmark
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}H)$			\checkmark		\checkmark
c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$					\checkmark
c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) (\tilde{H} G^A_{\mu\nu})$			\checkmark		\checkmark
c_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) (\tau^I \tilde{H} W^I_{\mu u})$					\checkmark
c_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) (\tilde{H} B_{\mu\nu})$					\checkmark
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D_{\mu}^{I}}H)(\bar{d}\gamma^{\mu}d)$	\checkmark	\checkmark			
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D_{\mu}^{I}}H)(\bar{u}\gamma^{\mu}u)$	\checkmark	\checkmark			
$c_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D_{\mu}^{I}}H)(\bar{q}\gamma^{\mu}q)$	\checkmark	\checkmark			
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D_{\mu}^{I}}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	\checkmark	\checkmark			\checkmark
$c_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D^{\mu}}H)(\bar{l}\gamma^{\mu}l)$	\checkmark				
$c_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D_{\mu}^{I}}H)(\bar{l} au^{I}\gamma^{\mu}l)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$c_{ll}^{(1)}$	$(ar{l_p}\gamma_\mu l_r)(ar{l_s}\gamma^\mu l_t)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
c_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	\checkmark				
$c_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	\checkmark				
$c_{lq}^{(\bar{3})}$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	\checkmark				
c_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$	\checkmark				

Full set of one-dimensional limits

Philipp Windischhofer

Structure of principal components

(Only linear parametrisation considered.)

	ggH, good sensitivity																				
#	λ ATLAS Pretiminary $\sqrt{s} = 13$ TeV, 36.1 fb ⁻¹																				
1	26157		1	0.04	-0.01	0.01			0.01												
2	66	-0.02	0.01		0.59	-0.58	0.01	0.02	-0.51		-0.03	0.22	-0.05	0.01							
3	39	-0.01			-0.03	0.05	0.08	0.11	0.34	-0.02	-0.11	0.9	-0.21	0.03							
4	5	-0.54		0.02	-0.28	-0.32	0.39	0.12	0.04	-0.14	0.09	-0.08	-0.11	-0.01	0.03	0.29	0.4	-0.09	-0.16	-0.06	0.16
5	0.2	0.06			-0.45	0.32	-0.07	0.03	-0.77	0.03	-0.04	0.25	-0.04	0.01	0.01	0.08	0.12	-0.02	-0.05	-0.01	0.04
6	0.04	0.36	0.01	-0.17	-0.5	-0.59	-0.17	-0.39	0.09	0.02	-0.03	0.08	0.17	-0.01	0.01	0.05	-0.05	-0.07	0.01	-0.05	0.03
7	0.01	0.32		0.03	-0.18	-0.24	-0.13	0.86	0.04	0.11		-0.12	-0.12	0.02		-0.02		0.06	-0.02	0.1	-0.01
8	0.007	-0.49		-0.02		-0.03	-0.63	0.14	0.04	0.23	-0.1	0.07	0.24		0.01	0.12	-0.18	-0.34	-0.08	-0.19	0.07
		CN	CHG	Cu ^C	CHI	19- 15-11	CHU	CHa	CHA	СНд	CIN	ि ८१व	(1) (10	C/g	cutt	cdH	CH ^{CC}	ANB (CHWN C	HDD	CHB

Chosen principal components

(Only linear parametrisation considered.)

Impact of principal components

1d-limits on principal components

Principal components

Eight operator combinations constrained simultaneously

Grouped according to physics impact

Only linear parametrisation considered

Philipp Windischhofer

Principal components

Eight operator combinations constrained simultaneously

Grouped according to physics impact

Philipp Windischhofer