Light quark Yukawas in triboson final states

based on
Falkowski, Ganguly, Gras, No, Tobioka, NV, You, JHEP 04 (2021) 023

Natascia Vignaroli
Pisa University
HEFT 2021

Higgs properties

Firm evidence of Higgs decays (within SM) to top, bottom, tau. $O(10 \%)$ accuracy

JHEP 01 (2021) 148

Recent first evidence for Higgs decay to muons (leptonic second generation)

Crucial indication on the Higgs role in mass generation of I and II generation fermions
would come from measurements of Light quark Yukawas (difficult
 measurement)

Light quark Yukawas, how to test possible BSM deviations?

Current best constraints from fit to Higgs strength

$$
\mu=\frac{1}{1+\sum_{q}\left(2 \delta y_{q}+\delta y_{q}^{2}\right) \operatorname{Br}(h \rightarrow q q)_{\mathrm{SM}}}
$$

Modification to Higgs production can be safely neglected for $\delta \mathrm{y}_{\mathrm{q}}<O(1000)$

Using the most recent measurement from CMS^{1} and ATLAS ${ }^{2}$:

$$
\begin{array}{rlll}
\text { ATLAS : } & \delta y_{d}<400, & \delta y_{u}<820, & \delta y_{s}<19, \\
\text { CMS : } & \delta y_{d}<450, & \delta y_{u}<930, & \delta y_{s}<22
\end{array}
$$

${ }^{1}$ CMS-PAS-HIG-19-005 $\quad \mu=1.02_{-0.06}^{+0.07} \quad{ }^{2}$ ATLAS-CONF-2020-027 $\quad \mu=1.06 \pm 0.07$

Light quark Yukawas, how to test possible BSM deviations?

Current best constraints from fit to Higgs strength

$$
\mu=\frac{1}{1+\sum_{q}\left(2 \delta y_{q}+\delta y_{q}^{2}\right) \operatorname{Br}(h \rightarrow q q)_{\mathrm{SM}}}
$$

Modification to Higgs production can be safely neglected for $\delta \mathrm{y}_{\mathrm{q}}<O(1000)$

Considering that the HL-LHC is expected to measure the total Higgs signal strength with an error of order 2-3\% \%:

$$
\begin{equation*}
\delta y_{d} \lesssim 340, \quad \delta y_{u} \lesssim 700, \quad \delta y_{s} \lesssim 17 \tag{HL-LHC}
\end{equation*}
$$

Alternative strategies (complementarity)

- Higgs kinematics $\left(\mathrm{p}_{\mathrm{T}}, \mathrm{y}\right)$

Soreq, Zhu, Zupan, $\quad \delta y_{d} \lesssim 380 \quad \delta y_{u} \lesssim 640 \quad$ [HL-LHC]
JHEP 12 (2016) 045

- $W^{ \pm} h$ charge asymmetry
Yu, JHEP 02 (2017) 083

$$
\delta y_{d} \lesssim 1300 \quad \delta y_{u} \lesssim 2900
$$

[HL-LHC]

- Double Higgs production

Alasfar, Lopez, Grober		
JHEP 11 (2019) 088	$\delta y_{d} \lesssim 850$	$\delta y_{u} \lesssim 1200$

- Rare Higgs decays (h -> MV)

$$
\delta y_{q} \lesssim 10^{6} \quad[\mathrm{HL}-\mathrm{LHC}]
$$

Kagan, Perez, Petriello, Soreq, Stoynev, Zupan Phys.Rev.Lett. 114 (2015) 10, 101802

Our strategy: pp -> VVV (Higgs off-shell)

Follows the idea of "measuring the Higgs without the Higgd"
Henning, Lombardo, Riembau, Riva, Phys Rev Lett 123 (2019) 181801

Modifications to SM Higgs Yukawas affect the delicate cancellations which avoid violation of perturbative unitarity at high energy

Energy-growing amplitudes

SMEFT description

We focus on the dimension- 6 operators:

$$
H=\frac{1}{\sqrt{2}}\binom{i \sqrt{2} G_{+}}{v+h+i G_{z}}
$$

$$
\mathcal{L}_{\text {SMEFT }} \supset \frac{Y_{u}|H|^{2}}{v^{2}} \bar{u}_{R} Q_{1, L} H+\frac{Y_{d}|H|^{2}}{v^{2}} \bar{d}_{R} H^{\dagger} Q_{1, L}+\frac{Y_{s}|H|^{2}}{v^{2}} \bar{s}_{R} H^{\dagger} Q_{2, L}+\text { h.c. }
$$

We parametrize the Yukawa couplings as:

$$
\mathcal{L} \supset-\frac{h}{v} \sum_{q=u, d, s} m_{q}\left(1+\delta y_{q}\right) \bar{q} q
$$

Then the shifts in the Yukawas are related to the parameters of the effective operators as:

$$
\delta y_{q}=-\frac{Y_{q}}{y_{q}^{S M}}
$$

Energy-growing behaviour

We focus on the dimension- 6 operators:

$$
H=\frac{1}{\sqrt{2}}\binom{i \sqrt{2} G_{+}}{v+h+i G_{z}}
$$

$$
\mathcal{L}_{\mathrm{SMEFT}} \supset \frac{Y_{u}|H|^{2}}{v^{2}} \bar{u}_{R} Q_{1, L} H+\frac{Y_{d}|H|^{2}}{v^{2}} \bar{d}_{R} H^{\dagger} Q_{1, L}+\frac{Y_{s}|H|^{2}}{v^{2}} \bar{s}_{R} H^{\dagger} Q_{2, L}+\text { h.c. }
$$

The effective operators lead to contact interactions between two quarks and three Goldstone bosons:

$$
\begin{aligned}
\mathcal{L} \supset & \frac{1}{v^{2}}\left(G_{+} G_{-}+\frac{1}{2} G_{z}^{2}\right)\left\{i y_{u}^{\mathrm{SM}} \delta y_{u}\left(\sum_{q^{\prime}=d, s} \bar{u}_{R} q_{L}^{\prime} G_{+}-\bar{u}_{R} u_{L} \frac{G_{z}}{\sqrt{2}}\right)\right. \\
& \left.+i \sum_{q^{\prime}=d, s} y_{q^{\prime}}^{\mathrm{SM}} \delta y_{q^{\prime}}\left(\bar{q}_{R}^{\prime} u_{L} G_{-}+\bar{q}_{R}^{\prime} q_{L}^{\prime} \frac{G_{z}}{\sqrt{2}}\right)+\text { h.c. }\right\}
\end{aligned}
$$

Energy-growing behaviour

$$
\begin{aligned}
\mathcal{M}(q \bar{q} \rightarrow G G G) \sim \mathcal{O}\left(\delta y_{q} E / v^{2}\right) & \mathcal{M}\left(q \bar{q} \rightarrow V_{L} V_{L} V_{L}\right) \\
\sigma\left(q \bar{q} \rightarrow m_{z} G_{+} G_{-}\right) & =\left(y_{q}^{\mathrm{SM}} \delta y_{q}\right)^{2} I(\hat{s}), \\
\sigma\left(q \bar{q} \rightarrow 3 G_{z}\right) & =\frac{3}{2}\left(y_{q}^{\mathrm{SM}} \delta y_{q}\right)^{2} I(\hat{s}), \\
\sigma\left(u \bar{q}^{\prime} \rightarrow G_{+} G_{z} G_{z}\right)+\sigma\left(q^{\prime} \bar{u} \rightarrow G_{-} G_{z} G_{z}\right) & =\frac{1}{2}\left[\left(y_{u}^{\mathrm{SM}} \delta y_{u}\right)^{2}+\left(y_{q^{\prime}}^{\mathrm{SM}} \delta y_{q^{\prime}}\right)^{2}\right] I(\hat{s}), \\
\sigma\left(u \bar{q}^{\prime} \rightarrow G_{+} G_{+} G_{-}\right)+\sigma\left(q^{\prime} \bar{u} \rightarrow G_{-} G_{-} G_{+}\right) & =2\left[\left(y_{u}^{\mathrm{SM}} \delta y_{u}\right)^{2}+\left(y_{q^{\prime}}^{\mathrm{SM}} \delta y_{q^{\prime}}\right)^{2}\right] I(\hat{s})
\end{aligned}
$$

$\left(\delta y_{\mathrm{q}}\right)^{2} \mathrm{E}^{2}$ growing behaviour

pp -> VVV

Triboson recently observed for the first time by CMS

Sirunyan et al (CMS). PRL 125 (2020) 151802 [CMS-SMP-19-014]

$$
p p \rightarrow W^{ \pm} W^{ \pm} W^{\mp} \rightarrow \ell^{ \pm} \ell^{ \pm} \nu \nu j j \quad \text { SSD channel }
$$

Main CMS selection, designed to extract SM 3V signal, not optimized to test deviations in the Yukawas

$$
\begin{aligned}
& p_{T}^{\ell_{1,2}}>25 \mathrm{GeV}, m_{\ell \ell}>20 \mathrm{GeV}, m_{j j} \in[65,95] \mathrm{GeV}\left(" m_{j j} \mathrm{in} "\right) \\
& E_{T}^{\operatorname{miss}}>45 \mathrm{GeV}, m_{T}^{\max }(\ell)>90 \mathrm{GeV} \\
& \quad \sigma\left(Y_{d}\right)=7.5 \mathrm{fb}+Y_{d}^{2} \times 210 \mathrm{fb} \\
& \delta y_{d} \lesssim 6800 \quad \text { CMS }[\mathrm{LHC} 13 \mathrm{TeV}]
\end{aligned}
$$

Light quark Yukawas in pp ->VVV

We will test deviations in the up, down, strange Yukawa couplings**

Main features to exploit:

- Cross section energy enhancement $\left(\delta y_{\mathrm{q}}{ }^{2} \mathrm{E}^{2}\right)$
- Peculiar kinematics (hard spectrum, peculiar angular distributions)
* charm Yukawa better tested (with an analogous strategy) in pp -> WWqj final state

Light quark Yukawas in pp -> VVV

HL-LHC	SM	BSM $\left(Y_{d}=1\right)$	BSM $\left(Y_{u}=1\right)$	BSM $\left(Y_{s}=1\right)$
$W^{+} W^{-} W^{+}$	152 fb	3.6 pb	3.6 pb	110 fb
$W^{+} W^{-} W^{-}$	87 fb	1.5 pb	1.5 pb	110 fb
$Z Z W^{+}$	40 fb	1.0 pb	1.0 pb	31 fb
$Z Z W^{-}$	23 fb	0.43 pb	0.43 pb	31 fb
$Z W^{+} W^{-}$	191 fb	1.5 pb	2.4 pb	120 fb
$Z Z Z$	16 fb	0.99 pb	1.7 pb	66 fb

$\delta y_{q}=-\frac{Y_{q}}{y_{q}^{\mathrm{SM}}}$

FCC-hh	SM	BSM $\left(Y_{d}=1\right)$	BSM $\left(Y_{u}=1\right)$	BSM $\left(Y_{s}=1\right)$
$W^{+} W^{-} W^{+}$	2.35 pb	290 pb	290 pb	16 pb
$W^{+} W^{-} W^{-}$	1.76 pb	140 pb	140 pb	16 pb
$Z Z W^{+}$	756 fb	74 pb	74 pb	4.4 pb
$Z Z W^{-}$	579 fb	36 pb	36 pb	4.4 pb
$Z W^{+} W^{-}$	3.93 pb	94 pb	150 pb	12 pb
$Z Z Z$	231 fb	110 pb	180 pb	11 pb

BSM: LO
(UFO model)

We consider the most efficient channels:
WWW (SSD and 3 lep)
ZZZ (4 lep)

It would be interestig to combine analyses in different final states:
Neutral channels (as ZZZ) would allow to break Y_{u} and Y_{d} degeneracies

WWW: three-lepton final state

WWW: three-lepton final state

LHC:

$p_{T}^{\ell_{1}}>70 \mathrm{GeV}, p_{T}^{\ell_{2}}>50 \mathrm{GeV}, p_{T}^{\ell_{3}}>30 \mathrm{GeV}, E_{T}^{\text {miss }}>80 \mathrm{GeV},\left|\Delta \Phi\left(\ell^{ \pm}, \ell^{ \pm}\right)\right|>2$
FCC-hh:
$p_{T}^{\ell_{1}}>150 \mathrm{GeV}, p_{T}^{\ell_{2}}>80 \mathrm{GeV}, p_{T}^{\ell_{3}}>50 \mathrm{GeV}, E_{T}^{\text {miss }}>120 \mathrm{GeV},\left|\Delta \Phi\left(\ell^{ \pm}, \ell^{ \pm}\right)\right|>1.5$

Selection:

Main cuts above + shape analysis (for simplicity we just focus on the leading lepton p_{T})

$$
\Lambda\left(\delta y_{q}\right)=-2 \sum_{i}^{\text {bins }} \log \frac{L\left(S_{i}+B_{i}, B_{i}\right)}{L\left(B_{i}, B_{i}\right)}
$$

Final Results for HL-LHC and (FCC-hh)

	$W W W$			$Z Z Z$		
	$\ell^{ \pm} \ell^{ \pm}+2 \nu+2 j$	$\ell^{ \pm} \ell^{ \pm} \ell^{\mp}+3 \nu$	Comb.	$4 \ell+2 \nu$	$4 \ell+2 j$	Comb.
δy_{d}	$430(36)$	$840(54)$	$420(34)$	$1500(65)$	$1300(93)$	$1100(60)$
δy_{u}	$850(71)$	$1700(110)$	$830(68)$	$2300(100)$	$1800(140)$	$1600(92)$
δy_{s}	$150(13)$	$230(33)$	$140(13)$	$300(12)$	$290(16)$	$250(11)$

- Results competitive and complemetary to contraints from global fits and other on-shell probes at the HL-LHC
- Large improvement (by one order of magnitude) expected at the FCC-hh

