Top, Higgs, Diboson and Electroweak Fit to the

Standard Model Effective Field Theory

Maeve Madigan

Based on 2012.02779 J. Ellis, MM, K. Mimasu, V. Sanz, T. You

Higgs and Effective Field Theory 2021

The Standard Model Effective Field Theory

Powerful tool for capturing deviations from the SM and performing indirect searches for new physics.

Model independent: assume the BSM physics is heavy

 $E << \Lambda$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i} + \dots$$

We restrict to dimension-6 operators.

The Standard Model Effective Field Theory

Warsaw basis [1008.4884 Grzadkowski et. al]

X ³			H^6 and H^4D^2	$\psi^2 H^3$		
O_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$O_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	
O_w	$\varepsilon^{IJK}W^{\dot{I}\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$	
$\mathcal{O}_{\overline{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					
	X^2H^2	$\psi^2 X H$		$\psi^2 H^2 D$		
\mathcal{O}_{HG}	$H^{\dagger}H G^A_{\mu\nu} G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$	
$O_{H\tilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}i D_{\mu}^{I} H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
O_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$	\mathcal{O}_{He}	$(H^{\dagger}i D_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$	
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$	
\mathcal{O}_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i D_{\underline{\mu}}^{I} H)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	
$\mathcal{O}_{H\tilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	\mathcal{O}_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	\mathcal{O}_{Hu}	$(H^{\dagger}i \overset{\overleftarrow{D}}{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$	
\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{_{dW}}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{_{Hd}}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H) (\bar{d}_p \gamma^{\mu} d_r)$	
Ouwn	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{dB}	$(\bar{q}_{n}\sigma^{\mu\nu}d_{r})HB_{\mu\nu}$	$\mathcal{O}_{_{Hud}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
- HWB	$\mu\nu$	415	(μ)		· - ····	
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
\mathcal{O}_{ll}	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	02	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$	
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	\mathcal{O}_{ee} \mathcal{O}_{uu}	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$	\mathcal{O}_{le} \mathcal{O}_{lu}	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$	
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd}	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$	\mathcal{O}_{le} \mathcal{O}_{lu} \mathcal{O}_{ld}	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$	
\mathcal{O}_{ll} \mathcal{O}_{qq} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{lq}^{(3)}$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$	O_{ee} O_{uu} O_{dd} O_{eu}	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \end{array}$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \end{array}$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t) \end{array}$	
$\begin{array}{ c c }\hline & & & \\ & $	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$	O_{ee} O_{uu} O_{dd} O_{eu} O_{ed}	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qe} & & \ \mathcal{O}_{qu}^{(1)} & & \ \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_{\mu}l_r)(\bar{e}_s\gamma^{\mu}e_t)$ $(\bar{l}_p\gamma_{\mu}l_r)(\bar{u}_s\gamma^{\mu}u_t)$ $(\bar{l}_p\gamma_{\mu}l_r)(\bar{d}_s\gamma^{\mu}d_t)$ $(\bar{q}_p\gamma_{\mu}q_r)(\bar{e}_s\gamma^{\mu}e_t)$ $(\bar{q}_p\gamma_{\mu}q_r)(\bar{u}_s\gamma^{\mu}u_t)$	
$\begin{array}{ c c }\hline & \mathcal{O}_{ll} \\ & \mathcal{O}_{qq}^{(1)} \\ & \mathcal{O}_{qq}^{(3)} \\ & \mathcal{O}_{lq}^{(1)} \\ & \mathcal{O}_{lq}^{(3)} \\ & \mathcal{O}_{lq}^{(3)} \end{array}$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} $\mathcal{O}_{ud}^{(1)}$	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array}$	$egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qe} & & \ \mathcal{O}_{qu}^{(1)} & & \ \mathcal{O}_{qu}^{(8)} & \ $	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \end{array}$	
$\begin{array}{ c c c c c }\hline & & & & \\ & & & & \\ & & & & \\ & & & & $	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	\mathcal{O}_{le} \mathcal{O}_{lu} \mathcal{O}_{ld} \mathcal{O}_{qe} $\mathcal{O}_{qu}^{(1)}$ $\mathcal{O}_{qu}^{(8)}$ $\mathcal{O}_{qd}^{(1)}$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud} $\mathcal{O}_{ud}^{(1)}$	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	$egin{aligned} & \mathcal{O}_{le} & & \ & \mathcal{O}_{lu} & & \ & \mathcal{O}_{ld} & & \ & \mathcal{O}_{qu} & & \ & \mathcal{O}_{qu}^{(1)} & & \ & \mathcal{O}_{qu}^{(8)} & & \ & \mathcal{O}_{qd}^{(8)} & & \ & \mathcal{O}_{qd}^{$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	
O_{ll} O_{qq} $O_{qq}^{(1)}$ $O_{lq}^{(3)}$ $O_{lq}^{(3)}$ $O_{lq}^{(3)}$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} \\ \end{array} $	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \end{matrix}$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	
$\begin{array}{ c c c c }\hline & \mathcal{O}_{ll} & & \\ & \mathcal{O}_{qq}^{(1)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ & \mathcal{O}_{lq}^{(3)} & & \\ & & \mathcal{O}_{lq}^{(3)} & \\ & & & \\ \hline & & & \\ & & & & \\ \hline & & & &$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $(\bar{l}_{p}^{j}e_{r})(\bar{d}_{s}q_{t}^{j})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$ \mathcal{O}_{ud}	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	$\left[egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qe} & & \ \mathcal{O}_{qu}^{(1)} & & \ \mathcal{O}_{qd}^{(1)} & & \ \mathcal{O}_{qd}^{(8)} & & \ \mathcal{O}$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	
$\begin{array}{c c} & \mathcal{O}_{ll} \\ & \mathcal{O}_{qq}^{(1)} \\ & \mathcal{O}_{lq}^{(3)} \\ & \mathcal{O}_{lq}^{(3)} \\ & \mathcal{O}_{lq}^{(3)} \\ & \mathcal{O}_{lq}^{(3)} \\ \\ & \mathcal{O}_{lq}^{(3)} \\ \\ & \mathcal{O}_{lq}^{(1)} \\ & \mathcal{O}_{ledq}^{(1)} \\ & \mathcal{O}_{quqd}^{(1)} \end{array}$	$\frac{\mu\nu}{(\bar{L}L)(\bar{L}L)}$ $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$ $(\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p^j \mu_\tau \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ $(\bar{l}_p^j \mu_\tau r^J l_r)(\bar{d}_s q_t^j)$ $(\bar{q}_p^j u_r)\varepsilon_{jk}(\bar{q}_s^k d_t)$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud} $\mathcal{O}_{ud}^{(8)}$ \mathcal{O}_{ud}	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$ $\begin{array}{c} B\text{-viol} \\ \hline \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{p}^{\alpha}) \\ \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \right] \\ (\bar{u}_{p}^{\alpha}) \\ \end{array}$	$\left[egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qu} & & \ \mathcal{O}_{qu} & & \ \mathcal{O}_{qu}^{(1)} & & \ \mathcal{O}_{qd}^{(8)} & & \ \mathcal{O}_{qd}^{(1)} & & \ \mathcal{O}_{qd}^{(8)} & \ \mathcal{O}_{qd}^{(8)} & & \ \mathcal{O}_{qd}^{(8)} & \ \mathcal{O}_{qd}^{(8)} & & \ \mathcal{O}_{qd}^{(1)} & & \ \mathcal{O}_{qd}^{(8)} & \ \mathcal{O}_{qd}^{(1)} & & \ \mathcal{O}_{qd}^{(1)} $	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	
$ \begin{array}{c c} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} \\ \hline \begin{array}{c} (\bar{L}R) \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \\ \mathcal{O}_{quqd}^{(8)} \\ \mathcal{O}_{quqd}^{(8)} \end{array} \end{array} $	$ \frac{\mu\nu}{(\bar{L}L)(\bar{L}L)} \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t}) \\ (\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ (\bar{l}_{p}p_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t}) \\ \hline (\bar{l}_{p}p_{\mu}\tau^{I}l_{r})(\bar{q}_{s}q_{t}^{\mu}\tau^{I}q_{t}) \\ (\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t}) \\ (\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t}) \\ \hline \end{array} $	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} \mathcal{O}_{ud} \mathcal{O}_{ud} \mathcal{O}_{ud} \mathcal{O}_{ud}	$ \begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	$\left[egin{array}{c} \mathcal{O}_{le} & & \ \mathcal{O}_{lu} & & \ \mathcal{O}_{ld} & & \ \mathcal{O}_{qe} & & \ \mathcal{O}_{qu} & & \ \mathcal{O}_{qu}^{(1)} & & \ \mathcal{O}_{qd}^{(8)} & & \ \mathcal{O}_{qd}^{(1)} & & \ \mathcal{O}_{qd}^{(1)} & & \ \mathcal{O}_{qd}^{(2)} & & \ \mathcal{O}_{qd}^{(3)} & & \ \mathcal{O}_{qd}^$	$ \begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	
$ \begin{array}{c c} \mathcal{O}_{ll} \\ \mathcal{O}_{qq} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{lq}^{(2)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} \\ \hline \begin{array}{c} (\bar{L}R) \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \\ \mathcal{O}_{quqd}^{(1)} \\ \mathcal{O}_{lequ}^{(1)} \\ \mathcal{O}_{lequ}^{(1)} \\ \end{array} \\ \end{array} $	$ \begin{array}{c} \underline{\mu\nu} \\ \hline (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ \end{array} \\ \hline (\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t) \\ \hline (\bar{l}_p^j e_r)(\bar{d}_s q_t^j) \\ (\bar{q}_p^j u_r) \varepsilon_{jk}(\bar{q}_s^k d_t) \\ (\bar{q}_p^j T^A u_r) \varepsilon_{jk}(\bar{q}_s^k T^A d_t) \\ (\bar{l}_p^j e_r) \varepsilon_{jk}(\bar{q}_s^k u_t) \\ \hline \end{array} $	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$\begin{array}{c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	$\begin{matrix} \mathcal{O}_{le} \\ \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(2)} \\ \mathcal{O}_{qd}^{(3)} \\ \mathcal{O}_{qd}^{(3)$	$\begin{array}{c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array}$	

A global fit to the SMEFT

Each operator contributes to multiple datasets

expect an interplay between sectors

A global fit to the SMEFT

This highlights the need for a **global fit** to understand and parameterise the deviations and correlations between operators and sectors.

We include data from top, diboson, Higgs and EWPO in a fit to 34 dim-6 operators.

SMEFT conventions

- Warsaw basis
- Neglect CP-violating operators
- Two flavour scenarios:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Flavour universal $SU(3)^5$
- Top-specific flavour scenario singles out top couplings [1802.07237] $SU(3)^5 \rightarrow SU(2)_q \times SU(2)_u \times SU(3)_d \times SU(3)_l \times SU(3)_e$

In both flavour scenarios we also include 4 Yukawa operators which explicitly break these flavour symmetries:

$$\mathcal{O}_{ au H}, \mathcal{O}_{\mu H}, \mathcal{O}_{b H}, \mathcal{O}_{t H}$$

Measurements

- 341 statistically independent measurements
- Correlation information included from published covariance matrices

Higgs: 72

- Signal strength combinations (LHC Run 1 and Run 2)
- STXS combination (LHC Run 2)
- Measurements of

 $H \to Z\gamma \qquad H \to \mu\mu$

Higgs STXS data from LHC Run 2 ATLAS

ATLAS Run 2 STXS combination [HIGG-2018-57, Phys. Rev. D 101 (2020) 012002]

A total of 21 STXS bins with published correlation matrix

ATLAS $\sqrt{s} = 13 \text{ TeV}, 33$ $m_H = 125.09 \text{ G}$ $p_{SM} = 69\%$ 1 Total	86.1 - 79.8 fb ⁻¹ GeV, y _H < 2.5	B _{γγ} /B _{ZZ} , B _{bb} /B _{ZZ} , B _{WW} ,B _{ZZ} , B _τ (B _{ZZ} ,			0.81 0.61 0.93 0.78	Total Stat. +0.14 (+0.12 -0.12 (-0.10) +0.39 (+0.24) -0.29 (-0.18) +0.20 (+0.14) -0.17 (-0.12) +0.29 (+0.22) -0.23 (-0.18)	Syst. +0.07 -0.06) +0.32 -0.22) +0.14 -0.12) +0.19 -0.14)
Syst.	I SM	0	0.5	1	1.5	2 Tatal Ctat	2.5
gg→H × B _{ZZ*}	0-jet 1-jet, $p_{T}^{H} < 60 \text{ GeV}$ 1-jet, $60 \le p_{T}^{H} < 124$ 1-jet, $120 \le p_{T}^{H} < 20$ 1-jet, $p_{T}^{H} \ge 200 \text{ GeV}$ ≥ 2 -jet, $p_{T}^{H} < 60 \text{ Ge}$ ≥ 2 -jet, $60 \le p_{T}^{H} < 1$ ≥ 2 -jet, $120 \le p_{T}^{H} < 200 \text{ GeV}$ ≥ 2 -jet, $p_{T}^{H} \ge 200 \text{ GeV}$ ≥ 2 -jet, $p_{T}^{H} \ge 200 \text{ GeV}$ ≥ 2 -jet, $p_{T}^{H} \ge 200 \text{ GeV}$	0 GeV 00 GeV V E 20 GeV 200 GeV eV			1.30 1.16 1.36 2.39 1.52 0.71 2.12 1.21 3.19 H6.90	$\begin{array}{c ccccc} \text{rotal} & \text{Stat.} \\ +0.19 & (+0.16) \\ -0.18 & (-0.15) \\ \pm0.55 & (+0.47) \\ \pm0.55 & (+0.47) \\ \pm0.56 & (+0.51) \\ -0.56 & (+0.51) \\ -0.56 & (+0.51) \\ -0.99 & (-0.48) \\ \pm1.30 & (+1.19) \\ -1.17 & (-1.09) \\ \pm1.26 & (\pm1.17) \\ -1.17 & (-1.05) \\ \pm1.21 & (+0.97) \\ -0.97 & (-0.89) \\ \pm1.26 & (-1.12) \\ -1.08 & (+1.12) \\ -1.08 & (+1.22) \\ -1.08 & (+1.22) \\ -1.08 & (\pm1.22) \\ -2.55 & (-2.16) \\ \end{array}$	\$ Syst. ±0.10) +0.28 -0.30) +0.32 -0.28) +0.52 -0.46) +0.53 -0.44) +1.23 -0.79) +0.60 -0.50) +0.58 -0.39) +0.58 -0.46) +1.84 -1.37
qq→Hqq × B _{ZZ*}	VBF topo VH topo Rest H $p_{\tau}^{i} \ge 200 \text{ GeV}$	ا دی۔ ا ر دی۔ ا ر دی ۔			0.92 -0.34 -2.70 -1.67	$ \begin{array}{c} +0.57 \\ -0.52 \\ +1.53 \\ +1.53 \\ +1.30 \\ +2.97 \\ +2.97 \\ +2.42 \\ -2.42 \\ -1.81 \\ -1.55 \end{array} $	+0.30 -0.27) +0.42 -0.35) +1.74 -1.26) +0.88 -0.93)
$qq \rightarrow Hlv \times B_{ZZ^*}$	$p_{\tau}^{V} < 150 \text{ GeV}$ $150 \le p_{\tau}^{V} < 250 \text{ GeV}$ $p_{\tau}^{V} \ge 250 \text{ GeV}$	۶V			2.57 2.20 1.99	$ \begin{array}{c} ^{+1.81}_{-1.60} \left(\begin{smallmatrix} ^{+1.67}_{-1.49} \\ ^{+2.23}_{-1.51} \left(\begin{smallmatrix} ^{+1.57}_{-1.19} \\ ^{+2.48}_{-1.24} \right) \\ ^{+1.49}_{-1.04} \end{array} \right) $	+0.68 -0.59) +1.58 -0.93) +1.98 -0.66)
gg/qq→Hll × B _{zz*}	$p_{\tau}^{V} < 150 \text{ GeV}$ $150 \le p_{\tau}^{V} < 250 \text{ Ge}$ $p_{\tau}^{V} \ge 250 \text{ GeV}$	F ⊂ V F		⇒ -1	0.89 0.90 2.99	$ \begin{array}{c} +1.31\\ -1.68\\ +1.37\\ +1.37\\ -1.18\\ +3.44\\ +2.03\\ -1.60\\ -1.39 \end{array} $	+0.79 -1.34) +0.87 -0.74) +2.79 -0.80
$(t\overline{t}H + tH) \times B_{ZZ^*}$		1		1	1.48	+0.40 (+0.31 -0.34 (-0.28	+0.25 -0.20)
	-10 -{	5 0		5	10	15	20
	Parameter	normalize	ed to S	M value	ć		

Measurements

- 341 statistically independent measurements
- Correlation information included from published covariance matrices

Higgs: 72

- Signal strength combinations (LHC Run 1 and Run 2)
- STXS combination (LHC Run 2)
- Measurements of

 $H \to Z\gamma \qquad H \to \mu\mu$

Diboson: 118

• LHC and LEP measurements of

WW, WZ, Zjj

EWPO: 14

LEP, Tevatron, LHC measurements

 $\{\Gamma_{Z}, \sigma_{\text{had.}}^{0}, R_{l}^{0}, A_{FB}^{l}, A_{l}, R_{b}^{0}, R_{c}^{0}, A_{FB}^{b}, A_{FB}^{c}, A_{FB}^{c}, A_{b}, A_{c}, M_{W}\}.$

Тор: 137

LHC measurements of

 $t\bar{t}, t\bar{t}+V, \text{ single top}$

$$\chi^2(C_i) = (\vec{y} - \vec{\mu}(C_i))^T V^{-1}(\vec{y} - \vec{\mu}(C_i))$$

 $ec{y}$: vector of observables with covariance matrix V

Predictions:
$$\mu_{\alpha}(C_i) = \mu_{\alpha}^{SM} + H_{\alpha i}C_i$$

i.e. restricting to $\mathcal{O}(\Lambda^{-2})$ in the EFT expansion

Best-fit WC:
$$\hat{\vec{C}} = (H^T V^{-1} H)^{-1} H^T V^{-1} (\vec{y} - \vec{\mu}^{SM})$$

Covariance: $U = (H^T V^{-1} H)^{-1} = F^{-1}$

(Fisher information)

Fit to Higgs, diboson, electroweak data in the flavour universal scenario:

STXS measurements for ggF

STXS measurements of gluon gluon fusion **improve sensitivity** and **break degeneracy** between SMEFT operators:

Top-Higgs interplay

Studying the interplay of Higgs and top data in constraining the operators $\mathcal{O}_{tH}, \mathcal{O}_{tG}, \mathcal{O}_{G}, \mathcal{O}_{HG}$ 15 10 5 C_{tH} while marginalising over -5 -10 $\mathcal{O}_{H\square}, \mathcal{O}_{HW}, \mathcal{O}_{HB}, \mathcal{O}_{bH}, \mathcal{O}_{\tau H}, \mathcal{O}_{\mu H}$ (+4F operators) -15-20 -0.04 -0.02 0.00 0.02 0.04 1 C_{tG} -2 Marginalised 95% C. L. -40.04 - 0.02 0.00 0.02 0.04-20 - 15 - 10-5: 0 +5 Higgs data (no *t*t*H*) Higgs data 10 10 Higgs & Top data C_{G} 0 Higgs & Top data (+4F) -5 SM -10-10 -20-15-10-5 0 5 10 15 0.02 0.04 -4 -3 -2 -0.040.00 1 2 J CtH C_{HG} CtG

15

Principal Component Analysis

UV models

We analyse our fit in terms of a set of BSM benchmark models from *2009.01249 Marzocca et. al, 1711.10391 de Blas et. al*

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
arphi	0	1	2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
[I]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ 1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
B	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
B_1	1	1	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
W	1	1	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$

UV models: patterns

We analyse our fit in terms of a set of BSM benchmark models from *2009.01249 Marzocca et. al, 1711.10391 de Blas et. al*

Some models exhibit similar patterns among operators

- Consider models with couplings to leptons: $N, E, \Delta_1, \Delta_3, \Sigma, \Sigma_1$
- These will generate

$$\mathcal{O}_{Hl}^{(1)}, \mathcal{O}_{Hl}^{(3)}, \mathcal{O}_{He}, \mathcal{O}_{ll}$$

with patterns such as $C_{Hl}^{(1)} \propto C_{Hl}^{(3)}$ and $C_{ll} \propto C_{He}$

UV models: patterns

See 2012.02779 for quark-specific, top-specific and boson-specific cases

Conclusions

Global fit produced using Fitmaker:

a publicly available python code <u>https://gitlab.com/kenmimasu/fitrepo</u> (Version for public use still to come!)

 an adaptable, flexible and extensible framework for performing global SMEFT fits.

Thank you for listening!

Backup

Datasets: Higgs

LHC Run 1 Higgs	$n_{\mathbf{obs}}$	Ref.
ATLAS and CMS LHC Run 1 combination of Higgs signal strengths.	21	[8]
Production: ggF , VBF , ZH , WH & ttH		
Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$ & $b\overline{b}$		
ATLAS inclusive $Z\gamma$ signal strength measurement	1	9
LHC Run 2 Higgs (new)	$n_{\mathbf{obs}}$	Ref.
ATLAS combination of signal strengths and stage 1.0 STXS in $H \to 4\ell$	16 19 25	[10]
including ratios of branching fractions to $\gamma\gamma$, WW^* , $\tau^+\tau^-$ & $b\bar{b}$		
Signal strengths coarse STXS bins fine STXS bins		
CMS LHC combination of Higgs signal strengths.	23	[11]
Production: ggF , VBF , ZH , WH & ttH		
Decay: $\gamma\gamma$, ZZ, W ⁺ W ⁻ , $\tau^+\tau^-$, $b\overline{b}$ & $\mu^+\mu^-$		
CMS stage 1.0 STXS measurements for $H \to \gamma \gamma$.	13 7	[12]
13 parameter fit 7 parameter fit		
CMS stage 1.0 STXS measurements for $H \to \tau^+ \tau^-$	9	[13]
CMS stage 1.1 STXS measurements for $H \to 4\ell$	19	[14]
CMS differential cross section measurements of inclusive Higgs produc-	5 6	[15]
tion in the $WW^* \to \ell \nu \ell \nu$ final state.		
$\frac{d\sigma}{dn_{\rm jet}} \mid \frac{d\sigma}{dp_H^T}$		
ATLAS $H \to Z\gamma$ signal strength.	1	[16]
ATLAS $H \to \mu^+ \mu^-$ signal strength.	1	[17]

EW precision observables	$n_{\mathbf{obs}}$	Ref.
Precision electroweak measurements on the Z resonance.	12	[1]
$\Gamma_Z, \sigma_{\text{had.}}^0, R_\ell^0, A_{FB}^\ell, A_\ell(\text{SLD}), A_\ell(\text{Pt}), R_b^0, R_c^0, A_{FB}^b, A_{FB}^c, A_b \& A_c$		
Combination of CDF and D0 W-Boson Mass Measurements	1	[6]
LHC run 1 W boson mass measurement by ATLAS	1	[57]
Diboson LEP & LHC	$n_{\mathbf{obs}}$	Ref.
W^+W^- angular distribution measurements at LEP II.	8	[5]
$W^+ W^-$ total cross section measurements at L3 in the $\ell \nu \ell \nu$, $\ell \nu qq \& qq qq$	24	[3]
final states for 8 energies		
W^+W^- total cross section measurements at OPAL in the $\ell\nu\ell\nu$, $\ell\nu qq$ &	21	[4]
qqqq final states for 7 energies		
W^+W^- total cross section measurements at ALEPH in the $\ell\nu\ell\nu$, $\ell\nu qq$	21	[2]
& $qqqq$ final states for 8 energies		
ATLAS W^+W^- differential cross section in the $e\nu\mu\nu$ channel, $\frac{d\sigma}{dp_{\ell_*}^T}$,	1	[66]
$p_T > 120 \text{ GeV}$ overflow bin		
ATLAS W^+W^- fiducial differential cross section in the $e\nu\mu\nu$ channel,	14	[70]
$rac{d\sigma}{dp_{\ell_1}^T}$		
ATLAS $W^{\pm} Z$ fiducial differential cross section in the $\ell^+ \ell^- \ell^{\pm} \nu$ channel,	7	[69]
$\frac{d\sigma}{dp_Z^T}$		
CMS $W^{\pm} Z$ normalised fiducial differential cross section in the $\ell^+ \ell^- \ell^{\pm} \nu$	11	[67]
channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_Z^T}$		
ATLAS Zjj fiducial differential cross section in the $\ell^+\ell^-$ channel, $\frac{d\sigma}{d\Delta\varphi_{jj}}$	12	[71]

Datasets: top

Tevatron & Run 1 top	$n_{\mathbf{obs}}$	Ref.
Tevatron combination of differential $t\bar{t}$ forward-backward asymmetry,	4	[7]
$A_{FB}(m_{t\bar{t}}).$		
ATLAS $t\bar{t}$ differential distributions in the dilepton channel.	6	[18]
$rac{d\sigma}{dm_{tar{t}}}$		
ATLAS $t\bar{t}$ differential distributions in the ℓ +jets channel.	7 5 8 5	[19]
$\left rac{d\sigma}{dm_{tar{t}}} ight \left rac{d\sigma}{d y_{tar{t}} } ight \left rac{d\sigma}{dp_t^T} ight \left rac{d\sigma}{d y_t } ight .$		
CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.	7 10 8 10	[20,
$\left rac{d\sigma}{dm_{tar{t}}} ight \left rac{d\sigma}{dy_{tar{t}}} ight \left rac{d\sigma}{dp_t^T} ight \left rac{d\sigma}{dy_t} ight .$		215]
CMS measurement of differential $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$ in the	3	
dilepton channel.		[216]
ATLAS inclusive measurement $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$ in the	1	
dilepton channel.		[217]
ATLAS & CMS combination of differential $t\bar{t}$ charge asymmetry,	6	[21]
$A_C(m_{t\bar{t}})$, in the ℓ +jets channel.		
CMS $t\bar{t}$ double differential distributions in the dilepton channel.	16 16	[22,
$\left rac{d\sigma}{dm_{tar{t}}dy_t} ight \left rac{d\sigma}{dm_{tar{t}}dy_{tar{t}}} ight \left rac{d\sigma}{dm_{tar{t}}dp_{tar{t}}^T} ight \left rac{d\sigma}{dy_t dp_t^T} ight .$	16 16	218]
ATLAS & CMS Run 1 combination of W -boson helicity fractions in top	3	[23]
decay. $f_0, f_L \& f_R$		
ATLAS measurement of W -boson helicity fractions in top decay.	3	[24]
$f_0, f_L \& f_R$		
CMS measurement of W -boson helicity fractions in top decay.	3	[25]
$f_0,f_L\&f_R$		
ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[26]
CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[27]
ATLAS <i>t</i> -channel single-top differential distributions.	4 4 4 5	[28]
$\left rac{d\sigma}{dp_t^T} ~ \left ~ rac{d\sigma}{dp_{ar t}^T} ~ \left ~ rac{d\sigma}{d y_t } ~ \left ~ rac{d\sigma}{d y_{ar t} } ight ight.$		
CMS s -channel single-top cross section measurement.	1	[29]
CMS t -channel single-top differential distributions.	6 6	[30]
$\left rac{d\sigma}{dp_{\star \perp ar{t}}^T} ight = rac{d\sigma}{d y_{t+ar{t}} }$		
CMS measurement of the <i>t</i> -channel single-top and anti-top cross sections.	1 1 1 1	[31]
$\sigma_t \sigma_{\overline{t}} \sigma_{t+\overline{t}} R_t.$		
ATLAS <i>s</i> -channel single-top cross section measurement.	1	[32]
CMS tW cross section measurement.	1	[33]
ATLAS tW cross section measurement in the single lepton channel.	1	[34]
ATLAS tW cross section measurement in the dilepton channel.	1	[35]