

EFT of Dark Matter Direct Detection With Collective Excitations

Caltech

Zhengkang "Kevin" Zhang (Caltech)

Based on 2009.13534 (w/ Tanner Trickle, Kathryn Zurek)

- ► Conventional WIMP searches.
 - ► Nuclear recoils.
 - ► Lose sensitivity below DM mass ~GeV.

- ► Conventional WIMP searches.
 - ► Nuclear recoils.
 - ► Lose sensitivity below DM mass ~GeV.

- ► Conventional WIMP searches.
 - ► Nuclear recoils.
 - ► Lose sensitivity below DM mass ~GeV.

- ► Conventional WIMP searches.
 - ► Nuclear recoils.
 - ► Lose sensitivity below DM mass ~GeV.

- ► Conventional WIMP searches.
 - ► Nuclear recoils.
 - ► Lose sensitivity below DM mass ~GeV.

- ► Conventional WIMP searches.
 - ► Nuclear recoils.
 - ► Lose sensitivity below DM mass ~GeV.

► Electron excitations.

► Atoms (binding energy ~ 10eV).

Essig, Mardon, Volansky, 1108.5383. Graham, Kaplan, Rajendran, Walters, 1203.2531. Lee, Lisanti, Mishra-Sharma, Safdi, 1508.07361. Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu, 1509.01598. Essig, Volansky, Yu, 1703.00910. Catena, Emken, Spaldin, Tarantino, 1912.08204.

► Electron excitations.

► Atoms (binding energy ~ 10eV).

Essig, Mardon, Volansky, 1108.5383. Graham, Kaplan, Rajendran, Walters, 1203.2531. Lee, Lisanti, Mishra-Sharma, Safdi, 1508.07361. Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu, 1509.01598. Essig, Volansky, Yu, 1703.00910. Catena, Emken, Spaldin, Tarantino, 1912.08204.

► Electron excitations.

► Atoms (binding energy ~ 10eV).

Essig, Mardon, Volansky, 1108.5383. Graham, Kaplan, Rajendran, Walters, 1203.2531. Lee, Lisanti, Mishra-Sharma, Safdi, 1508.07361. Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu, 1509.01598. Essig, Volansky, Yu, 1703.00910. Catena, Emken, Spaldin, Tarantino, 1912.08204.

► Electron excitations.

- ► Atoms (binding energy ~ 10eV).
- ► Semiconductors (gap ~ eV).

Essig, Mardon, Volansky, 1108.5383. Graham, Kaplan, Rajendran, Walters, 1203.2531. Lee, Lisanti, Mishra-Sharma, Safdi, 1508.07361. Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu, 1509.01598. Derenzo, Essig, Massari, Soto, Yu, 1607.01009. Kurinsky, Yu, Hochberg, Cabrera, 1901.07569. Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092 + 1910.10716. Andersson, Bökmark, Catena, Emken, Moberg, Åstrand, 2001.08910.

SuperCDMS, 1804.10697. SENSEI, 1901.10478 + 2004.11378, DAMIC, 1907.12628.

<u>Other similar proposals</u> [Graphene] Hochberg, Kahn, Lisanti, Tully, Zurek, 1606.08849. [Aromatic organic targets] Blanco, Collar, Kahn, Lillard, 1912.02822.

► Electron excitations.

- ► Atoms (binding energy ~ 10eV).
- ► Semiconductors (gap ~ eV).

Essig, Mardon, Volansky, 1108.5383. Graham, Kaplan, Rajendran, Walters, 1203.2531. Lee, Lisanti, Mishra-Sharma, Safdi, 1508.07361. Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu, 1509.01598. Derenzo, Essig, Massari, Soto, Yu, 1607.01009. Kurinsky, Yu, Hochberg, Cabrera, 1901.07569. Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092 + 1910.10716. Andersson, Bökmark, Catena, Emken, Moberg, Åstrand, 2001.08910.

SuperCDMS, 1804.10697. SENSEI, 1901.10478 + 2004.11378, DAMIC, 1907.12628.

<u>Other similar proposals</u> [Graphene] Hochberg, Kahn, Lisanti, Tully, Zurek, 1606.08849. [Aromatic organic targets] Blanco, Collar, Kahn, Lillard, 1912.02822.

- ► Electron excitations.
 - ► Atoms (binding energy ~ 10eV).
 - ► Semiconductors (gap ~ eV).
 - ► Reach down to DM mass~MeV.
 - ► Recall $E \sim mv^2 \sim 10^{-6} m$.

- ► Electron excitations.
 - ► Atoms (binding energy ~ 10eV).
 - ► Semiconductors (gap ~ eV).
 - ► Reach down to DM mass~MeV.
 - ► Recall $E \sim mv^2 \sim 10^{-6} m$.

- ► Electron excitations.
 - ► Atoms (binding energy ~ 10eV).
 - ► Semiconductors (gap ~ eV).
 - ► Reach down to DM mass~MeV.
 - ► Recall $E \sim mv^2 \sim 10^{-6} m$.

- ► Electron excitations.
 - ► Atoms (binding energy ~ 10eV).
 - ► Semiconductors (gap ~ eV).
 - ► Reach down to DM mass~MeV.
 - ► Recall $E \sim mv^2 \sim 10^{-6} m$.

- ► Electron excitations.
 - ► Atoms (binding energy ~ 10eV).
 - ► Semiconductors (gap ~ eV).
 - ► Reach down to DM mass~MeV.
 - ► Recall $E \sim mv^2 \sim 10^{-6} m$.

Proposed meV-gap targets (somewhat futuristic) [Superconductors] Hochberg, Zhao, Zurek, 1504.07237. Hochberg, Pyle, Zhao, Zurek, 1512.04533. [Dirac materials] Hochberg et al, 1708.08929. Geilhufe, Kahlhoefer, Winkler, 1910.02091. Coskuner, Mitridate, Olivares, Zurek, 1909.09170.

- ► Collective excitations (sub-eV energies).
 - Phonons in crystals (collective oscillations of ions).

Knapen, Lin, Pyle, Zurek, 1712.06598. Griffin, Knapen, Lin, Zurek, 1807.10291. Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092 + 1910.10716. Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482. Griffin, Hochberg, Inzani, Kurinsky, Lin, Yu, 2008.08560. Coskuner, Trickle, ZZ, Zurek, 2102.09567.

- ► Collective excitations (sub-eV energies).
 - Phonons in crystals (collective oscillations of ions).

Knapen, Lin, Pyle, Zurek, 1712.06598. Griffin, Knapen, Lin, Zurek, 1807.10291. Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092 + 1910.10716. Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482. Griffin, Hochberg, Inzani, Kurinsky, Lin, Yu, 2008.08560. Coskuner, Trickle, ZZ, Zurek, 2102.09567.

- Collective excitations (sub-eV energies).

► Collective excitations (sub-eV energies).

- ► Phonons in crystals (collective oscillations of ions).
 - Theoretical sensitivity demonstrated for a variety of targets.
 - Experiment in active R&D.

Snowmass2021 - Letter of Interest

The TESSERACT Dark Matter Project

Thematic Areas:

- IF1 Quantum Sensors
- IF8 Noble Elements
- CF1 Dark Matter: Particle-like
- CF2 Dark Matter: Wavelike

Contact Information:

Dan McKinsey (LBNL and UC Berkeley) [daniel.mckinsey@berkeley.edu]: TESSERACT Collaboration

Authors:

C. Chang (ANL), S. Derenzo (LBNL), Y. Efremenko (ANL), W. Guo (Florida State University), S. Hertel (University of Massachusetts), M. Garcia-Sciveres, R. Mahapatra (Texas A&M University), D. N. McKinsey (LBNL and UC Berkeley), B. Penning (University of Michigan), M. Pyle (LBNL and UC Berkeley), P. Sorensen (LBNL), A. Suzuki (LBNL), G. Wang (ANL), K. Zurek (Caltech)

- Collective excitations (sub-eV energies).
 - Phonons in crystals (collective oscillations of ions).
 - Theoretical sensitivity demonstrated for a variety of targets.
 - Experiment in active R&D.
 - ► Magnons (Collective spin excitations in magnetically ordered materials).

Trickle, ZZ, Zurek, 1905.13744.

Also discussed for axion detection. Chigusa, Moroi, Nakayama, 2001.10666. Mitridate, Trickle, ZZ, Zurek, 2005.10256.

Ongoing experiment: QUAX (1511.09461, 1606.02201, 1806.00310, 1903.06547, 2001.08940) — cannot yet achieve single magnon sensitivity.

- Collective excitations (sub-eV energies).
 - Phonons in crystals (collective oscillations of ions).
 - Theoretical sensitivity demonstrated for a variety of targets.
 - Experiment in active R&D.
 - ► Magnons (Collective spin excitations in magnetically ordered materials).

Trickle, ZZ, Zurek, 1905.13744.

Also discussed for axion detection. Chigusa, Moroi, Nakayama, 2001.10666. Mitridate, Trickle, ZZ, Zurek, 2005.10256.

Ongoing experiment: QUAX (1511.09461, 1606.02201, 1806.00310, 1903.06547, 2001.08940) — cannot yet achieve single magnon sensitivity.

Griffin, Inzani, Trickle, ZZ, Zurek, 1910.10716.

Griffin, Inzani, Trickle, ZZ, Zurek, 1910.10716.

A common description at low energy

. . .

Nonrelativistic (NR) EFT of DM-SM interactions

$$\begin{split} \mathcal{O}_{1}^{(\psi)} &= \mathbb{1} \\ \mathcal{O}_{11}^{(\psi)} &= \mathbf{S}_{\chi} \cdot \frac{i\mathbf{q}}{m_{\psi}} \\ \mathcal{O}_{5}^{(\psi)} &= \mathbf{S}_{\chi} \cdot (\frac{i\mathbf{q}}{m_{\psi}} \times \mathbf{v}^{\perp}) \\ \mathcal{O}_{5}^{(\psi)} &= \mathbf{S}_{\chi} \cdot (\frac{i\mathbf{q}}{m_{\psi}} \times \mathbf{v}^{\perp}) \\ \mathcal{O}_{8}^{(\psi)} &= \mathbf{S}_{\chi} \cdot \mathbf{v}^{\perp} \\ \end{split}$$

$$egin{aligned} \mathcal{O}_4^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} &= oldsymbol{S}_\chi \cdot ig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} &= oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$$

Nonrelativistic (NR) EFT of DM-SM interactions

DM

Nonrelativistic (NR) EFT of DM-SM interactions

Nonrelativistic (NR) EFT of DM-SM interactions

DM

Similar situation in nuclear recoil calculations.

- dependent (SD) benchmarks.
- ► Later on, extended to EFT.

Nonrelativistic (NR) EFT of DM-SM interactions

See also: Cirelli, Del Nobile, Panci, 1307.5955. Anand, Fitzpatrick, Haxton, 1308.6288 + 1405.6690. Gresham, Zurek, 1401.3739. Del Nobile, 1806.01291.

Similar calculation for electron excitations in atoms: Catena, Emken, Spaldin, Tarantino, 1912.08204.

DM

Trickle, ZZ, Zurek, 2009.13534.

► At first, just spin-independent (SI) and spin-

► UV model \Rightarrow EFT \Rightarrow nuclear responses \Rightarrow rates.

Crystal responses

ournal of Cosmology and Astroparticle Physics

The effective field theory of dark matter direct detection

A. Liam Fitzpatrick,^a Wick Haxton,^b Emanuel Katz,^{a,c,d} Nicholas Lubbers,^c Yiming Xu^c

^aStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, U.S.A.

^bDept. of Physics, University of California, and Lawrence Berkeley National Laboratory,

Berkeley, 94720, U.S.A. ^cPhysics Department, Boston University,

Boston, MA 02215, U.S.A. ^dSLAC National Accelerator Laboratory. 2575 Sand Hill, Menlo Park, CA 94025, U.S.A E-mail: fitzpatr@stanford.edu, haxton@berkeley.edu, amikatz@buphy.bu.edu, nlubbers@bu.edu, ymxu@bu.edu

Received August 16, 2012 Revised December 3, 2012 Accepted January 4, 2013 Published February 5, 2013

Phonon & magnon excitation rates

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J^\mu_{\rm EM} + \dots$$

Several possibilities on how the DM coupl

Trickle, ZZ, Zurek, 2009.13534.

	Interaction Type	NR Operators
les.	Coupling to charge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ & & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot ig(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot ig(oldsymbol{S}_\psi imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{13}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\psi imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{14}^{(\psi)} &= ig(oldsymbol{S}_\psi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{i}oldsymbol{q} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{V} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ \mathcal{O}_{14}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{S}_\chi \ oldsymbol{V} \ oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \ o$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J^\mu_{\rm EM} + \dots$$

Several possibilities on how the DM coup

$\begin{array}{l} \text{Millicharged DM (SI)} \\ g_{\chi}V_{\mu}\bar{\chi}\gamma^{\mu}\chi \\ \Rightarrow \quad c_{1}^{(\psi)} = -\frac{g_{\chi}g_{\psi}^{\text{eff}}}{q^{2}+m_{V}^{2}} \quad \text{(standard SI)} \\ \\ \text{where} \quad g_{e}^{\text{eff}} = \frac{q^{2}}{q\cdot\epsilon\cdot q} \; g_{e} = -g_{p}^{\text{eff}} \quad \text{(screened couplings)} \end{array}$

Trickle, ZZ, Zurek, 2009.13534.

Interaction Type	NR Operators
Coupling to charge, v^{\perp} -independent \Rightarrow	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ & & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} &= oldsymbol{S}_\chi \cdot ig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} &= oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot ig(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^ot) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^ot \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi imes oldsymbol{v}^ot) \ \mathcal{O}_{13}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^ot oldsymbol{O}_1 oldsymbol{S}_\psi \cdot oldsymbol{v}^ot \ \mathcal{O}_{14}^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^ot oldsymbol{O}_1 oldsymbol{S}_\chi \cdot oldsymbol{v}^ot \ \mathbf{S}_\chi \cdot oldsymbol{v}^ot oldsymbol{S}_\chi \cdot oldsymbol{i}^oldsymbol{q}_\chi \ \mathcal{O}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \cdot oldsymbol{v}^ot oldsymbol{O}_1 oldsymbol{S}_\chi \cdot oldsymbol{v}^ot \ \mathbf{M}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{i}^oldsymbol{q}_\chi \ \mathcal{O}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{s}_\chi \cdot oldsymbol{v}^ot \ oldsymbol{M}_\chi \cdot oldsymbol{v}^ot \ \mathbf{M}_\chi \cdot oldsymbol{v}^ot \ \mathbf{M}_\chi \ \mathbf{M}_\chi \ \mathbf{M}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{v}^ot \ \mathbf{M}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{M}_\chi \cdot oldsymbol{M}_\chi \cdot oldsymbol{M}_\chi \ \mathbf{M}_\chi \cdot oldsymbol{M}_\chi \cdot oldsymbol{M}_\chi \cdot oldsymbol{M}_\chi \ \mathbf{M}_\chi \cdot oldsymbol{M}_\chi \cdot oldsymbo$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J^\mu_{\rm EM} + \dots$$

Several possibilities on how the DM coup

$\begin{array}{l} \text{Millicharged DM (SI)} \\ g_{\chi}V_{\mu}\bar{\chi}\gamma^{\mu}\chi \\ \Rightarrow \quad c_{1}^{(\psi)} = -\frac{g_{\chi}g_{\psi}^{\text{eff}}}{q^{2}+m_{V}^{2}} \quad \text{(standard SI)} \\ \\ \text{where} \quad g_{e}^{\text{eff}} = \frac{q^{2}}{q\cdot\epsilon\cdot q} \; g_{e} = -g_{p}^{\text{eff}} \quad \text{(screened couplings)} \end{array}$

Trickle, ZZ, Zurek, 2009.13534.

	Interaction Type	NR Operators
(Coupling to charge, v^{\perp} -independent \Rightarrow	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ & & \mathcal{O}_{11}^{(\psi)} &= m{S}_\chi \cdot rac{im{q}}{m_\psi} \end{aligned}$
	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^\perp \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(oldsymbol{S}_\psi imes oldsymbol{v}^\perp ight) \ \mathcal{O}_{13}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{)} oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{14}^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^\perp oldsymbol{)} oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{\left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}^\perp oldsymbol{S}_\chi \cdot oldsym$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J^\mu_{\rm EM} + \dots$$

Several possibilities on how the DM coupl

	Interaction Type	NR Operators
les.	Coupling to charge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ & & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot ig(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot ig(oldsymbol{S}_\psi imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{13}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\psi imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{14}^{(\psi)} &= ig(oldsymbol{S}_\psi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{i}oldsymbol{q} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{L} \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{V} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ \mathcal{O}_{14}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \ oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{S}_\chi \ oldsymbol{V} \ oldsymbol{S}_\chi \ oldsymbol{V}^oldsymbol{L} \ oldsymbol{S}_\chi \ o$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J_{\rm EM}^\mu + \dots$$

► Several possibilities on how the DM coup

Electric dipole DM

$$\frac{g_{\chi}}{4m_{\chi}}V_{\mu\nu}\bar{\chi}\sigma^{\mu\nu}i\gamma^5\chi$$

$$> c_{11}^{(\psi)} = -\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text{eff}}}{q^2 + m_V^2}$$

Interact	ion Type	NR Operators
Coupling to charg	ge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ & & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
Coupling to char	rge, v^{\perp} -dependent	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
Coupling to <i>spin</i>	v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
Coupling to spi	in, v^{\perp} -dependent \Rightarrow S , $L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^\perp \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(oldsymbol{S}_\psi imes oldsymbol{v}^\perp ight) \ \mathcal{O}_{13}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{)} oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{14}^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^\perp oldsymbol{)} oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{O}_{15} = oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}^\perp oldsymbol{S}_\chi \cdot oldsym$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J_{\rm EM}^\mu + \dots$$

► Several possibilities on how the DM coup

Electric dipole DM

$$\frac{g_{\chi}}{4m_{\chi}}V_{\mu\nu}\bar{\chi}\sigma^{\mu\nu}i\gamma^5\chi$$

$$> c_{11}^{(\psi)} = -\frac{m_{\psi}}{m_{\chi}} \frac{g_{\chi} g_{\psi}^{\text{eff}}}{q^2 + m_V^2}$$

	Interaction Type	NR Operators
les.	Coupling to charge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} = \mathbb{1} \ & \mathcal{O}_{11}^{(\psi)} = oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^\perp \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(oldsymbol{S}_\psi imes oldsymbol{v}^\perp ight) \ \mathcal{O}_{13}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{)} oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{14}^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^\perp oldsymbol{)} oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{\left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp oldsymbol{)} oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{\left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \ \mathcal{O}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{\left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{V}_\chi \cdot oldsymbol{v}^\perp oldsymbol{s}_\chi \cdot oldsymbol{v}^\perp oldsymbol{V}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{V}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}_\chi \cdot oldsymbol{S}_\chi \cdot oldsy$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J_{\rm EM}^\mu + \dots$$

► Several possibilities on how the DM coup

Trickle, ZZ, Zurek, 2009.13534.

	Interaction Type	NR Operators
les.	Coupling to charge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ & & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot ig(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^otig) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^otegin{aligned} &\mathcal{O}_1^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi imes oldsymbol{v}^otethermines oldsymbol{O}_{13}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^otethermines oldsymbol{O}_{14}^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^otethermines oldsymbol{V}^othermines oldsymbol{v}^othermines oldsymbol{V}^othermines oldsymbol{V}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}_{13}^othermines oldsymbol{S}_\psi \cdot oldsymbol{v}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^otherminesoldsymbol{V}^otherminesoldsymbol{S}_\psi \cdot oldsymbol{v}^otherminesoldsymbol{V}^otherminesoldsym$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J_{\rm EM}^\mu + \dots$$

Several possibilities on how the DM coup

Trickle, ZZ, Zurek, 2009.13534.

	Interaction Type	NR Operators
les.	Coupling to charge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ N & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot ig(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot ig(oldsymbol{S}_\psi imes oldsymbol{v}^oldsymbol{\perp}ig) \ \mathcal{O}_{13}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{14}^{(\psi)} &= ig(oldsymbol{S}_\psi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\omega} \cdot oldsymbol{v}^oldsymbol{\perp}ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\omega} oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{\omega} oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{v} oldsymbol{N} ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{N} oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{N} ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^oldsymbol{N} oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{N} oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{N} ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{N} oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{N} ig) ig(oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{L} oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot oldsymbol{V}^oldsymbol{S}_\chi \cdot oldsymbol{S}_\chi \cdot o$

$$\mathcal{L} \supset -g_e V_\mu J_{\rm EM}^\mu + \dots$$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J^\mu_{\rm EM} + \dots$$

Several possibilities on how the DM coup

	Interaction Type	NR Operators
les.	Coupling to charge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ & & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} = oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} = ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} = oldsymbol{S}_\chi \cdotig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} = oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot ig(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^otig) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^otegin{aligned} &\mathcal{O}_1^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi imes oldsymbol{v}^otethermines oldsymbol{O}_{13}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^otethermines oldsymbol{O}_{14}^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^otethermines oldsymbol{V}^othermines oldsymbol{v}^othermines oldsymbol{V}^othermines oldsymbol{V}_{15}^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}_{13}^othermines oldsymbol{S}_\psi \cdot oldsymbol{v}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^othermines oldsymbol{V}^otherminesoldsymbol{V}^otherminesoldsymbol{S}_\psi \cdot oldsymbol{v}^otherminesoldsymbol{V}^otherminesoldsym$

► Dark photon mediator models.

$$\mathcal{L} \supset -g_e V_\mu J_{\rm EM}^\mu + \dots$$

Several possibilities on how the DM coup

	Interaction Type	NR Operators
•	Coupling to charge, v^{\perp} -independent	$egin{aligned} \mathcal{O}_1^{(\psi)} &= \mathbb{1} \ N & \mathcal{O}_{11}^{(\psi)} &= oldsymbol{S}_\chi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
)	Coupling to charge, v^{\perp} -dependent \Rightarrow	$egin{aligned} \mathcal{O}_5^{(\psi)} &= oldsymbol{S}_\chi \cdot \left(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^\perp ight) \ oldsymbol{N}, oldsymbol{L} & \mathcal{O}_8^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{v}^\perp \end{aligned}$
	Coupling to spin, v^{\perp} -independent $\Rightarrow S$	$egin{aligned} \mathcal{O}_4^{(\psi)} &= oldsymbol{S}_\chi \cdot oldsymbol{S}_\psi \ \mathcal{O}_6^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot rac{oldsymbol{q}}{m_\psi}ig)ig(oldsymbol{S}_\psi \cdot rac{oldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_9^{(\psi)} &= oldsymbol{S}_\chi \cdot ig(oldsymbol{S}_\psi imes rac{ioldsymbol{q}}{m_\psi}ig) \ \mathcal{O}_{10}^{(\psi)} &= oldsymbol{S}_\psi \cdot rac{ioldsymbol{q}}{m_\psi} \end{aligned}$
	Coupling to spin, v^{\perp} -dependent $\Rightarrow S, L \otimes S$	$egin{aligned} \mathcal{O}_3^{(\psi)} &= oldsymbol{S}_\psi \cdot ig(rac{ioldsymbol{q}}{m_\psi} imes oldsymbol{v}^ot) \ \mathcal{O}_7^{(\psi)} &= oldsymbol{S}_\psi \cdot oldsymbol{v}^ot \ \mathcal{O}_{12}^{(\psi)} &= oldsymbol{S}_\chi \cdot ig(oldsymbol{S}_\psi imes oldsymbol{v}^ot) \ \mathcal{O}_{13}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^ot) ig(oldsymbol{S}_\psi \cdot oldsymbol{v}^ot) \ \mathcal{O}_{14}^{(\psi)} &= ig(oldsymbol{S}_\psi \cdot oldsymbol{v}^ot) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^ot) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^ot) \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^ot) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^ot) ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^ot) \ \mathcal{O}_{15}^{(\psi)} &= ig(oldsymbol{S}_\chi \cdot oldsymbol{v}^ot) ig(oldsymbol{S}_\chi \cdot ot ot ot ot ot ot ot ot ot ot$

$$\mathcal{L} \supset -g_e V_\mu J_{\rm EM}^\mu + \dots$$

••••
)
)
$\Big)_{iq}$
$\frac{1}{m_{\psi}}$)

$$\begin{split} & \text{Magnetic dipole DM} \\ c_1^{(\psi)} = \frac{q^2}{4m_\chi^2} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \\ c_4^{(\psi)} = \tilde{\mu}_\psi^{\text{eff}} \frac{q^2}{m_\chi m_\psi} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \\ c_5^{(\psi)} = \frac{m_\psi}{m_\chi} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \\ c_6^{(\psi)} = -\tilde{\mu}_\psi^{\text{eff}} \frac{m_\psi}{m_\chi} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \end{split}$$

Anapole D
$$c_8^{(\psi)} = \frac{q^2}{2m_\chi^2} \frac{q}{q^2}$$
$$c_9^{(\psi)} = -\tilde{\mu}_\psi^{\text{eff}} \frac{q^2}{2m_\chi^2}$$

$$\begin{split} \vec{V}_{lj}(-q, \boldsymbol{v}) &= \sum_{\psi=p,n,e} c_1^{(\psi)} \langle N_{\psi} \rangle_{lj} \\ &+ c_3^{(\psi)} \left[-\frac{iq}{m_{\psi}} \, \boldsymbol{v}' \cdot \left(\hat{q} \times \langle S_{\psi} \rangle_{lj} \right) + \frac{q^2}{2m_{\psi}^2} \left(\delta^{ik} - \hat{q}^i \hat{q}^k \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right)^{ik} \right] \\ &+ c_4^{(\psi)} \, S_{\chi} \cdot \langle S_{\psi} \rangle_{lj} \\ &+ c_5^{(\psi)} \left[\frac{iq}{m_{\psi}} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \langle N_{\psi} \rangle_{lj} + \frac{q^2}{2m_{\psi}^2} \, S_{\chi} \cdot \left(1 - \hat{q} \hat{q} \right) \cdot \langle L_{\psi} \rangle_{lj} \right] \\ &+ c_5^{(\psi)} \left[\frac{iq}{m_{\psi}^2} \left(\hat{q} \cdot S_{\chi} \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \\ &+ c_6^{(\psi)} \frac{q^2}{m_{\psi}^2} \left(\hat{q} \cdot S_{\chi} \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \\ &+ c_7^{(\psi)} \left[\boldsymbol{v}' \cdot \langle S_{\psi} \rangle_{lj} + e^{ikk'} \frac{iq^{k'}}{2m_{\chi}} \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right)^{ik} \right] \\ &+ c_8^{(\psi)} \left[\left(\boldsymbol{v}' \cdot S_{\chi} \right) \langle N_{\psi} \rangle_{lj} + \frac{iq}{2m_{\psi}} S_{\chi} \cdot \left(\hat{q} \times \langle L_{\psi} \rangle_{lj} \right) \right] \\ &+ c_8^{(\psi)} \frac{iq}{m_{\psi}} \cdot S_{\chi} \langle N_{\psi} \rangle_{lj} \\ &+ c_{11}^{(\psi)} \frac{iq}{m_{\psi}} \cdot S_{\chi} \langle N_{\psi} \rangle_{lj} \right) \\ &+ c_{12}^{(\psi)} \left[\left(\boldsymbol{v}' \times S_{\chi} \right) \cdot \langle S_{\psi} \rangle_{lj} + \frac{iq}{2m_{\psi}} \left(\left(\hat{q} \cdot S_{\chi} \right) \delta^{ik} - \hat{q}^k S_{\chi}^i \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right) \\ &+ c_{12}^{(\psi)} \left[\left(\boldsymbol{v}' \cdot S_{\chi} \right) \cdot \langle S_{\psi} \rangle_{lj} \right] \\ &+ c_{13}^{(\psi)} \left[\frac{iq}{m_{\psi}} \left(\boldsymbol{v}' \cdot S_{\chi} \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) - e^{ikk'} \frac{q^2}{2m_{\psi}^2} \hat{q}^k \left(\hat{q} \cdot S_{\chi} \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right) \\ &+ c_{15}^{(\psi)} \left[- \frac{q^2}{m_{\psi}^2} \left(\hat{q} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \\ &+ c_{14}^{(\psi)} \left[\frac{iq}{m_{\psi}} \left(\hat{q} \cdot S_{\chi} \right) \left(\boldsymbol{v}' \cdot \langle S_{\psi} \rangle_{lj} \right) - e^{ikk'} \frac{q^2}{2m_{\psi}^2} \hat{q}^k \left(\hat{q} \cdot S_{\chi} \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right) \\ &+ c_{15}^{(\psi)} \left[- \frac{q^2}{m_{\psi}^2} \left(\hat{q} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \\ &+ \frac{iq^3}{2m_{\psi}^3} S_{\chi} \cdot \left(1 - \hat{q}\hat{q} \right) \cdot \langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \cdot \hat{q} \right], \end{split}$$

$$\begin{split} & \text{Magnetic dipole DM} \\ c_1^{(\psi)} = \frac{q^2}{4m_\chi^2} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \\ c_4^{(\psi)} = \tilde{\mu}_\psi^{\text{eff}} \frac{q^2}{m_\chi m_\psi} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \\ c_5^{(\psi)} = \frac{m_\psi}{m_\chi} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \\ c_6^{(\psi)} = -\tilde{\mu}_\psi^{\text{eff}} \frac{m_\psi}{m_\chi} \frac{g_\chi g_\psi^{\text{eff}}}{q^2 + m_V^2} \end{split}$$

Anapole D
$$c_8^{(\psi)} = \frac{q^2}{2m_\chi^2} \frac{q}{q^2}$$
$$c_9^{(\psi)} = -\tilde{\mu}_\psi^{\text{eff}} \frac{q^2}{2m_\chi^2}$$

$$\begin{split} \bar{V}_{lj}(-q, \boldsymbol{v}) &= \sum_{\psi=p,n,d} c_{1}^{(\psi)} \langle N_{\psi} \rangle_{lj} \\ &+ c_{3}^{(\psi)} \left[-\frac{iq}{m_{\psi}} \, \boldsymbol{v}' \cdot \left(\hat{q} \times \langle S_{\psi} \rangle_{lj} \right) + \frac{q^{2}}{2m_{\psi}^{2}} \left(\delta^{ik} - \hat{q}^{i} \hat{q}^{k} \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right)^{ik} \right] \\ &+ c_{4}^{(\psi)} \, S_{\chi} \cdot \langle S_{\psi} \rangle_{lj} \\ &+ c_{5}^{(\psi)} \left[\frac{iq}{m_{\psi}} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \langle N_{\psi} \rangle_{lj} + \frac{q^{2}}{2m_{\psi}^{2}} \, S_{\chi} \cdot \left(1 - \hat{q} \hat{q} \right) \cdot \langle L_{\psi} \rangle_{lj} \right] \\ &+ c_{5}^{(\psi)} \left[\frac{iq}{m_{\psi}} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \langle N_{\psi} \rangle_{lj} + \frac{q^{2}}{2m_{\psi}^{2}} \, S_{\chi} \cdot \left(1 - \hat{q} \hat{q} \right) \cdot \langle L_{\psi} \rangle_{lj} \right] \\ &+ c_{5}^{(\psi)} \left[\boldsymbol{v}' \cdot \langle S_{\psi} \rangle_{lj} + \epsilon^{ikk'} \frac{iq^{k'}}{2m_{\chi}} \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right)^{ik} \right] \\ &+ c_{7}^{(\psi)} \left[\boldsymbol{v}' \cdot \langle S_{\psi} \rangle_{lj} + \epsilon^{iq} \, \frac{iq}{2m_{\psi}} \, S_{\chi} \cdot \left(\hat{q} \times \langle L_{\psi} \rangle_{lj} \right) \right] \\ &+ c_{8}^{(\psi)} \left[\left(\boldsymbol{v}' \cdot S_{\chi} \right) \langle N_{\psi} \rangle_{lj} + \frac{iq}{2m_{\psi}} \, S_{\chi} \cdot \left(\hat{q} \times \langle L_{\psi} \rangle_{lj} \right) \right] \\ &+ c_{10}^{(\psi)} \, \frac{iq}{m_{\psi}} \cdot \left(S_{\psi} \rangle_{lj} \right) \\ &+ c_{11}^{(\psi)} \, \frac{iq}{m_{\psi}} \cdot \left(S_{\chi} \right) \langle \boldsymbol{v} \rangle_{lj} + \frac{iq}{2m_{\psi}} \left((\hat{q} \cdot S_{\chi}) \delta^{ik} - \hat{q}^{k} \, S_{\chi}^{i} \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right) \\ &+ c_{12}^{(\psi)} \left[\left(\boldsymbol{v}' \times S_{\chi} \right) \cdot \left(S_{\psi} \rangle_{lj} \right) + \frac{iq}{2m_{\psi}^{2}} \left((\hat{q} \cdot S_{\chi}) \delta^{ik} - \hat{q}^{k} \, S_{\chi}^{i} \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right) \\ &+ c_{12}^{(\psi)} \left[\left[\frac{iq}{m_{\psi}} \left(\boldsymbol{v}' \cdot S_{\chi} \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) - \epsilon^{ikk'} \, \frac{q^{2}}{2m_{\psi}^{2}} \, \hat{q}^{k'} \left(\hat{q} \cdot S_{\chi} \right) \left(\langle L_{\psi} \otimes S_{\psi} \rangle_{lj} \right) \\ &+ c_{15}^{(\psi)} \left[- \frac{q^{2}}{m_{\psi}^{2}} \left(\hat{q} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \\ &+ c_{15}^{(\psi)} \left[- \frac{q^{2}}{m_{\psi}^{2}} \left(\hat{q} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \\ &+ c_{15}^{(\psi)} \left[- \frac{q^{2}}{m_{\psi}^{2}} \left(\hat{q} \cdot \left(\boldsymbol{v}' \times S_{\chi} \right) \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \right] \\ &+ c_{15}^{(\psi)} \left[- \frac{q^{2}}{m_{\psi}^{2}} \left(\hat{q} \cdot \left(\boldsymbol{v} \times S_{\chi} \right) \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \right] \\ &+ c_{15}^{(\psi)} \left[- \frac{q^{2}}{m_{\psi}^{2}} \left(\hat{q} \cdot \left(\boldsymbol{v} \times S_{\chi} \right) \right) \left(\hat{q} \cdot \langle S_{\psi} \rangle_{lj} \right) \right] \\ &+ c_{15}^{(\psi)} \left[- \frac{q^{2}}{m_{\psi}^{2}} \left(\hat{q} \cdot \left(\boldsymbol{v} \times S_{\chi} \right) \right) \left($$

Phonon reach for kg-yr exposure, assuming background-free.

Trickle, ZZ, Zurek, 2009.13534.

These models also generate couplings to S and L.

 \Rightarrow Best probed by magnons.

Zoom in on these two models.

Compare phonon reach (from previous plot) vs. magnon reach.

Zoom in on these two models.

Compare phonon reach (from previous plot) vs. magnon reach.

Encouraging for the technically more mature phonon experiments.

Trickle, ZZ, Zurek, 2009.13534.

 \blacktriangleright Magnon reach is parametrically better, but SiO₂ (optimal phonon target) is not too far behind.

Take-home messages

Collective excitations such as phonons and magnons offer a novel path to detect light DM.

New experiments such as SPICE (TESSERACT) are moving forward.

We have developed the EFT tools for computing detection rates for general DM models.

