	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0 000					

Reviving the interference: framework and proof-of-principle for the anomalous gluon self-interactions in the SMEFT

Matteo Maltoni

Based on arXiv:2012.06595[hep-ph]

HEFT, 14 April 2021

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0 000					

Outline

- Introduction
 - The SMEFT
 - The interference suppression
- **2** The O_G operator case
- 3 Measurable asymmetry
- Choosing the distributions
- **6** Bounds on the coefficient
- 6 Validity of the approach
- Importance for NLO

8 Conlusions

Introduction	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
000					
The SMEFT					

The SMEFT extends the SM by adding higher-dimensional operators

 $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^{d-4}} O_i^d$

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_{\varphi} = (\varphi^{\dagger}\varphi)^3$		$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\tilde{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} {\tilde G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{\mu}u_{\nu}\tilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\mu}_{\nu}W^{K\mu}_{\rho}$	$Q_{\mu D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{\rho}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\mu}_{\nu} W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A}_{\mu\nu}$	Q_{eW}	$(\bar{l}_{\mu}\sigma^{\mu\nu}e_{\tau})\tau^{I}\varphi W^{I}_{\mu\nu}$	$Q_{q\bar{q}}^{(1)}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r})$
$Q_{\varphi \overline{O}}$	$\varphi^{\dagger} \varphi \tilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{q\bar{q}}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\overline{l}_{\mu} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_{p}\sigma^{\mu\nu}T^{A}u_{r})\widetilde{\varphi} G^{A}_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{\mu} e_{r})$
$Q_{q\overline{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I}_{\mu\nu}$	Q_{uW}	$(\bar{q}_{\mu}\sigma^{\mu\nu}u_{r})\tau^{I}\bar{\varphi}W^{I}_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{q}_{\mu}\gamma^{\mu}q_{\nu})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \bar{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\ddot{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{H}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	Q_{gu}	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{u}_{p} \gamma^{\mu} u_{\tau})$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	Q_{pd}	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{d}_{p} \gamma^{\nu} d_{r})$
$Q_{q\widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_{\mu}\sigma^{\mu\nu}d_{\nu})\varphi B_{\mu\nu}$	Q_{qud}	$i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	(LL)(LL)		$(\bar{R}R)(\bar{R}R)$	(LL)(RR)	
Q_{0}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ec}	$(\tilde{e}_p \gamma_\mu e_r)(\tilde{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\eta \eta}^{(1)}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\tau})(\bar{q}_{i}\gamma^{\mu}q_{t})$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{1n}	$(\tilde{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_{\mu}\gamma_{\mu}\tau^{J}q_{r})(\bar{q}_{i}\gamma^{\mu}\tau^{J}q_{t})$	Q_{dd}	$(\bar{d}_{\mu}\gamma_{\mu}d_{\nu})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$Q_{\rm M}$	$(\bar{l}_{\mu}\gamma_{\mu}l_{\tau})(\bar{d}_{s}\gamma^{\mu}d_{t})$
$Q_{lq}^{(1)}$	$(\bar{l}_{\mu}\gamma_{\mu}l_{\tau})(\bar{q}_{z}\gamma^{\mu}q_{t})$	Q_{eu}	$(\tilde{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qr}	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{e}_{s}\gamma^{\mu}e_{t})$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_p \tau^I l_r)(\bar{q}_s \gamma^{\mu} \tau^I q_l)$	Q_{ed}	$(\bar{e}_{\mu}\gamma_{\mu}e_{\tau})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$Q^{(1)}_{qu}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{u}_{s}\gamma^{\mu}u_{t})$
		$Q_{ud}^{(1)}$	$(\bar{u}_{\mu}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{\ell})$	$Q_{\eta \pi}^{(0)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_i)$
		$Q_{ud}^{(8)}$	$(\bar{u}_{\mu}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$	$Q_{qd}^{(1)}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$
				$Q_{qd}^{(8)}$	$(\bar{q}_{\mu}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	lating	
Q_{bedq}	$(\overline{P}_p c_r)(\overline{d}_s q_t^j)$	Q_{deq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}[(d_{j}^{\alpha})$	TCu_r^β	$[(q_s^{\gamma j})^T C l_t^k]$
$Q_{qupl}^{(1)}$	$(\bar{q}_{\mu}^{j}u_{\tau})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	Q_{qqs}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_s^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C v_t\right]$		
$Q_{qqd}^{(8)}$	$(\hat{q}^{j}_{p}T^{A}u_{r})\varepsilon_{jk}(\hat{q}^{k}_{s}T^{A}d_{t})$	$Q_{\eta\eta}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{r}^{m}\right]$		
$Q_{logu}^{(1)}$	$(\tilde{l}_{p}^{j}e_{r})\varepsilon_{jk}(\tilde{q}_{s}^{k}u_{t})$	Q_{duv}	$\varepsilon^{\alpha\beta\gamma} \left[(d_g^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$		
$Q_{logu}^{(3)}$	$(\bar{l}^j_p\sigma_{\mu\nu}e_r)\varepsilon_{jk}(\bar{q}^k_s\sigma^{\mu\nu}u_l)$				

○ ●00 The interference suppression

The interference can be small even if it is non-zero everywhere

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^{d-4}} O_i^d$$

• We truncate the amplitude at $\mathcal{O}(1/\Lambda^2)$

$$\sigma = \sigma^{SM} + \frac{C_i}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_i}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$
$$= \int d\Phi \left[|\mathcal{M}_{SM}|^2 + 2\text{Re}\left(\mathcal{M}_{SM}\mathcal{M}_{1/\Lambda^2}^*\right) + |\mathcal{M}_{1/\Lambda^2}|^2 + \dots \right]$$

Introduction	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0 0●0					
The interference					

The interference suppression

The interference can be small even if it is non-zero everywhere

$$\sigma = \sigma^{SM} + \frac{C_i}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_i}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$
$$= \int d\Phi \left[|\mathcal{M}_{SM}|^2 + 2\text{Re}\left(\mathcal{M}_{SM}\mathcal{M}_{1/\Lambda^2}^*\right) + |\mathcal{M}_{1/\Lambda^2}|^2 + \dots \right]$$

Introduction	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0 00●					
The interfore	nee aupprovien				

The interference suppression

The interference term can be small even if it is non-zero everywhere

$$\sigma = \sigma^{SM} + \frac{C_i}{\Lambda^2} \sigma^{1/\Lambda^2} + \left(\frac{C_i}{\Lambda^2}\right)^2 \sigma^{1/\Lambda^4} + \dots$$
$$= \int d\Phi \left[|\mathcal{M}_{SM}|^2 + 2\operatorname{Re}\left(\mathcal{M}_{SM}\mathcal{M}_{1/\Lambda^2}^*\right) + |\mathcal{M}_{1/\Lambda^2}|^2 + \dots \right]$$

- The interference term is divided by Λ^2 , the new physics term by Λ^4
- The interference term is sensitive to the sign of the coefficient C_i

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
	•0				
000					

The O_G operator presents interference suppression

$$O_G = g_s f_{abc} \ G^{a,\mu}_{\nu} G^{b,\nu}_{\rho} G^{c,\rho}_{\mu}$$

• The best bounds so far come from the $\mathcal{O}(1/\Lambda^4)$ term, for $\Lambda = 1$ TeV at 95% CL

$$S_T = \sum_{j=1}^{N_{jets}} E_{T,j} + (\not{E}_T > 50 \text{ GeV}) \quad \Rightarrow \quad \frac{C_G}{\Lambda^2} < 0.037 \text{ TeV}^{-2}$$
$$\chi_{dijet} = e^{|y_1 - y_2|} \quad \Rightarrow \quad \frac{C_G}{\Lambda^2} < 0.032 \text{ TeV}^{-2}$$

F. Krauss, S. Kuttimalai, T. Plenh, LHC multijet events as a probe for anomalous dimension-six gluon interactions, [1611.00767v3] (2017)

R. Goldouzian, M.D. Hildreth, LHC dijet angular distributions as a probe for the dimension-six triple gluon vertex, [2001.02736v1] (2020)

	The O_G operator case	Measurable asymmetry	Choosing the distributions	
	00			
000				

Three-jet production shows the best interference cancellation

$$O_G = g_s f_{abc} \ G^{a,\mu}_{\nu} G^{b,\nu}_{\rho} G^{c,\rho}_{\mu}$$

• The cancellation over the phase space is efficient if the integrals of the interference where its matrix element is positive and negative are almost equal, in absolute value

•
$$pp > jj$$
 shows $\sigma^{1/\Lambda^2} = 0$

	$p_T[j] > 50 \text{ GeV}$		$p_T[j] > 200 \text{ GeV}$		$p_T[j] > 1000 \text{ GeV}$	
process	σ^{1/Λ^2} [pb]	wgt>0	σ^{1/Λ^2} [pb]	wgt>0	σ^{1/Λ^2} [pb]	wgt>0
$pp > t\bar{t}$	1.388	85.0%	1.384	85.2%	1.384	85.1%
$pp > t\bar{t}j$	$5.20 \cdot 10^{-1}$	62.4%	$1.13 \cdot 10^{-1}$	60.4%	$1.37 \cdot 10^{-3}$	62.0%
pp > jjj	$2.98 \cdot 10^{1}$	51.6%	$5.90 \cdot 10^{-1}$	52.4%	$4.91 \cdot 10^{-4}$	61.2%
pp > jjjj	$-2.89 \cdot 10^{1}$	45.4%	$-2.50 \cdot 10^{-1}$	44.2%	$-4.12 \cdot 10^{-6}$	38.8%

The measurable cross-section quantifies the interference suppression

- The cancellation over the phase space is efficient if the integrals of the interference where its matrix element is positive and negative are almost equal, in absolute value
- The integral of absolute-valued interference differential cross-section quantifies the total suppression

$$\sigma^{|int|} = \int d\Phi \left| \frac{d}{d\Phi} \sigma^{1/\Lambda^2} \right|$$

• Measurable absolute-valued cross-section

$$\begin{split} \sigma^{|meas|} &= \int d\Phi_{meas} \; \left| \sum_{\{um\}} \frac{d}{d\Phi} \sigma^{1/\Lambda^2} \right| \\ &= \lim_{N \to \infty} \sum_{i=1}^N \; w_i \times \text{sign} \left(\sum_{\{um\}} \text{ME}(\overrightarrow{p}_i, \{um\}) \right) \end{split}$$

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
		00			
000					

The measurable cross-section quantifies the interference suppression

$$\begin{split} \sigma^{|int|} &= \int d\Phi \; \left| \frac{d}{d\Phi} \sigma^{1/\Lambda^2} \right| \\ \sigma^{|meas|} &= \lim_{N \to \infty} \sum_{i=1}^N \; w_i \times \mathrm{sign} \left(\sum_{\{um\}} \mathrm{ME}(\overrightarrow{p}_i, \{um\}) \right) \end{split}$$

Three-jet production										
	SM		C	$\mathcal{O}(1/\Lambda^2)$		$O(1/\Lambda^4)$				
$p_{T,min}$ [GeV]	σ [pb]	σ [pb]	wgt>0	$\sigma^{ meas }$ [pb]	$\sigma^{ int }$ [pb]	σ [pb]				
50	$9.70 \cdot 10^5$	4.08	50.4%	$7.83 \cdot 10^2$	$1.05 \cdot 10^{3}$	$3.93 \cdot 10^{1}$				
200	$8.96 \cdot 10^2$	$2.92 \cdot 10^{-1}$	51.4%	$3.5 \cdot 10^{1}$	$5.02 \cdot 10^{1}$	2.73				
500	3.10	$1.69 \cdot 10^{-2}$	54.0%	$6.04 \cdot 10^{-1}$	$8.96 \cdot 10^{-1}$	$1.48 \cdot 10^{-1}$				
1000	$9.08 \cdot 10^{-3}$	$4.56 \cdot 10^{-4}$	60.1%	$1.46 \cdot 10^{-3}$	$2.29 \cdot 10^{-3}$	$3.05 \cdot 10^{-3}$				

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0 000			•00		

We focus on variables which separate the cross-section contributions with different sign

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0			000		

The transverse sphericity presents the best efficiency

$p_T[j] > 200 \text{ GeV}$					
Distribution	Cut	% of $\sigma^{ meas }$			
Sph_T	0.27	83.54			
Thr_T	0.10	48.29			
$p_T[j_1]$	440 GeV	43.09			
$\Delta R[j_2 j_3]$	1.80	36.68			
$\eta[j_1]$	1.2	6.29			
σ^{1/Λ^2}	-	2.40			

	The O_G operator	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0			000		
000					

The transverse sphericity presents the best efficiency

$$M_{xy} = \sum_{i=1}^{N_{jets}} \begin{pmatrix} p_{x,i}^2 & p_{x,i}p_{y,i} \\ p_{y,i}p_{x,i} & p_{y,i}^2 \end{pmatrix} \Rightarrow Sph_T = \frac{2\lambda_2}{\lambda_2 + \lambda_1}$$

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0				•0	

We use the best distributions to get bounds on C_G

• The LHC data we are interested in is not public yet

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
				00	
000					

The best $\mathcal{O}(1/\Lambda^2)$ bounds are comparable to the $\mathcal{O}(1/\Lambda^4)$ ones

$\Lambda = 1$ TeV, 68% CL					
$p_{T,min}$ [GeV]	Distribution	Sph_T cut	Bins	Upper bound on C_G	Lower bound on C_G
50	$p_T[j_3]$ vs Sph_T	0.23	34	$2.5 \cdot 10^{-1} (1.1 \cdot 10^{-1})$	$-2.5 \cdot 10^{-1} (-1.2 \cdot 10^{-1})$
200	S_T vs Sph_T	0.27	34	$7.5 \cdot 10^{-2} (2.3 \cdot 10^{-2})$	$-7.5 \cdot 10^{-2} (-2.4 \cdot 10^{-2})$
500	$M[j_2j_3]$ vs Sph_T	0.31	21	$5.5 \cdot 10^{-2} (5.3 \cdot 10^{-2})$	$-5.5 \cdot 10^{-2} (-3.5 \cdot 10^{-2})$
1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$2.6 \cdot 10^{-2} (1.9 \cdot 10^{-2})$	$-2.6 \cdot 10^{-2} (-1.8 \cdot 10^{-2})$

	The O_G operator case	Measurable asymmetry	Choosing the distributions	V
0 000				٠

We check the EFT valid by cutting the events energy

- The EFT is valid if $\sqrt{s} < \Lambda$
- Constraints barely change for $\sqrt{s}\gtrsim 6~{\rm TeV}$
- The bounds from the interference grow faster than the $\mathcal{O}(1/\Lambda^2)$ ones

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0					
000					

Large K-factors are predicted when interference suppression occurs

Process	SM	$c_W, \mathcal{O}(1/\Lambda^2)$	$c_W, \mathcal{O}(1/\Lambda^4)$
WW	1.5	-4.5	1.1
WZ	1.7	-1.4	1.1
ZZ	1.3	-	-
WWW	1.8	-17	1.0
WWZ	1.9	2.6	0.9
ZZW	2.0	-7.5	1.0
ZZZ	1.4	-	-

- Positively and negatively contributing regions could have more reasonable but different K-factors, which affect the level of cancellation
- Observables that can separate the two regions can provide stable predictions for the interference

C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou, C. Zhang, Automated one-loop computations in the SMEFT, [2008.11743] (2020)

	The O_G operator case	Measurable asymmetry	Choosing the distributions	Bounds on the coefficient	
0 000					

Take-aways

- We used the sign of measurable matrix elements to quantify the efficiency of differential distributions to separate phase space regions that contribute with opposite signs to the interference cross-section
- We used these distributions to set, for the first time, bounds on the O_G operator coefficient that are dominated by the leading interference term
- Being sensible to the interference, our observables are also sensitive to the sign of the C_G coefficient
- This approach is fully generic and can be applied to any BSM scenarios where interference suppression occurs, even outside the SMEFT
- Using this approach to lift the cancellation may be important to get stable predictions at NLO
- This method may be used in parallel with Machine Learning techniques:
 - if the EFT is not fully valid
 - to find the best distribution to feed the networks
 - to check the final results