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Custodial Symmetry

* The Higgs potential is invariant under

SO4) ~ SU?), X SU2), —> SO(3)

# UV theories that violate custodial symmetry are generally
believed to be severely constrained (A 2 10 TeV) by data

from electroweak precision measurements.

+ We are interested in the robustness of this result in the

context of SMEFT @ dim-6.



Is BSM physics custodial symmetric?

yy(0) = 155(0)
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(10.66)
which describes new sources of SU(2) breaking that cannot be accounted for by the SM Higgs
doublet or by my effects. p is calculated as in Eq. (10.18) assuming the validity of the SM. In
the presence of pg # 1. Eq. (10.66) generalizes the second Eq. (10.18) while the first remains
unchanged. Provided that the new physics which vields pg # 1 is a small perturbation which

does not significantly affect other radiative corrections. pg can be regarded as a phenomenological
parameter which multiplies Gp in Egs. (10.21) and (10.41), as well as I'z in Eq. (10.60¢). There
are enough data to determine pg, My, my, and ag, simultaneously. From the global fit,

po = 1.00038 4 0.00020 . (10.67a)
as(Mz) = 0.1188 +0.0017 . (10.67h)

A heavy non-degenerate multiplet of fermions or scalars contributes positively to 7" as

—1xa(My)T . (10.74)

Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics,” PETP 2020 (2020) no. 8, 083CO1.
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Custodial Symmetry: Peskin-Takeuchi

* As Peskin and Takeuchi had correctly pointed out,
there are two different ps.

M3 T parameter is defined by p.(0)
p = ——— is called the Veltman p

e A D
M3 cos= Oy p+(0)=14+al

Charged Current

a 1 cos 20 h 0) =
= 5 wnere pPsx =
p=1+ (——S + cos“ 0T + U ) 2 , Neutral Current

cos 26 2 4 sin? @

in the zero-momentum limit.



Custodial Symmetry: Universal Theories

* The electroweak precision parameters S, T, U work properly
only under the obligue assumption: all the corrections from
heavy new physics are in the gauge boson 2-point functions.

* Those UV theories following the oblique assumption are called
Universal Theories.



Custodial Symmeitry: Non-Universal Theories

* Non-Universal Theories do not follow the obligue assumption.

* They have vertex corrections from heavy new physics, which
means that S, T, U are incomplete and problematic.

» Specifically, p«(0) = N is no longer uniquely defined in

a Non-Universal Theory. It depends on the fermion species.



Example: Vector-like Fermions (Non-Universal)

Lov = Lsv + N (i) — MN + E(ilp — M)E — (YN [HN + YpIHE + h.c.) |

* Matching at the leading order, this theory generates

 Tyy0) — Ty(0)
- DTl




Our approach toward a resolution  _———

N/
%

Define custodial symmetry in the UV
+ Custodial Basis of SMEFT @ dim-6
* Map onto observables @ tree level

Find the correlations between them

N
0’0

when custodial symmetry is imposed

* Construct a generalization to the T



Custodial Symmeiry in the UV

“ UV physics is custodial symmetric when there is a
global SU(2), symmetry preserved, in the limit g, — 0,
by all UV interactions with the Higgs sector of the SM.

+ The breakings of custodial SU(2), by UV interactions:
1. “Soft”: vanish in the limit g, — 0

2. “Hard”: persist in the limit g; — O



Custodial Basis of 1SMEFT

* Warsaw Basis of dim-6 SMEFT, with right-handed neutrinos
included, extended to manifest SU(2); X SU(2), symmetry.

» Writing 2 = (I:I H ), the Higgs (2, 2) bifundamental scalar.

« Example: Two operators with hard custodial breaking (Tg).

0
Cup Oup — ayp Oyp = agp lT” (ZTZ’DﬂZTg)]

C(l) Q(l) (1) 0(1) = agl) lTr (ZTZDIMETI%) (l_}’”l)]
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2:H" 3: H*D? 5:vwH? + h.c.

Custodial Basis of I/SMQ% oo on oo DA 1ol | o)

abc n/ av iy bpu/ cl

O | e Warwhews - “
- Based Oon the WarsaW 4: X°H? 6: v XH + h.c. }:m - 7 GUH?D
B o f d 6 SMEFT Onc tr (X7X) G, G+ Opy | (0" ToSPLlR)WE, 0% tr (XD, Y1) (Iy*1)
ds1s O 11m- One | tr(Z'x) Gl Ofy | (I6""SPzlr)B,, | Oin tr (X77%iD, %) (Iy"7°1)
Onw | tr(XTX) Wi, wer O | (qo"'T*SPiqr)Ga, | OY) tr (XD, Y75) (§v"4q)
* Includes right-handed O | w @D T 0L | @ rsrawi | 0f) | e @
: Onp tr (S1%) B, B* 0%, | (30"'Psqr)Bu i‘ O | tr(ztiD,xr}) (zm“mln)
neutrinos (1/ SMEFT) 5 tr (z*z) E’u,,B’“’ i Orty | tr (B1iDuvrf) (Iny*7hPaln)
Omws | o ( 5 we e | ; ONE | tr (zfztD,, wry) (amy” Pear)
* The red operators violate | Ot | (a0, (amriPaan) |

. : 8: (RR)(RR) 8: (LL)(RR)

custodial symmetry with ,‘ oot ) Ofy | (P

: ol | (¢va)@r"a) O0i7. | UrwPilr)imy"P-lr) O, (Iul) (@Y Prar)

hard breaklngs 0% | (@ a)(@"7"0)  Otpan | (@rvuPrar)(@ry" Piar) O, (77.9)(IrY" P+lg)

o (Iyul)(@r*q) Oudn | (@rYuPrar)(@e7"Poar)  Olgn (G7.9)(qrY" Piqr)

* The operators Circled by O | ureh)(@*r°q)  OSad | (@rvumhar)@ry'tihar)  Olan | (@wTq)(@ry"T* Piqr)

O,( ;lz): (lrYu P+lr)(qrY" P1qr)
purple are relevant to us 0% | (T Prtm P )
11 O™ | (leyuTiilr) (@rY* T Pyar)




Observables

- 74 A 2 A 2 A A A
{aa GFa Mz} {M ’ FZI/LDL’ FZeLéL’ FZeé}
* Taken as our SM inputs | * Predicted observables by the inputs

+ Use them to calculate + (Calculated in SMEFT @ tree level

other observables o Compare the predictions to

experiments

i



How are these observables measured?

. 2 o~ 2 A 2 A A A
{a’ GF’ MZ} {M ? FZIJLDL’ FZQLéL’ FZ@é}
* & — electron 2= 2 - %V et O |
A = | « 3 FZI/LDL e I—‘Z 7 Iﬂle = Fqu
« G — muon lifetime
FZQLéL and FZEé

AV
» M2 —LEP > i o
- (FZeLéL i rZeé) and A%
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Mapping SMEFT onto the observables

12 A A 1—‘SMEF T
We swap out My, for the Veltman p Foip— e
1ﬂSM
N v? 2¢cy 3 1
p=1+ o 283 (s_g AQHWRB — a%?) + 583 a9 — 203 agp| .
o 1aa2|] (1)
FZvyvp = I+ 5012— 20HD+20H1 ;
, -
X v 2c 1
FZepe;, = 1+ C%O 48(3 (s_: CHWB — agg) + 5 a2 —2agp — 229 agg ;
. ’02 - 2(39 (3) 1
TZee = 1 —2|—agwB —ay; | —sa12+2aHp
C29 Sg 2

C 20 ( ()+ _ ()- _ 3+, (3)-
"2 (aHlR ~ Al T AHI, +aHlR)
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Constructing

°J, to replace the T parameter

# UV theories with custodial symmetry have a correlation
among these observables:

- L 1 -
(P =1+ (zz, = D) = 502z, = 1) = 0
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Constructing

°7, to replace the T parameter

# UV theories violate custodial symmetry yield an expression
with these observables:

(P = D)+ Py, = 1) = —Cop (P, = 1) = = 202 ffap) =)

* Bventually, from these correlated observables we constructed
our generalizaion to the Peskin-Takeuchi T parameter.

2 captures hard CV from both obligue and vertex corrections.
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Example 1: Real Triplet Scalar (Universal)

1 | | |
Luv = Lsm + 5 (D"6") (Do) - —M% ¢ — AH't"Ho" — k|H|?¢" 0" — Ay (0 0")?.

* Matching @ the leading order, this theory generates

2
ayn Oup = ayp lTr (ZTiDﬂng)l

ar = EszHD eV 0,

% ] works equivalently to the T parameter for Universal Theories.

7%



Example 2: Vector-like Fermions (Non-Universal)

Loy = Lsm + N(ilD) — M)N + E(il) — M)E — (YN [HN + Yp HE + h.c.) |

* Matching @ the leading order, this theory generates

agl) 01(111) = al(;l) lTr (ZTiDﬂZTI%) (l_}//"l)] , while aygp =0

* /) works with Non-Universal Theories while T fails.
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Constraints on custodial violating UV physics

* Constraints depend on the largest uncertainty with
respect to the measurements of the observables.

a./i;=@—-1+ 5(’” R 7

+ Due to the uncertainty on the Z boson partial decay
width to left-handed electrons, the constraints on

custodial violating UV physics is expected to be
different.

19



Take Home Messages

Veltman p is NOT an indicator of custodial violation.

Peskin-Takeuchi 7" parameter works as an indicator of
custodial violation only when the BSM physics is obligue.

We have generalized the " parameter into

Er 2 13l 2 1

which is constructed from well-measured observables.

At tree level, it captures custodial violation of both
Universal and Non-Universal Theories. [ .' vl |

20




