Tom Tong University of Amsterdam University of Oregon **HEFT 2021**

Custodial Symmetry Beyond The Obligue

arXiv: 2009.10725 with Graham Kribs, Xiaochuan Lu, Adam Martin

Custodial Symmetry

The Higgs potential is invariant under

$SO(4) \sim SU(2)_L \times SU(2)_R \longrightarrow SO(3) \checkmark SU(2)_V$

- from electroweak precision measurements.
- context of SMEFT @ dim-6.

* UV theories that violate custodial symmetry are generally believed to be severely constrained ($\Lambda \gtrsim 10$ TeV) by data

* We are interested in the robustness of this result in the

Is BSM physics custodial symmetric?

 $\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1 + \alpha T \sim 1$

31

10. Electroweak Model and Constraints on New Physics

The dominant effect of many extensions of the SM can be described by the ρ_0 parameter,

$$\rho_0 \equiv \frac{M_W^2}{M_Z^2 \, \hat{c}_Z^2 \, \hat{\rho}} \,, \qquad (10.66)$$

which describes new sources of SU(2) breaking that cannot be accounted for by the SM Higgs doublet or by m_t effects. $\hat{\rho}$ is calculated as in Eq. (10.18) assuming the validity of the SM. In the presence of $\rho_0 \neq 1$, Eq. (10.66) generalizes the second Eq. (10.18) while the first remains unchanged. Provided that the new physics which yields $\rho_0 \neq 1$ is a small perturbation which does not significantly affect other radiative corrections, ρ_0 can be regarded as a phenomenological parameter which multiplies G_F in Eqs. (10.21) and (10.41), as well as Γ_Z in Eq. (10.60c). There are enough data to determine ρ_0 , M_H , m_t , and α_s , simultaneously. From the global fit,

$$\rho_0 = 1.00038 \pm 0.00020 \,, \tag{10.67a}$$

$$\alpha_s(M_Z) = 0.1188 \pm 0.0017$$
, (10.67b)

A heavy non-degenerate multiplet of fermions or scalars contributes positively to T as

$$p_0 - 1 = \frac{1}{1 - \widehat{\alpha}(M_Z)T} - 1 \approx \widehat{\alpha}(M_Z)T , \qquad (10.74)$$

Particle Data Group Collaboration, P. Zyla et al., "Review of Particle Physics," PETP 2020 (2020) no. 8, 083C01.

Custodial Symmetry: Peskin-Takeuchi

there are two different ρ s.

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W}$$

is called the Veltman ρ

$$\rho = 1 + \frac{\alpha}{\cos 2\theta} \left(-\frac{1}{2}S + \cos^2 \theta T + \frac{\cos^2 \theta}{4\sin^2 \theta} \right)$$

As Peskin and Takeuchi had correctly pointed out,

Custodial Symmetry: Universal Theories

* The electroweak precision parameters *S*, *T*, *U* work properly only under the *oblique assumption*: all the corrections from heavy new physics are in the gauge boson 2-point functions.

* Those UV theories following the *oblique assumption* are called Universal Theories.

Custodial Symmetry: Non-Universal Theories

- * Non-Universal Theories do not follow the *oblique assumption*.
- * They have **vertex corrections** from heavy new physics, which means that *S*, *T*, *U* are incomplete and problematic.

W,Z

* Specifically, $\rho_*(0) = \frac{CC}{NC}$ is no longer uniquely defined in a Non-Universal Theory. It depends on the fermion species.

Example: Vector-like Fermions (Non-Universal)

 $\mathcal{L}_{\rm UV} = \mathcal{L}_{\rm SM} + \bar{N}(i\not\!\!D - M)N + \bar{E}(i\not\!\!D - M)E - \left(Y_N\,\bar{l}\bar{H}N + Y_E\,\bar{l}HE + \text{h.c.}\right)\,.$

* Matching at the leading order, this theory generates

 $\frac{\Pi_{WW}(0) - \Pi_{33}(0)}{M_W^2} = 0$

Our approach toward a resolution

- * Define custodial symmetry in the UV
- * Custodial Basis of SMEFT @ dim-6
- * Map onto observables @ tree level
- * Find the correlations between them when custodial symmetry is imposed
- * Construct a generalization to the T

SNE

Custodial Symmetry in the UV

1. "Soft": vanish in the limit $g_1 \rightarrow 0$ 2. "Hard": persist in the limit $g_1 \rightarrow 0$

* UV physics is custodial symmetric when there is a global $SU(2)_R$ symmetry preserved, in the limit $g_1 \rightarrow 0$, by all UV interactions with the Higgs sector of the SM.

- * The breakings of custodial $SU(2)_R$ by UV interactions:

Custodial Basis of ν SMEFT

- Warsaw Basis of dim-6 SMEFT, with right-handed neutrinos included, extended to manifest $SU(2)_L \times SU(2)_R$ symmetry.
- * Writing $\Sigma = (\tilde{H} H)$, the Higgs (2, 2) bifundamental scalar.
- * Example: Two operators with hard custodial breaking (τ_R^3) . $C_{HD} Q_{HD} \longrightarrow a_{HD} O_{HD} = a_{HD} \left[Tr \left(\Sigma^{\dagger} i D_{\mu} \Sigma \tau_{R}^{3} \right) \right]^{2}$

 $C_{Hl}^{(1)} Q_{Hl}^{(1)} \longrightarrow a_{Hl}^{(1)} O_{Hl}^{(1)} =$

$$a_{Hl}^{(1)} \left[Tr \left(\Sigma^{\dagger} i D_{\mu} \Sigma \tau_R^3 \right) \left(\bar{l} \gamma^{\mu} l \right) \right]$$

Custodial Basis of ν SN

- Based on the Warsaw
 Basis of dim-6 SMEFT
- Includes right-handed
 neutrinos (vSMEFT)
- The red operators violate custodial symmetry with hard breakings
- The operators circled by purple are relevant to us

 $O_{\overline{G}}$ O_W $O_{\widetilde{W}}$

> O_{HG} $O_{H\bar{G}}$

 O_{HW}

 $O_{H\widetilde{W}}$

 O_{HB}

 $O_{H\bar{B}}$ O_{HWB}

 $O_{H\widetilde{W}H}$

 O_l $O_q^{(1)}$ $O_q^{(2)}$ $O_{lq}^{(2)}$ $O_{lq}^{(3)}$

	$1: X^{3}$	$2: H^{6}$				$5:\bar{\psi}\psi H^3+1$				
$f^{ABC}C^{A u}_{\mu}C^{B ho}G^{C\mu}_{ ho} = O_H$		$O_H = [\operatorname{tr}(\Sigma $	$\left[\operatorname{tr} \left(\Sigma^{\dagger} \Sigma \right) \right]^{3}$		$\left[\operatorname{tr}\left(\Sigma^{\dagger}iD_{\mu}\Sigma\right)\right]$		2 O	± lH	$\operatorname{tr}(\Sigma^{\dagger}\Sigma)$	\overline{l}
<u>,</u> "	$^{\scriptscriptstyle BC} {\check G}^{A u}_\mu G^{\scriptscriptstyle B ho}_ u G^{\scriptscriptstyle C\mu}_ ho G^{\scriptscriptstyle C\mu}_ ho$	·		O_{HD}	$[tr (\Sigma^{\dagger})]$	$iD_{\mu}\Sigma\tau_{R}^{3}$	$\Big]^2 = O$	$\frac{\pm}{qH}$	$\operatorname{tr}(\Sigma^{\dagger}\Sigma)($	ą
ϵ^{\prime}	$^{abc}W^{a u}_{\mu}W^{b ho}_{ u}W^{c\mu}_{ ho}$									
$\epsilon^{abc}\widetilde{W}^{a\nu}_{\mu}W^{b\rho}_{\nu}W^{c\mu}_{\rho}$										
	$4: X^2 H^2$		$6: \bar{\psi}\psi XH + \text{h.c.}$			$7:ar{\psi}\psi H^2 D$				
!	$\operatorname{tr}\left(\Sigma^{\dagger}\Sigma\right)G^{A}_{\mu\nu}G^{A}$	$^{\mu\nu} O_{lW}^{\pm}$	$(\bar{l}\sigma^{\mu\nu}\tau^a\Sigma P_{\pm}l_R)W^a_{\mu\nu}$			$O_{Hl}^{(1)}$	t	$\operatorname{tr}\left(\Sigma^{\dagger}iD_{\mu}\Sigma\tau_{R}^{3}\right)\left(\overline{l}\right)$		
	$\operatorname{tr}\left(\Sigma^{\dagger}\Sigma\right)\widetilde{G}^{A}_{\mu\nu}G^{A}$	$^{\mu\nu}$ O_{lB}^{\pm}	$(\bar{l}\sigma^{\mu\nu}\Sigma P_{\mp}l_R)B_{\mu\nu}$			$O_{Hl}^{(3)}$	$\operatorname{tr}\left(\Sigma^{\dagger}\tau^{a}iD_{\mu}\Sigma\right)\left(\bar{l}\gamma\right.$			γ
,	$\operatorname{tr}\left(\Sigma^{\dagger}\Sigma\right)W^{a}_{\mu u}W^{a}$	$_{\mu\nu} O_{qG}^{\pm}$	$(\bar{q}\sigma^{\mu\nu}T^A\Sigma P_{\pm}q_R)G^A_{\mu\nu}$			$O_{Hq}^{(1)}$	$\operatorname{tr}\left(\Sigma^{\dagger}iD_{\mu}\Sigma\tau_{R}^{3} ight)$ (6)			\bar{q}
F	$\operatorname{tr}\left(\Sigma^{\dagger}\Sigma\right)\widetilde{W}^{a}_{\mu u}W^{a}$	$(\bar{q}\sigma^{\mu\nu}\tau^a\Sigma P_{\pm}q_R)W^a_{\mu\nu}$			$O_{Hq}^{(3)}$	$\operatorname{tr}\left(\Sigma^{\dagger}\tau^{a}iD_{\mu}\Sigma\right)\left(\bar{q}\gamma\right)$			γ	
	$\operatorname{tr}\left(\Sigma^{\dagger}\Sigma\right)B_{\mu\nu}B^{\mu}$	$(\bar{q}\sigma^{\mu\nu}\Sigma P_{\mp}q_R)B_{\mu\nu}$			$O_{Hl_R}^{(1)\pm}$	${ m tr}\left(\Sigma^{\dagger}iD_{\mu}\Sigma au_{R}^{3} ight)\left(ar{l}_{R}\gamma ight)$			γ′	
	$\operatorname{tr}\left(\Sigma^{\dagger}\Sigma\right)\widetilde{B}_{\mu\nu}B^{\mu\nu}$						$\operatorname{tr}\left(\Sigma^{\dagger}iD_{\mu}\Sigma\tau_{R}^{a}\right)\left(\bar{l}_{R}\gamma^{\mu}\right)$			1
в	$\operatorname{tr}\left(\Sigma^{\dagger}\tau^{a}\Sigma\tau_{R}^{3}\right)W_{\mu\nu}^{a}$				$O_{Hq_R}^{(1)\pm}$	$\operatorname{tr}\left(\Sigma^{\dagger}iD_{\mu}\Sigma\tau_{R}^{3} ight)\left(ar{q}_{R}\gamma^{\prime}$				
$_{\rm B} {\rm tr} \left(\Sigma^{\dagger} \tau^a \Sigma \tau_R^3 \right) \widetilde{W}^a_{\mu\nu} B^{\mu\nu}$						$O_{Hq_R}^{(3)\pm}$	$\operatorname{tr}\left(\Sigma^{\dagger}iD_{\mu}\Sigma\tau_{R}^{a}\right)\left(\bar{q}_{R}\gamma^{\mu}\right)$			4
	$8:(\bar{L}L)(\bar{L}L)$		$8:(ar{R}R)(ar{R}R)$				8	8 : (1	$(\bar{L}L)(\bar{R}R)$	
и	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$ $O_{l_{R}l_{R}}^{\pm\pm}$		$(\bar{l}_R \gamma_\mu P_\pm l_R) (\bar{l}_R \gamma^\mu P_\pm l_R)$			O_{ll}^{\pm}		$(\bar{l}\gamma_{\mu}l)(\bar{l}_{R}\gamma^{\mu}P_{\pm})$		
$\frac{1}{q}$	$(\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q)$	$O^{+-}_{l_R l_R}$	$(\bar{l}_R \gamma_\mu$	$(P_+l_R)(\bar{l}_R)$	$\gamma^{\mu}P_{-}l_{R}$	O_{lq}^{\pm}	: IR	$(\bar{l}\gamma_{\mu}l)(\bar{q}_{R}\gamma^{\mu}l)$		F
3) q	$(\bar{q}\gamma_{\mu}\tau^{a}q)(\bar{q}\gamma^{\mu}\tau^{a}q)$	$O_{q_Rq_R}^{(1)\pm\pm}$	$(\bar{q}_R \gamma_\mu$	$P_{\pm}q_R)(\bar{q}_R\gamma^{\mu}P_{\pm}q_R)$		O_{qi}^{\pm}		$(\bar{q}\gamma_{\mu}q)(\bar{l}_{R}\gamma^{\mu}P_{\pm})$		
$q^{(1)}$	$(\bar{l}\gamma_{\mu}l)(\bar{q}\gamma^{\mu}q)$	$O_{q_R q_R}^{(1)+-}$	$(ar{q}_R\gamma_\mu$	$P_+q_R)(\bar{q}_R\gamma^\mu Pq_R)$		$O_{qq}^{(1)}$	$)\pm I_R$	$(\bar{q}\gamma_{\mu}q)(\bar{q}_{R}\gamma^{\mu}P_{\pm})$		
3) q	$(\bar{l}\gamma_{\mu}\tau^{a}l)(\bar{q}\gamma^{\mu}\tau^{a}q)$	$O_{q_R q_R}^{(3)++}$	$(ar{q}_R\gamma_\mu$	$_{\mu} au_{R}^{a}q_{R})(ar{q}_{R})$	$_R\gamma^\mu au^a_R q_R$	$) \qquad O_{qq}^{(8)}$	$\frac{1}{q} \frac{1}{q}$	$(\bar{q}\gamma_{\mu}T^{A}q)(\bar{q}_{R}\gamma^{\mu}T^{A}q)$		A
		$O_{l_R q_R}^{(1)\pm\pm}$	$(ar{l}_R\gamma_\mu$	$P_{\pm}l_R)(\bar{q}_R$)					
		$O_{l_R q_R}^{(1)\pm\mp}$	$(\bar{l}_R \gamma_\mu P_\pm l_R) (\bar{q}_R \gamma^\mu P_\mp q_R)$							
	11	$O_{l_{D}q_{D}}^{(3)+\pm}$	$(\bar{l}_R \gamma_\mu \tau$	$(\bar{q}_R l_R)(\bar{q}_R \gamma)$	$^{\mu}\tau^{a}_{R}P_{\pm}q_{I}$	R)				

 $\{\hat{\alpha}, \hat{G}_F, \hat{M}_Z^2\}$

* Taken as our SM inputs * Use them to calculate other observables

Observables

 $\left\{\hat{M}_{W}^{2}, \hat{\Gamma}_{Z\nu_{L}\bar{\nu}_{L}}, \hat{\Gamma}_{Ze_{L}\bar{e}_{L}}, \hat{\Gamma}_{Ze\bar{e}}\right\}$

Predicted observables by the inputs Calculated in SMEFT @ tree level Compare the predictions to experiments

How are these observables measured?

 $\{\hat{\alpha}, \hat{G}_F, \hat{M}_Z^2\}$

* $\hat{\alpha}$ — electron g - 2

* \hat{G}_F — muon lifetime

* \hat{M}_7^2 — LEP

 $\left\{\hat{M}_{W}^{2},\hat{\Gamma}_{Z\nu_{L}\bar{\nu}_{L}},\hat{\Gamma}_{Ze_{L}\bar{e}_{L}},\hat{\Gamma}_{Ze\bar{e}}\right\}$

* $3\hat{\Gamma}_{Z\nu_I\nu_I} = \hat{\Gamma}_Z - \hat{\Gamma}_{Zll} - \hat{\Gamma}_{Zqq}$

* $\hat{\Gamma}_{Ze_L\bar{e}_L}$ and $\hat{\Gamma}_{Ze\bar{e}}$

 $-\left(\hat{\Gamma}_{Ze_L\bar{e}_L}+\hat{\Gamma}_{Ze\bar{e}}\right) \text{ and } \hat{A}_{FB}^{0,e}$

Mapping SMEFT onto the observables $\hat{r}_{Zff} = \frac{\Gamma_{SMEFT}}{\Gamma_{SM}}$ We swap out \hat{M}_W^2 for the Veltman $\hat{\rho}$ $_{WB} - a_{Hl}^{(3)} + \frac{1}{2} s_{\theta}^2 a_{12} - 2c_{\theta}^2 a_{HD}$, $+2 a_{Hl}^{(1)}$, $_{WB} - a_{Hl}^{(3)} + \frac{1}{2} a_{12} - 2 a_{HD} - 2c_{2\theta} a_{Hl}^{(1)}$, $_{IWB} - a_{Hl}^{(3)} - \frac{1}{2}a_{12} + 2a_{HD}$ $+ \frac{c_{2\theta}}{s_{\theta}^2} \left(a_{Hl_R}^{(1)+} - a_{Hl_R}^{(1)-} - a_{Hl_R}^{(3)+} + a_{Hl_R}^{(3)-} \right) \right].$

$$\hat{\rho} = 1 + \frac{v^2}{c_{2\theta}} \left[2s_{\theta}^2 \left(\frac{2c_{\theta}}{s_{\theta}} a_{HW} \right) \right]$$

$$\hat{r}_{Z\nu_L\bar{\nu}_L} = 1 + v^2 \left[\frac{1}{2}a_{12} - 2a_{HD}\right]$$

$$\hat{r}_{Ze_L\bar{e}_L} = 1 + \frac{v^2}{c_{2\theta}^2} \left[4s_{\theta}^2 \left(\frac{2c_{\theta}}{s_{\theta}} a_{HW} \right) \right]$$

$$\hat{r}_{Ze\bar{e}} = 1 + \frac{v^2}{c_{2\theta}} \left[-2\left(\frac{2c_\theta}{s_\theta}a_H\right) \right]$$

Constructing $\mathcal{T}_{\mbox{\tiny L}}$ to replace the T parameter

 UV theories with custodia among these observables:

$$(\hat{\rho} - 1) + \frac{1}{2}(\hat{r}_{Z\nu_L\bar{\nu}_L} - 1) - \frac{1}{2}c_{\bar{\nu}_L}$$

* UV theories with custodial symmetry have a correlation

 $c_{2\theta}(\hat{r}_{Ze_I\bar{e}_I}-1)=0$

Constructing $\mathcal{T}_{\mbox{\tiny L}}$ to replace the T parameter

* UV theories violate custodial symmetry yield an *expression* with these observables:

$$(\hat{\rho} - 1) + \frac{1}{2}(\hat{r}_{Z\nu_L\bar{\nu}_L} - 1) - \frac{1}{2}c_{2\theta}(\hat{r}_{Ze_L\bar{e}_L} - 1) = -2v^2 \left[a_{HD} - a_{Hl}^{(1)}\right] = \alpha \mathcal{T}_L$$

* Eventually, from these *correlated observables* we constructed our generalization to the Peskin-Takeuchi *T* parameter.

* \mathcal{T}_{ℓ} captures hard CV from both *oblique* and vertex corrections.

Example 1: Real Triplet Scalar (Universal)

$$\mathcal{L}_{\rm UV} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(D^{\mu} \phi^a \right) \left(D_{\mu} \phi^a \right) - \frac{1}{2} M^2$$

Matching @ the leading order, this theory generates $a_{HD} O_{HD} = a_{HD} \left| Tr \left(\Sigma^{\dagger} i D_{\mu} \Sigma \tau_{R}^{3} \right) \right|^{2}$

 $\alpha T = -\frac{1}{2} v^2 C_{HD} = -2v^2 a_{HD}$

* *J* works equivalently to the *T* parameter for Universal Theories.

 $^{2}\phi^{a}\phi^{a} - AH^{\dagger}t^{a}H\phi^{a} - \kappa|H|^{2}\phi^{a}\phi^{a} - \lambda_{\phi}(\phi^{a}\phi^{a})^{2}.$

 $\alpha \mathcal{T}_{\ell} = -2v^2 \left[a_{HD} - a_{Hl}^{(1)} \right] = 0$ $= -2v^2 a_{HD} = \alpha T$

Example 2: Vector-like Fermions (Non-Universal)

 $\mathcal{L}_{\rm UV} = \mathcal{L}_{\rm SM} + \bar{N}(i\not\!\!D - M)N + \bar{E}(iJ)$

 $\alpha T = -2v^2 a_{HD} = 0$

* \mathcal{T}_{l} works with Non-Universal Theories while *T* fails.

$$\not D - M E - \left(Y_N \, \bar{l} \tilde{H} N + Y_E \, \bar{l} HE + \text{h.c.} \right)$$

Matching @ the leading order, this theory generates $a_{Hl}^{(1)} O_{Hl}^{(1)} = a_{Hl}^{(1)} \left[Tr\left(\Sigma^{\dagger} i D_{\mu} \Sigma \tau_R^3\right) \left(\bar{l} \gamma^{\mu} l\right) \right], \text{ while } a_{HD} = 0$

 $\alpha \mathcal{T}_{\ell} = -2v^2 \left[a_{HD} - a_{Hl}^{(1)} \right]$ $= 2v^2 a_{Hl}^{(1)} \neq 0$

Constraints on custodial violating UV physics

* Constraints depend on the *largest uncertainty* with respect to the measurements of the observables.

$$\alpha \mathcal{T}_{\ell} = (\hat{\rho} - 1) + \frac{1}{2}(\hat{r}_{\ell})$$

Due to the *uncertainty* on the Z boson partial decay width to left-handed electrons, the constraints on custodial violating UV physics is expected to be different.

 $(\hat{r}_{Z\nu_L\bar{\nu}_L} - 1) - \frac{1}{2}c_{2\theta}(\hat{r}_{Ze_L\bar{e}_L} - 1)$

Take Home Messages

- * Veltman ρ is NOT an indicator of custodial violation.
- * Peskin-Takeuchi T parameter works as an indicator of custodial violation only when the BSM physics is oblique.
- * We have generalized the T parameter into

$$\alpha \mathcal{T}_{\ell} = -2v^2 \left[a_{HD} - a_{Hl}^{(1)} \right] = -\frac{1}{2}v^2 \left[C_{HD} + 4C_{Hl}^{(1)} \right]$$

- * At tree level, it captures custodial violation of both Universal and Non-Universal Theories.
- which is constructed from well-measured **observables**.

