

Flavor Symmetries in the SMEFT

$U(3)^5$ and $U(2)^5$ flavor symmetry

Felix Wilsch

University of Zurich

Based on: JHEP 08 (2020) 166, [arXiv:2005.05366] D. A. Faroughy, G. Isidori, FW, K. Yamamoto

HEFT 2021

16. April 2021

Flavor Symmetries in the SMEFT

- General flavor structure of the SMEFT
- (Dis-) Advantages of using flavor symmetries
- Examples of flavor symmetries:
 - $U(3)^5$ symmetry and Minimal Flavor Violation
 - $U(2)^5$ symmetry with minimal breaking
- Parameter counting and operator classification
- Application to LHC searches at high- p_T

General Flavor Structure in the SMEFT

Operators

- Warsaw basis dimension-six
- Electroweak structures: 59
 - 19 fermion bilinears
 - 25 fermion quadrilinears
- Free parameters in the SMEFT:
 - 1 generation general:

Flavor 76 = 53 + 23

 - 3 generations — general:
 → 2499 = 1350 + 1149 Alonso et al. [arXiv:1312.2014]

- 3 generations $U(3)^5$: 47 = 41 + 6
- ➡ Significant reduction of parameters

	5–7: Fermion Bilinears														
			non-her	mitian $(\bar{L}R)$											
5:	$\psi^2 H^3$ + h.c.			6: $\psi^2 X H$ + h.c.											
Q_{eH}	$(H^\dagger H)(\bar{\ell}_p e_r H)$	$Q_{eW} = (ar{\ell}_p \sigma^\mu)$	$^{\mu\nu}e_r)\tau^I HW^I_{\mu\nu}$	Q_{uG} $(\bar{q}_{pd}$	$(\mu^{\mu\nu}T^A u_r)\tilde{H}G^A_{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$								
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	Q_{eB} $(\bar{\ell}_p d$	$\sigma^{\mu\nu}e_r)HB_{\mu\nu}$	Q_{uW} (\bar{q}_p)	$(\tau^{\mu u}u_r) au^I \tilde{H} W^I_{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$								
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$			Q_{uB} ($ar{q}$	$_{p}\sigma^{\mu u}u_{r})\tilde{H}B_{\mu u}$	Q_{dB} $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$									
		h	ermitian (+ Q	$_{Hud})$ ~	7: $\psi^2 H^2 D$										
	$(\bar{L}L)$)	(1	$\bar{R}R$)		$(\bar{R}R')$									
	$Q_{H\ell}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu})$	$_{\mu}H)(\bar{\ell}_{p}\gamma^{\mu}\ell_{r})$	Q_{He} $(H^{\dagger}i)$	$\overrightarrow{D}_{\mu}H)(\bar{e}_p\gamma^{\mu}e$	$_r) Q_{Hud} + h.c$	e. $i(\tilde{H}$	$^{\dagger}D_{\mu}H)(ar{u}_{p}\gamma^{\mu}d_{r})$								
	$Q^{(3)}_{H\ell} = (H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu})$	$H)(\bar{\ell}_p \tau^I \gamma^\mu \ell_r)$	Q_{Hu} $(H^{\dagger}i^{\dagger})$	$\overrightarrow{D}_{\mu}H)(\overline{u}_{p}\gamma^{\mu}u$	<i>r</i>)										
	$Q_{Hq}^{(1)} = (H^{\dagger}i\overleftrightarrow{D}_{\mu})$	$(\bar{q}_p \gamma^\mu q_r)$	Q_{Hd} $(H^{\dagger}i^{\dagger})$	$\overrightarrow{D}_{\mu}H)(\overline{d}_{p}\gamma^{\mu}d$	r)										
	$Q^{(3)}_{Hq} = (H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu})$	$H)(\bar{q}_p \tau^I \gamma^\mu q_r)$													

\square	8: Fermion Quadrilinears															
	hermitian															
	$(\bar{L}L)(\bar{L}L)$ (1)								$(\bar{R}R)$				$(\bar{L}L)(\bar{R}R)$			
Q	ee	[a]	$(\bar{\ell}_p \gamma_\mu \ell_r)$	$(\bar{\ell}_s \gamma^\mu \ell_t)$	Q_{ee}	$[a_2]$		$(\bar{e}_p \gamma_\mu e_r$	$)(\bar{e}_s\gamma)$	$^{\mu}e_{t})$	$Q_{\ell e}$	[a]	$(\bar{\ell}_p\gamma_\mu\ell_r)(\bar{e}_s\gamma^\mu e_t)$			
Q	$Q_{qq}^{(1)}$	[a]	$(ar{q}_p \gamma_\mu q_r)$	$(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$[a_1]$	($(\bar{u}_p \gamma_\mu u_r)$	$)(\bar{u}_s\gamma$	$^{\mu}u_t)$	$Q_{\ell u}$	[b]	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{u}_s \gamma^\mu u_t)$			
Q	$Q_{qq}^{(3)}$	[a]	$(\bar{q}_p \gamma_\mu \tau^I q_r)$	$(ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$[a_1]$	($(\bar{d}_p \gamma_\mu d_r$	$)(\bar{d}_s\gamma$	$^{\mu}d_{t})$	$Q_{\ell d}$	[b]	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{d}_s \gamma^\mu d_t)$			
Q	$\ell_{\ell q}^{(1)}$	[b]	$(ar{\ell}_p \gamma_\mu \ell_r) (ar{q}_s \gamma^\mu q_t) \qquad Q_{eu} [b]$					$(\bar{e}_p \gamma_\mu e_r)$	$)(ar{u}_s\gamma)$	$^{\mu}u_{t})$	Q_{qe}	[b]	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$			
Q	$Q_{\ell q}^{(3)} [b] (\bar{\ell}_p \gamma_\mu \tau^I \ell_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$					[b]		$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$			$Q_{qu}^{(1)}$	[a]	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$			
					$Q_{ud}^{(1)}$	[b]	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$			$^{\mu}d_{t})$	$Q_{qu}^{(8)}$	[a]	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_s)$	$\iota_t)$		
					$Q_{ud}^{(8)}$	[b]	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) = 0$			$Q_{qd}^{(1)}$	[a]	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$				
											$Q_{qd}^{(8)}$	[a]	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_s)$	$l_t)$		
							nor	n-hermi	tian							
				$(\bar{L}R)$	$(\bar{R}L)$ +	h.c.			(\bar{L})	$R)(\bar{L}R)$ -	+ h.c.					
] $(\bar{\ell}_p^j \epsilon$	$(\bar{d}_s q)$	(t_j)	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u$	$(l_r)\epsilon_{jk}(\bar{q})$	$\bar{l}_s^k d_t$)						
								$Q_{quqd}^{(8)}$	[b]	$(\bar{q}_p^j T^A \imath$	$(\iota_r)\epsilon_{jk}(\bar{q})$	$\bar{q}_s^k T^A d$	$l_t)$			
								$Q_{\ell equ}^{(1)}$	[a]	$(ar{\ell}_p^j\epsilon)$	$(\bar{q}_r)\epsilon_{jk}(\bar{q})$	$s_s^k u_t)$				
								$Q^{(3)}_{\ell equ}$	[a]	$(\bar{\ell}_p^j \sigma_{\mu\nu} \epsilon$	$\epsilon_r)\epsilon_{jk}(\bar{q}$	$s^k \sigma^{\mu\nu} i$	(ι_t)			

Absence of Flavor Symmetries

Difficulties without flavor symmetries

- Number of free parameters: 2499
- In natural EFT all couplings are expected to be of the same scale
 - Bounds on light generations \Rightarrow NP scale pushed up to $\mathcal{O}(10^5 \text{ TeV})$ Isidori et al. [arXiv:1002.0900]
 - Hierarchy problem for the Higgs mass
 - Most of SMEFT operators irrelevant in current experiments
- But: flavor is highly non-generic in the SM
 - SM is completely flavor universal & conserving except for the Yukawas
 - Yukawa couplings: $y_e \sim \mathcal{O}(10^{-6}) y_t \sim \mathcal{O}(1)$
- Motivated and natural to apply some flavor symmetry assumptions

Flavor Symmetries

Motivation

• Flavor symmetries can significantly lowering overall cutoff scale

 \Rightarrow diminishing the hierarchy problem

- Significant reduction of the number of free/relevant parameters
- Increase consistency of EFT with bounds on flavor conserving or violating processes
- Employing flavor symmetries introduces some model dependence
- The chosen flavor symmetries should:
 - Respect the structure of the SM Yukawas
 - Suppress non-standard contributions to flavor-violating observables
- Flavor symmetries can be accidental symmetries (not necessarily fundamental)

$U(3)^5$ Symmetry

Minimal Flavor Violation

• Maximal symmetry group compatible with SM gauge group and fields

 $U(3)^5 = U(3)_{\ell} \otimes U(3)_e \otimes U(3)_q \otimes U(3)_u \otimes U(3)_d$

- Most restrictive choice to suppress non-standard contributions to flavor violating processes
- Exact symmetry of SM gauge sector, but broken by Yukawas Y_e, Y_u, Y_d :

$$\mathscr{L}_{\text{Yuk.}} = \bar{\ell} Y_e eH + \bar{q} Y_u uH_c + \bar{q} Y_d dH + \text{h.c.}$$

• Minimal Flavor Violation (MFV):

Chivukula et al. [Phys. Lett. B 188 (1987) 99] D`Ambrosio et al. [hep-ph/0207036]

- SM Yukawas as the only source of $U(3)^5$ breaking
- Spurion analysis with Yukawas as spurions: $Y_e = (3,\overline{3},1,1,1), \quad Y_u = (1,1,3,\overline{3},1), \quad Y_d = (1,1,3,1,\overline{3})$

Parameter counting for MFV

Number of free parameters:

No symmetry – $U(3)^5$ with MFV

		No symmetry				$U(3)^5$						
Class	Operators	3 Gen.		16	len.	Exa	act	$\mathcal{O}(Y)$	$\binom{1}{e,d,u}$	$\mathcal{O}(Y)$	$\left(Y_{e}^{1},Y_{d}^{1}Y_{u}^{2} ight) ight)$	
1–4	$X^3, H^6, H^4 D^2, X^2 H^2$	9	6	9	6	9	6	9	6	9	6	
5	$\psi^2 H^3$	27	27	3	3	-	_	3	3	4	4	
6	$\psi^2 X H$	72	72	8	8	—	_	8	8	11	11	
7	$\psi^2 H^2 D$	51	30	8	1	7	—	7	—	11	1	
	$(\bar{L}L)(\bar{L}L)$	171	126	5	—	8	_	8	_	14	_	
	$(ar{R}R)(ar{R}R)$	255	195	7	-	9	—	9	_	14	_	
8	$(ar{L}L)(ar{R}R)$	360	288	8	-	8	_	8	_	18	_	
	$(ar{L}R)(ar{R}L)$	81	81	1	1	-	_	—	_	_	_	
	$(ar{L}R)(ar{L}R)$	324	324	4	4	—	—	—	—	4	4	
	total:	(1350)	(1149)	53	23	41	6	52	17	85	26	

Table 1: Number of independent operators in $U(3)^5$, MFV and without symmetry. In each column the left(right) number corresponds to the number of CP-even (CP-odd) coefficients. $\mathcal{O}(X^n)$ stands for including termsup to $\mathcal{O}(X^n)$.CP-evenCP-odd

 \Rightarrow Significant reduction of the number of free parameters in the MFV case

Minimal Flavor Violation

Features

- All flavor non-universality and flavor-violation linked to Yukawas
- Magnitude of flavor-violation:
 - In quarks sector completely controlled by CKM \Rightarrow normalized to SM size
 - In leptons sector forbidden
- ➡ Very strong UV assumption
- Top quark Yukawa $y_t \sim \mathcal{O}(1)$, or more precisely $\left[Y_u Y_u^{\dagger}\right]_{33}, \left[Y_u^{\dagger} Y_u\right]_{33} \sim \mathcal{O}(1)$
 - Y_u contains an $\mathcal{O}(1)$ breaking term
 - No clear power counting for the spurions
- Insertion of an arbitrary power of y_t triggers the breaking

$$U(3)_q \otimes U(3)_u \xrightarrow{y_t} U(2)_q \otimes U(2)_u \otimes U(1)_{q_L^3 + t_R}$$

• Assuming $y_{t,b,\tau} \sim \mathcal{O}(1)$ yields breaking: $U(3)^5 \rightarrow U(2)^5$

HEFT 2021: Flavor symmetries in the SMEFT – F. Wilsch

$U(2)^5$ Symmetry

The symmetry group

Barbieri et al. [arXiv: 1105.2296, 1203.4218] Blankenburg et al. [arXiv:1204.0688]

• $U(2)^5$ symmetry acting on light generations

 $U(2)^5 = U(2)_L \otimes U(2)_E \otimes U(2)_Q \otimes U(2)_U \otimes U(2)_D$

- 1st and 2nd generation fields transform as doublets L, E, Q, U, D
- 3rd generation fields transform as singlets $\ell_3, e_3, q_3, u_3, d_3$
- Allows for much richer structure of 3rd generation dynamics
 - Motivated assumption in many UV models
- MFV-like structure (for light generations)
 - Protection of non-standard flavor-violation in the quark sector
 - Helicity suppression of right-handed mixing
- Efficient framework for analyzing the recent evidence for LFUV from B-anomalies Fuentes-Martín et al. [arXiv:1909.02519]

$U(2)^5$ Symmetry

Spurions — Minimal breaking pattern

• 5 spurions:

$$\begin{array}{ll} V_{\ell} \sim (2,1,1,1,1), & V_q \sim (1,1,2,1,1) \\ \Delta_e \sim (2,\bar{2},1,1,1), & \Delta_u \sim (1,1,2,\bar{2},1), & \Delta_d \sim (1,1,2,1,\bar{2}) \end{array}$$

• Parametrization in *interaction basis* (using residual $U(2)^5$ invariance, no alignment enforced)

$$V_{\ell,q} = e^{i\bar{\phi}_{\ell,q}} \begin{pmatrix} 0\\ \epsilon_{\ell,q} \end{pmatrix} , \quad \Delta_e = O_e^{\mathrm{T}} \begin{pmatrix} \delta'_e & 0\\ 0 & \delta_e \end{pmatrix} , \quad \Delta_{u,d} = U_{u,d}^{\dagger} \begin{pmatrix} \delta'_{u,d} & 0\\ 0 & \delta_{u,d} \end{pmatrix}$$

 $(\bar{\phi}_{\ell,q}: \text{phase}, O_e: \text{Orthogonal } 2 \times 2 - \text{matrix}, U_{u,d}: \text{unitary } 2 \times 2 - \text{matrix})$

Yukawa matrices

$$Y_{u} = y_{t} \begin{pmatrix} \Delta_{u} & x_{t} V_{q} \\ 0 & 1 \end{pmatrix}^{U(2)_{Q}}, \quad Y_{d} = y_{b} \begin{pmatrix} \Delta_{d} & x_{b} V_{q} \\ 0 & 1 \end{pmatrix}^{U(2)_{Q}}, \quad Y_{e} = y_{\tau} \begin{pmatrix} \Delta_{e} & x_{\tau} V_{\ell} \\ 0 & 1 \end{pmatrix}^{U(2)_{L}}$$

- Hierarchy from Yukawas: $1 \gg \epsilon_i \gg \delta_i \gg \delta'_i > 0$ $\epsilon_i = \mathcal{O}(10^{-1}), \quad \delta_i = \mathcal{O}(10^{-2}), \quad \delta'_i = \mathcal{O}(10^{-3})$
 - Similar protection of flavor-violating processes as in MFV case

HEFT 2021: Flavor symmetries in the SMEFT – F. Wilsch

$U(2)^5$ in the SMEFT $% U(2)^5$

Basis

- Construction of a basis respecting the $U(2)^5$ flavor symmetry up to $\mathcal{O}(V^3, \Delta^1 V^1) \sim \mathcal{O}(10^{-3})$
- Classify operators according to field content and chiral structure

Fermion Bilinears

$$(\bar{L}L) - \Sigma_{LL}^{pr} \left(\bar{\ell}_{p} \Gamma \ell_{r}\right) \quad \text{with} \quad \Sigma_{LL} = \begin{pmatrix} a_{1} & 0 & 0 \\ 0 & a_{1} + c_{1} \epsilon_{\ell}^{2} & \beta_{1} \epsilon_{\ell} \\ 0 & \beta_{1}^{*} \epsilon_{\ell} & a_{2} \end{pmatrix} + \mathcal{O}(\delta_{e}^{2}) \, . \qquad \begin{vmatrix} V^{0} & V^{1} & V^{2} & \Delta^{1} & \Delta^{1} V^{1} \\ 2 + 0 & 1 + 1 & 1 + 0 & 0 + 0 \end{vmatrix} \Delta^{1} \left(\Delta^{1} V^{1} \\ 0 + 0 & 0 + 0 & 0 + 0 \end{vmatrix}$$
$$(\bar{R}R) - \Sigma_{RR}^{pr} \left(\bar{e}_{p} \Gamma e_{r}\right) \quad \text{with} \quad \Sigma_{RR} = \begin{pmatrix} a_{1} & 0 & \sigma_{1}^{*} \epsilon_{\ell} \delta_{e} \\ 0 & a_{1} & \sigma_{1}^{*} \epsilon_{\ell} \delta_{e} \\ \sigma_{1} \epsilon_{\ell} \delta_{e} \delta_{\ell}^{*} & \sigma_{1} \epsilon_{\ell} \delta_{e} & a_{2} \end{pmatrix} + \mathcal{O}(\delta_{e}^{2}) \, . \qquad \begin{vmatrix} V^{0} & V^{1} & V^{2} & \Delta^{1} & \Delta^{1} V^{1} \\ 2 + 0 & 0 + 0 & 0 + 0 & 0 + 0 \end{vmatrix} \Delta^{1} \left(\Delta^{1} V^{1} \\ 1 + 1 & 1 + 1 & 0 \end{vmatrix}$$
$$(\bar{L}R) - \Sigma_{LR}^{pr} \left(\bar{\ell}_{p} \Gamma e_{r}\right) \quad \text{with} \quad \Sigma_{LR} = \begin{pmatrix} \rho_{1} \delta_{e}^{*} & -\rho_{1} s_{e} \delta_{e} & 0 \\ \rho_{1} \epsilon_{e} \delta_{e}^{*} & \rho_{1} \delta_{e} & \beta_{1} \epsilon_{\ell} \\ \sigma_{1} \epsilon_{\ell} \delta_{e} \delta_{\ell}^{*} & \sigma_{1} \epsilon_{\ell} \delta_{e} & a_{1} \end{pmatrix} + \mathcal{O}(\delta_{e} \epsilon_{\ell}^{2}) \, . \qquad \begin{vmatrix} V^{0} & V^{1} & V^{2} & \Delta^{1} & \Delta^{1} V^{1} \\ 1 + 0 & 1 + 1 & 0 + 0 & 0 \end{vmatrix}$$

$U(2)^5$ in the SMEFT $% U(2)^5$

Fermion Quadrilinears

• Example: semi-leptonic operator

 $\Sigma_{\ell q}^{prst} \, (\bar{\ell}_p \Gamma \ell_r) (\bar{q}_s \tilde{\Gamma} q_t)$

- Number of parameters:
 - Without flavor symmetry: 81 = 45 + 36
 - With $U(2)^5$ flavor symmetry: $24 = 16 + 8 \text{ [up to } \mathcal{O}(V^3, \Delta^1 V^1) \text{]}$

Significant reduction of free parameters

➡Rich 3rd generation dynamics

HEFT 2021: Flavor symmetries in the SMEFT — F. Wilsch

Rows: lepton flavor indices (pr) – Columns: quark flavor indices (st)

 $\Sigma_{\ell q}^{prst}$ in the interaction basis [Rotation to the down-mass basis might be necessary] 12

Parameter counting for $U(2)^{5} \label{eq:constraint}$

Results

• Number of free parameters up to different orders in the spurion expansion

		$U(2)^5$ [terms summed up to different orders]												
Operators	Exa	act	$\mathcal{O}(V$	$^{/1})$	$\mathcal{O}(V)$	$^{/2})$	$\mathcal{O}(V$	$^{1},\Delta^{1})$	$\mathcal{O}(V)$	$^{2},\Delta^{1})$	$\mathcal{O}(V$	$^{2},\Delta^{1}V^{1}$	$\mathcal{O}($	$V^3, \Delta^1 V^1)$
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	_	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	_	29	_	29	_	29	_	29	_	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	_	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	6 215
Enou	ah if m	12550	s of lic	aht ae	nerati	on fe	rmion	s is					1	1
	9.1.11	14000	5 01 Hg	, y.								(Dovon	

Depending on the process of interest and desired accuracy, only subsets of operators relevant➡Substantial reduction of the number of free parameters

$\mbox{Comparison } U(2)^5 \mbox{ vs. } U(3)^5$

Parameter Counting:

No symm	netry		U(3) ⁵	witł	ח M	FV	- U	J(2)) ⁵	with	min	imal	bre	ak	ing	
						No	symn	netry		$U(3)^{5}$							
Op		3 Gen.			1 Gen.		Exact	$\mathcal{O}(Y^1_{e,d,u})$		$\mathcal{O}(Y_e^1, \mathbb{I})$		$Y_d^1 Y_u^2)$					
	135	1350 1149			23	41 6		52	52 17 8		85 26						
				l	$U(2)^{5}$	[te	rms su	ımmeo	l up	to c	lifferer	nt ord	ers]				
Operators	Exac	et	$\mathcal{O}(V$	$^{/1})$	$\mathcal{O}(V$	$^{/2})$	$\mathcal{O}(V$	$^{1},\Delta^{1})$	$\mathcal{O}($	(V^2)	$,\Delta^1)$	$\mathcal{O}(V$	$^{2},\Delta^{1}V^{2}$	$^{1}) \mid 0$	$\mathcal{O}(V^{3})$	$^{3},\Delta^{1}V^{1})$	
total:	124	23	182	81	234	93	212	111	26	4	123	349	208		356	215	
	1													CP-ev	en	CP-odc	

- Smaller symmetry group \Rightarrow more parameters than MFV
- Still significant reduction of parameters compared to general case

Flavor symmetries at low-/high-energies

- Flavor symmetries are a useful tool for:
 - Analyzing low-energy observables
 - Simplifying and organizing the analysis of high- p_T observables Greljo et al. [arXiv:1704.09015]
- High invariant mass tails can yield complementary information to lowenergy observables Fuentes-Martín et al. [arXiv:2003.12421]
- Combined analysis of low and high-energy observables desirable Work in progress with L. Allwicher, D. A. Faroughy, O. Sumensari, FW
 - in general flavor case
 - in $U(2)^5$ setup

$\textbf{High-}p_T \textbf{ tails at LHC}$

LFV Example: high invariant mass tail for $pp \rightarrow \bar{\ell} \tau$

Consider only four-fermion operators contributing:

$$\sigma(pp \to \bar{\ell}\tau) = \frac{s}{144\pi\Lambda^4} \operatorname{Tr}\left(F_q^{\ell\tau}(\{C_i\}) \cdot K_q\right) \propto s \longleftarrow \underbrace{\text{enhancement at}}_{\text{high energies}}$$

- PDF dependence: $K_q = \int d\tau \, \tau \, \mathscr{L}_{q_t \bar{q}_s}(\tau)$, with parton luminosity $\mathscr{L}_{q_t \bar{q}_s}(\tau)$, encoding flavor structure of PDFs
- Operator/Wilson coefficient dependence: $F_q^{\ell \tau}(\{C_i\})$, only considering the contribution from $\mathcal{O}_{\ell q}^{(1,3)}$ we find

$$F_{d}^{\ell\tau,st} = \left| \sum_{\ell q}^{(1)\ell\tau,st} + \sum_{\ell q}^{(3)\ell\tau,st} \right|^{2}, \text{ and } F_{u}^{\ell\tau,st} = \left| V_{\text{CKM}}^{sn} V_{\text{CKM}}^{tm*} \left(\sum_{\ell q}^{(1)\ell\tau,nm} - \sum_{\ell q}^{(3)\ell\tau,nm} \right) \right|^{2}$$

$$Simple U(2)^{5} \text{ structure}$$
(here the $\Sigma_{\ell q}$ are rotated to the down-mass basis)
HEFT 2021: Flavor symmetries in the SMEFT – F. Wilsch

Conclusion

Flavor symmetries in the SMEFT

- SMEFT at dimension-six: up to 2499 parameters
- Advantage:
 - Significantly reduce parameters
 - Explain suppression of certain couplings
 - Allow for a classification of operators
- Useful tool for analyzing low-/highenergy observables
- Disadvantage:
 - Introduction of model dependence

$\underline{U(2)}^{5}$ with minimal breaking

• Free parameters:

			$U(2)^{5}$	[t€		
Operators	Exa	act	$\mathcal{O}(V)$	$\mathbb{Z}^1)$	$\mathcal{O}(V)$	$^{/2})$
total:	124	23	182	81	234	93

- Special treatment and richer dynamics for 3rd generation fermions
- Simplification of RG evolution [Work in progress with G. Isidori, S. Renner, FW]
- Allows for construction of a consistent EFT:
 - At relatively low scale
 - With a consistent power counting
 - Protection from non-standard flavor mixing
 - relatively few parameters

Thank you for listening!

HEFT 2021: Flavor symmetries in the SMEFT - F. Wilsch

Flavor Symmetries in the SMEFT

More details on high-p_T tails

High- p_T tails of the invariant di-lepton mass

illustration energy enhancement

 $\Lambda = 1000 \; [\text{GeV}]$

 $C_{la\,3311}^{(1)} = +1,$

- Analysis of semi leptonic NC process: $\sigma(\bar{q}_s q_t \rightarrow \ell_r^+ \ell_p^-)$
 - invariant mass of the di-lepton pair at high- p_T
- NP can contribution in 3 different ways: •
 - **Dipole operators**
 - Modification of Z-boson couplings
 - Four-fermion contact interactions \leftarrow energy enhanced w.r.t. SM contributions
- Full analysis considering all contributions desirable ٠
- Advantages of assuming the minimally broken $U(2)^5$ flavor symmetry: •
 - Computation of the amplitude simplifies and can be organized
 - Allows to sum the contributions of different quark-flavor in the pp collisions with appropriate weights
 - Less parameters to be fitted

NP

SM

500

Renormalization Group Evolution for $U(2)^{5} \label{eq:constraint}$

Work in progress with G. Isidori, S. Renner, FW

- Full RGE for the Warsaw basis derived in Jenkins et al. [arXiv: 1308.2627, 1310.4838, 1312.2014]
- The $U(2)^5$ symmetry and minimal breaking pattern are preserved by the RGE
- Simplification of the RGE structure expected
 - At given order in the spurions only a subset of the possible mixing can contribute $Y_{lh} \sim \mathcal{O}(V^1)$

Breaking Patterns

Breaking: $U(3)^5 \rightarrow U(2)^5$

- Breaking of the global $U(3)^5$ flavor symmetry group through 3rd generation Yukawas of order $\mathcal{O}(1)$
 - Two step breaking of $U(3)^3$ in the quark sector to $U(2)^3$

 $U(3)_q \otimes U(3)_u \otimes U(3)_d \xrightarrow{y_t} U(2)_Q \otimes U(2)_U \otimes U(3)_d \otimes U(1)_{q_L^3 + t_R} \xrightarrow{y_{t,b}} U(2)_Q \otimes U(2)_U \otimes U(2)_D \otimes U(1)_{q_L^3 + t_R + b_R}$

- One step breaking of $U(3)^2$ in the lepton sector to $U(2)^2$

 $U(3)_{\ell} \otimes U(3)_{e} \xrightarrow{y_{\tau}} U(2)_{L} \otimes U(2)_{E} \otimes U(1)_{\ell_{L}^{3} + \tau_{R}}$

- Is there an intermediate breaking step worth to consider?
 - in particular: $U(2)_Q \otimes U(2)_U \otimes U(3)_d$

Alternative Flavor Symmetries

$U(2)_Q \otimes U(2)_U \otimes U(3)_d$

• For the $U(2)^3 = U(2)_Q \otimes U(2)_U \otimes U(2)_D$ group we chose the spurion such that the Yukawas could be written as:

$$Y_{u} = y_{t} \begin{pmatrix} \Delta_{u} & x_{t}V_{q} \\ \tilde{V}_{u} & 1 \end{pmatrix}^{U(2)_{Q}}, \qquad Y_{d} = y_{b} \begin{pmatrix} \Delta_{d} & x_{b}V_{q} \\ \tilde{V}_{d} & 1 \end{pmatrix}^{U(2)_{Q}}$$
$$V_{q} \sim 2_{Q}, \quad \Delta_{u} \sim 2_{Q} \otimes \bar{2}_{U}, \quad \Delta_{d} \sim 2_{Q} \otimes \bar{2}_{D}, \quad \tilde{V}_{u} \sim \bar{2}_{U}, \quad \tilde{V}_{d} \sim \bar{2}_{D}$$

Enforcing the hierarchy $|V_q| \gg |\Delta_{u,d}| \gg |\tilde{V}_{u,d}|$ (~ 0) yields MFV-like structure

 \Rightarrow No alignment of spurions required if we neglect $\tilde{V}_{u,d}$ spurions

• For $U(2)_O \otimes U(2)_U \otimes U(3)_d$ we have to choose different spurions:

$$Y_{u} = y_{t} \begin{pmatrix} \Delta_{u} & x_{t} V_{q} \\ \tilde{V}_{u} & 1 \end{pmatrix}, \qquad Y_{d} = y_{b} \begin{pmatrix} \Sigma_{d} \\ \Lambda_{d} \\ U(3)_{d} \end{pmatrix} U(2)_{Q}$$

If we want to describe all down quark masses $m_{d,s,b} \neq 0$ we must require $\Sigma_d \neq 0$ and $\Lambda_d \neq 0$

 \Rightarrow Necessary tuning of the alignment of Σ_d and Λ_d in the $U(3)_d$ space

HEFT 2021: Flavor symmetries in the SMEFT – F. Wilsch

Alternative Flavor Symmetries

$\mathrm{U}(2)^5 \otimes \mathrm{U}(1)_{\mathrm{b}} \otimes \mathrm{U}(1)_{\tau}$

- Amending the $U(2)^5$ group with two U(1) factors
 - Only b_R and τ_R are charged under the additional U(1) factors
- In unbroken case only the Yukawa coupling of the top quark y_t is present
 - To allow for non-vanishing $y_{b,\tau}$ we have to introduce two further spurions $X_{b,\tau}$ breaking the $U(1)_{b,\tau}$ groups
- The Yukawas can be expressed as

$$Y_u = y_t \begin{pmatrix} \Delta_u & x_t V_q \\ 0 & 1 \end{pmatrix}, \quad Y_d = y_b \begin{pmatrix} \Delta'_d & x'_b V_q X_b \\ 0 & \kappa_b X_b \end{pmatrix}, \quad Y_e = y_\tau \begin{pmatrix} \Delta'_e & x'_\tau V_\ell X_\tau \\ 0 & \kappa_\tau X_\tau \end{pmatrix}$$

- Additional structure for the classification and counting of operator including bottom-quarks and tau-leptons
- Can be analyzed similar to the $U(2)^5$ case

HEFT 2021: Flavor symmetries in the SMEFT - F. Wilsch

The spurions of $U(2)^5$

Minimal breaking spurions

• The spurions:

 $V_{\ell} \sim (2,1,1,1,1), \quad V_q \sim (1,1,2,1,1), \quad \Delta_e \sim (2,\bar{2},1,1,1), \quad \Delta_u \sim (1,1,2,\bar{2},1), \quad \Delta_d \sim (1,1,2,1,\bar{2})$

$$\begin{split} V_{\ell,q} &= e^{i\bar{\phi}_{\ell,q}} \begin{pmatrix} 0\\ e_{\ell,q} \end{pmatrix} , \quad \Delta_e = O_e^{\mathrm{T}} \begin{pmatrix} \delta'_e & 0\\ 0 & \delta_e \end{pmatrix} , \quad \Delta_{u,d} = U_{u,d}^{\dagger} \begin{pmatrix} \delta'_{u,d} & 0\\ 0 & \delta_{u,d} \end{pmatrix} \\ \text{where } O_e &= \begin{pmatrix} c_e & s_e\\ -s_e & c_e \end{pmatrix}, \quad U_q = \begin{pmatrix} c_q & s_q e^{i\alpha_q}\\ -s_q e^{-i\alpha_q} & c_q \end{pmatrix} \end{split}$$

• We can express the Yukawas as: $Y_u = y_t \begin{pmatrix} \Delta_u & x_t V_q \\ 0 & 1 \end{pmatrix}$,

$$Y_d = y_b \begin{pmatrix} \Delta_d & x_b V_q \\ 0 & 1 \end{pmatrix}, \qquad Y_e = y_\tau \begin{pmatrix} \Delta_e & x_\tau V_\ell \\ 0 & 1 \end{pmatrix}$$

• Diagonalize Yukawas by unitary transformations of the type $L_f^{\dagger}Y_fR_F = \text{diag}(Y_f)$

- Observe the hierarchy: $1 \gg \epsilon_i \gg \delta_i \gg \delta_i' > 0$

$$\begin{split} \epsilon_{i} &= \mathcal{O}\left(\operatorname{Tr}(Y_{u}Y_{u}^{\dagger}) - \frac{\operatorname{Tr}(Y_{u}Y_{u}^{\dagger}Y_{d}Y_{d}^{\dagger})}{\operatorname{Tr}(Y_{d}Y_{d}^{\dagger})}\right)^{\frac{1}{2}} = \mathcal{O}(y_{t} \mid V_{ts} \mid) = \mathcal{O}(10^{-1})\\ \delta_{i} &= \mathcal{O}\left(\frac{y_{c}}{y_{t}}, \frac{y_{s}}{y_{b}}, \frac{y_{\mu}}{y_{\tau}}, \right) = \mathcal{O}(10^{-2}), \quad \delta_{i}' = \mathcal{O}\left(\frac{y_{u}}{y_{t}}, \frac{y_{d}}{y_{b}}, \frac{y_{e}}{y_{\tau}}, \right) = \mathcal{O}(10^{-3}) \end{split}$$

Not all parameters in the spurion decomposition can be related to SM parameters
 ⇒ Structure of spurions is not completely determined by CKM (contrary to MFV case)

HEFT 2021: Flavor symmetries in the SMEFT – F. Wilsch

The spurions of $U(2)^{5} \label{eq:constraint}$

Possible spurions beyond minimal breaking

- Possible spurions can be categorized according to the transformation of fermion-bilinears and fermion-quadrilinears
- Focusing only on the bilinears we find:
 - 5 duplet spurions $V_{\psi} \sim 2_{\psi}$ for $\psi \in \{\ell, e, q, u, d\}$ In the Minimal setup only V_q and V_{ℓ} are present
 - **10 bi-duplet** spurions $\Delta_{\psi\psi'} \sim \bar{2}_{\psi} \times 2_{\psi'}$ with $\psi \neq \psi'$ (6 leptoquark, 3 di-quark and 1 di-lepton spurion) In the Minimal setup only the 3 Yukawa like Δ are present
 - **5 adjoint** spurions $A_{\psi} \sim 3_{\psi}$ In the Minimal setup not present
- Operator classification can be done similarly for all spurions
- If any of the spurions not present in the minimal setup can compete in size with the spurion of the minimal setup:
 - CKM-like suppression of left-handed mixing is lost
 - Helicity suppression of mixing in right handed is lost
- Alignment of spurions in flavor space necessary to restore the protection from non-standard mixing