A fully differential SMEFT analysis of the golden channel using the method of moments

Elena Venturini

14/04/2021

Based on arXiv:2012.11631
with Oscar Ochoa-Valeriano, Shankha Banerjee, Rick S. Gupta, Michael Spannowsky

HEFT 2021

New Physics Searches and Effective Field Theories

- Direct searches of new particles

Null Result

- Indirect searches in precision tests

New Physics Searches and Effective Field Theories

- Direct searches of new particles

Null Result

- Indirect searches in precision tests

Model independent description $\square \mathrm{EFT}$ at $E<\Lambda$

$$
\mathcal{L}_{E F T}(\varphi)=\mathcal{L}_{r e n}(\varphi)+\sum_{i, d>4} \frac{c_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}(\varphi) .
$$

Higgs Golden Channel

- Probe of Higgs-gauge boson couplings @LHC:

Resolution of the tensor structure with differential study

- Angular Distribution with the method of moments
in the Higgs Golden Channel: $h \rightarrow 4 \ell$

Higgs Golden Channel

- Probe of Higgs-gauge boson couplings @LHC:

Resolution of the tensor structure with differential study

- Angular Distribution with the method of moments
in the Higgs Golden Channel: $h \rightarrow 4 \ell$

Higgs Golden Channel in the SMEFT

$$
\sum_{\ell} \delta g_{\ell}^{Z} Z_{\mu} \bar{\ell} \gamma^{\mu} \ell
$$

Bounded at per-mille level at LEP1 $[\Gamma(Z \rightarrow \bar{\ell} \ell)]$

Neglected

$$
\begin{aligned}
& \sum_{\ell} g_{Z \ell}^{h} \frac{h}{v} Z_{\mu} \bar{\ell} \gamma^{\mu} \ell \\
& \quad[\text { With D6 gauge invariant SMEFT] }
\end{aligned}
$$

$$
g_{Z \ell}^{h}=\frac{2 g}{c_{\theta_{W}}} Y_{\ell} t_{\theta_{W}}^{2} \delta \kappa_{\gamma}+2 \delta g_{\ell}^{Z}-\frac{2 g}{c_{\theta_{W}}}\left(T_{3}^{\ell} c_{\theta_{W}}^{2}+Y_{\ell} s_{\theta_{W}}^{2}\right) \delta g_{1}^{Z}
$$

- δg_{ℓ}^{Z} bounded at per-mille level at LEP1
- δg_{1}^{z} and $\delta \kappa_{\gamma}$ aTGCs bounded at per-mille level at HL-LHC

Higgs Golden Channel in the SMEFT

$h \bar{\ell} \ell$ strongly bounded
(Altmannshofer et al. 1503.04830,
ATLAS coll. 2007.07830)

Affecting the total rate, but not the lepton angular distribution

Neglected

Higgs Golden Channel in the SMEFT

$h Z Z \leftarrow$ Our analysis

$$
\begin{aligned}
\Delta \mathcal{L} \supset \delta \hat{g}_{Z Z}^{h} \frac{2 m_{Z}^{2}}{v} h \frac{Z^{\mu} Z_{\mu}}{2}+ & \rightarrow \text { Shift of the SM coupling } \\
+\kappa_{Z Z} \frac{h}{2 v} Z^{\mu \nu} Z_{\mu \nu}+\tilde{\kappa}_{Z Z} \frac{h}{2 v} Z^{\mu \nu} \tilde{Z}_{\mu \nu} & \rightarrow \text { New tensor structures }
\end{aligned}
$$

D6 SMEFT with linearly realised $S U(2)_{L} \times U(1)_{Y}$

Warsaw basis

$$
\delta \hat{g}_{Z Z}^{h}=\frac{v^{2}}{\Lambda^{2}}\left(c_{H \square}+\frac{c_{H D}}{4}\right) \quad<\quad \begin{gathered}
\mathcal{O}_{H \square}=\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right) \\
\mathcal{O}_{H D}=\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D_{\mu} H\right)
\end{gathered}
$$

$$
\begin{aligned}
& \kappa_{Z Z}=\frac{2 v^{2}}{\Lambda^{2}}\left(c_{\theta_{W}}^{2} c_{H W}+s_{\theta_{W}}^{2} c_{H B}+s_{\theta_{W}} c_{\theta_{W}} c_{H W B}\right) \\
& \tilde{\kappa}_{Z Z}=\frac{2 v^{2}}{\Lambda^{2}}\left(c_{\theta_{W}}^{2} c_{H \tilde{W}}+s_{\theta_{W}}^{2} c_{H \tilde{B}}+s_{\theta_{W}} c_{\theta_{W}} c_{H \tilde{W} B}\right),
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{O}_{H B}=|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
\mathcal{O}_{H W B}=H^{\dagger} \sigma^{a} H W_{\mu \nu}^{a} B^{\mu \nu} \\
\mathcal{O}_{H W}=|H|^{2} W_{\mu \nu} W^{\mu \nu} \\
\mathcal{O}_{H \tilde{B}}=|H|^{2} B_{\mu \nu} \tilde{B}^{\mu \nu} \\
\mathcal{O}_{H \tilde{W} B}=H^{\dagger} \sigma^{a} H W_{\mu \nu}^{a} \tilde{B}^{\mu \nu} \\
\mathcal{O}_{H \tilde{W}}=|H|^{2} W_{\mu \nu}^{a} \tilde{W}^{a \mu \nu}
\end{gathered}
$$

Angular distribution

- We compute the cross section $\sigma(p p \rightarrow h \rightarrow Z Z \rightarrow 4 \ell)$, in the h rest frame, and its differential distribution in the lepton emission angles
\rightarrow Towards the extraction of the maximal information from the measurements

Angular dependence in helicity amplitudes

Angular dependence in helicity amplitudes

- Convenient to analyse angular distribution for particles with definite helicity
- For $\bar{\ell}_{ \pm} \ell_{\mp}$ the dependence on the emission angles is determined by the angular momentum quantum numbers (J, M) of the $\bar{\ell} \ell$ system, in the $\bar{\ell} \ell$ rest frame

Scattering amplitudes $\propto d_{M, \Delta \lambda}^{J}\left(\theta_{i}, \varphi_{i}\right)$

$$
-\ln Z_{\lambda_{\mathbf{z}}} \rightarrow \bar{\ell} \ell, \quad J=1, \quad \mathbf{M}=\lambda_{\mathbf{Z}}
$$

$$
\text { Angles of the lepton with } \lambda=+1 / 2
$$

$$
\begin{aligned}
& d_{-1, \Delta \lambda=1}^{1}\left(\theta_{i}, \varphi_{i}\right)=\sin ^{2}\left(\theta_{i} / 2\right) e^{-i \varphi_{i}} \\
& d_{+1, \Delta \lambda=1}^{1}\left(\theta_{i}, \varphi_{i}\right)=\cos ^{2}\left(\theta_{i} / 2\right) e^{+i \varphi_{i}} \\
& d_{0, \Delta \lambda=1}^{1}\left(\theta_{i}, \varphi_{i}\right)=\frac{\sin \theta_{i}}{\sqrt{2}}
\end{aligned}
$$

Helicity $h \rightarrow$ ZZ amplitudes

- Starting point: $h \rightarrow Z_{\lambda_{1}} Z_{\lambda_{2}}$ decay with definite helicity for the final Z

Which are the possible helicities λ_{1} and λ_{2} ?

Angular momentum conservation in the decay of a scalar $(\mathbf{s}=0)$ at rest

Helicity $h \rightarrow$ ZZ amplitudes

- Starting point: $h \rightarrow Z_{\lambda_{1}} Z_{\lambda_{2}}$ decay with definite helicity for the final Z

Which are the possible helicities λ_{1} and λ_{2} ?

Angular momentum conservation in the decay of a scalar ($\mathbf{s}=0$) at rest

$$
\begin{aligned}
A_{++} & =-2 \frac{\left(\delta \hat{g}_{Z Z}^{h}+1\right) m_{Z}^{2}}{v}+2 \frac{\kappa_{Z Z}}{v} \gamma_{a} m_{Z} m_{Z^{*}}-2 i \frac{\tilde{\kappa}_{Z Z}}{v} \gamma_{b} m_{Z} m_{Z^{*}} \\
A_{--} & =-2 \frac{\left(\delta \hat{g}_{Z Z}^{h}+1\right) m_{Z}^{2}}{v}+2 \frac{\kappa_{Z Z}}{v} \gamma_{a} m_{Z} m_{Z^{*}}+2 i \frac{\tilde{\kappa}_{Z Z}}{v} \gamma_{b} m_{Z} m_{Z} * \\
A_{00} & =-2 \frac{\left(\delta \hat{g}_{Z Z}^{h}+1\right) m_{z}^{2}}{v} \gamma_{a}-2 \frac{\kappa_{Z Z}}{v} \frac{1}{m_{Z} m_{Z^{*}}}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{a}=\frac{1}{m_{z} m_{Z^{*}}}\left(E_{1} E_{2}+|\vec{q}|^{2}\right)=\frac{1}{m_{z} m_{Z *}} q_{Z} \cdot q_{Z^{*}} \\
& \gamma_{b}=\frac{1}{m_{z} m_{Z^{*}}}|\vec{q}|\left(E_{1}+E_{2}\right)=\frac{1}{m_{z} m_{Z^{*}}}|\vec{q}| m_{h}
\end{aligned}
$$

Helicity $h \rightarrow \mathbb{Z Z} \rightarrow \ell_{+} \ell_{-} \ell_{+} \ell_{-}$amplitudes

- Full helicity amplitude (with h production factorised out)

$$
\begin{align*}
& \mathcal{M}\left(h \rightarrow Z Z^{*} \rightarrow \ell_{+}^{1} \ell_{-}^{1} \ell_{+}^{2} \ell_{-}^{2}\right)=g_{\ell_{1}}^{Z} Z_{\ell_{2}}^{Z^{*}} A\left(h \rightarrow Z Z^{*} \rightarrow \ell_{+}^{1} \ell_{-}^{1} \ell_{+}^{2} \ell_{-}^{2}\right) \sim \tag{3.7}\\
& \sum_{\bar{\lambda} \bar{\lambda}^{\prime}} A\left(h \rightarrow Z_{\bar{\lambda}} Z_{\bar{\lambda}^{\prime}}^{*}\right) \frac{-g_{\ell_{1}}^{Z}}{q_{Z}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} A\left(Z_{\bar{\lambda}} \rightarrow \ell_{+}^{1} \ell_{-}^{1}\right) \frac{-g_{\ell_{2}}^{Z^{*}}}{q_{Z^{*}}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} A\left(Z_{\bar{\lambda}^{\prime}}^{*} \rightarrow \ell_{+}^{2} \ell_{-}^{2}\right) \tag{3.8}\\
& \propto \sum_{\bar{\lambda}} A\left(h \rightarrow Z_{\bar{\lambda}} Z_{\bar{\lambda}}^{*}\right) \frac{-g_{\ell_{1}}^{Z}}{q_{Z}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} d_{\bar{\lambda}, \Delta \lambda=1}^{1}\left(\theta_{1}, \varphi_{1}\right) \frac{-g_{\ell_{2}}^{Z^{*}}}{q_{Z^{*}}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} d_{\bar{\lambda}, \Delta \lambda=1}^{1}\left(\theta_{2},-\varphi_{2}\right) \tag{3.9}
\end{align*}
$$

Helicity $h \rightarrow \mathbb{Z Z} \rightarrow \ell_{+} \ell_{-} \ell_{+} \ell_{-}$amplitudes

- Full helicity amplitude (with h production factorised out)

$$
\begin{align*}
& \mathcal{M}\left(h \rightarrow Z Z^{*} \rightarrow \ell_{+}^{1} \ell_{-}^{1} \ell_{+}^{2} \ell_{-}^{2}\right)=g_{\ell_{1}}^{Z} g_{\ell_{2}}^{Z} A\left(h \rightarrow Z Z^{*} \rightarrow \ell_{+}^{1} \ell_{-}^{1} \ell_{+}^{2} \ell_{-}^{2}\right) \sim \tag{3.7}\\
& \sum_{\bar{\lambda} \bar{\lambda}^{\prime}} A\left(h \rightarrow Z_{\bar{\lambda}} Z_{\bar{\lambda}^{\prime}}^{*}\right) \frac{-g_{\ell_{1}}^{Z}}{q_{Z}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} A\left(Z_{\bar{\lambda}} \rightarrow \ell_{+}^{1} \ell_{-}^{1}\right) \frac{-g_{\ell_{2}}^{Z^{*}}}{q_{Z^{*}}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} A\left(Z_{\bar{\lambda}^{\prime}}^{*} \rightarrow \ell_{+}^{2} \ell_{-}^{2}\right) \\
& \propto \sum_{\bar{\lambda}} A\left(h \rightarrow Z_{\bar{\lambda}} Z_{\bar{\lambda}}^{*}\right) \frac{-g_{\ell_{1}}^{Z}}{q_{Z}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} d_{\bar{\lambda}, \Delta \lambda=1}^{1}\left(\theta_{1}, \varphi_{1}\right) \frac{-g_{\ell_{2}}^{Z^{*}}}{q_{Z^{*}}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} d_{\bar{\lambda}, \Delta \lambda=1}^{1}\left(\theta_{2},-\varphi_{2}\right) \tag{3.9}
\end{align*}
$$

- Breit-Wigner propagators (helicity independent) \rightarrow

Common factor in the angular distribution

Helicity $h \rightarrow \mathbb{Z Z} \rightarrow \ell_{+} \ell_{-} \ell_{+} \ell_{-}$amplitudes

- Full helicity amplitude (with h production factorised out)

$$
\begin{align*}
& \mathcal{M}\left(h \rightarrow Z Z^{*} \rightarrow \ell_{+}^{1} \ell_{-}^{1} \ell_{+}^{2} \ell_{-}^{2}\right)=g_{\ell_{1}}^{Z} Z_{\ell_{2}}^{Z^{*}} A\left(h \rightarrow Z Z^{*} \rightarrow \ell_{+}^{1} \ell_{-}^{1} \ell_{+}^{2} \ell_{-}^{2}\right) \sim \tag{3.7}\\
& \sum_{\bar{\lambda} \bar{\lambda}^{\prime}} A\left(h \rightarrow Z_{\bar{\lambda}} Z_{\bar{\lambda}^{\prime}}^{*}\right) \frac{-g_{\ell_{1}}^{Z}}{q_{Z}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} A\left(Z_{\bar{\lambda}} \rightarrow \ell_{+}^{1} \ell_{-}^{1}\right) \frac{-g_{\ell_{2}}^{Z^{*}}}{q_{Z^{*}}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} A\left(Z_{\bar{\lambda}^{\prime}}^{*} \rightarrow \ell_{+}^{2} \ell_{-}^{2}\right) \tag{3.8}\\
& \propto \sum_{\bar{\lambda}} A\left(h \rightarrow Z_{\bar{\lambda}} Z_{\bar{\lambda}}^{*}\right) \frac{-g_{\ell_{1}}^{Z}}{q_{Z}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} d_{\bar{\lambda}, \Delta \lambda=1}^{1}\left(\theta_{1}, \varphi_{1}\right) \frac{-g_{\ell_{2}}^{Z^{*}}}{q_{Z^{*}}^{2}-m_{Z}^{2}+i \Gamma_{Z} m_{Z}} d_{\bar{\lambda}, \Delta \lambda=1}^{1}\left(\theta_{2},-\varphi_{2}\right) \tag{3.9}
\end{align*}
$$

- BSM corrections in $h \rightarrow Z Z$ amplitudes (helicity dependent) \rightarrow

Modification of the angular distribution $\propto \delta \hat{g}_{Z Z}^{h}, \kappa_{Z Z}, \tilde{\kappa}_{Z Z}$

Visible angular modulation

- Angular distribution not for $\lambda=+1 / 2$ leptons

BUT for negatively charged leptons

$$
\begin{aligned}
\left|\mathcal{M}\left(h \rightarrow \bar{\ell} \ell^{1} \bar{\ell}^{2} \ell^{2}\right)\right|^{2}= & \sum_{\lambda, \lambda^{\prime}}\left|\mathcal{M}\left(h \rightarrow \bar{\ell}_{-\lambda}^{1} \ell_{\lambda}^{1} \bar{\ell}_{-\lambda^{\prime}}^{2} \ell_{\lambda^{\prime}}^{2}\right)\right|^{2} \\
\mathrm{Q}=-1 \text { fermions } & -\mathrm{RH}: \lambda=+1 / 2 \\
& -\mathrm{LH}: \lambda=-1 / 2
\end{aligned} \begin{aligned}
\left|\mathcal{M}\left(h \rightarrow \overline{\ell^{1}} \ell^{1} \bar{\ell}^{2} \ell^{2}\right)\right|^{2}= & \left(g_{l_{R}}^{Z^{2}} g_{l_{R}}^{Z^{* 2}}\left|A\left(\theta_{1}, \theta_{2}, \phi\right)\right|^{2}+g_{l_{L}}^{Z} g_{l_{L}}^{Z^{* 2}}\left|A\left(\pi-\theta_{1}, \pi-\theta_{2}, \phi\right)\right|^{2}+\right. \\
& \left.+g_{l_{L}}^{Z}{ }^{2} g_{l_{R}}^{Z_{R}^{* 2}}\left|A\left(\pi-\theta_{1}, \theta_{2}, \pi+\phi\right)\right|^{2}+g_{l_{R}}^{Z_{R}}{ }^{2} g_{l_{L}^{* 2}}^{Z_{2}}\left|A\left(\theta_{1}, \pi-\theta_{2}, \pi+\phi\right)\right|^{2}\right)
\end{aligned}
$$

Angular moments

- Angular differential distributions

$$
\begin{aligned}
f_{1} & =\sin ^{2}\left(\theta_{1}\right) \sin ^{2}\left(\theta_{2}\right) \\
f_{2} & =\left(\cos ^{2}\left(\theta_{1}\right)+1\right)\left(\cos ^{2}\left(\theta_{2}\right)+1\right) \\
f_{3} & =\sin \left(2 \theta_{1}\right) \sin \left(2 \theta_{2}\right) \cos (\phi) \\
f_{4} & =\left(\cos ^{2}\left(\theta_{1}\right)-1\right)\left(\cos ^{2}\left(\theta_{2}\right)-1\right) \cos (2 \phi) \\
f_{5} & =\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \cos (\phi) \\
f_{6} & =\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \\
f_{7} & =\left(\cos ^{2}\left(\theta_{1}\right)-1\right)\left(\cos ^{2}\left(\theta_{2}\right)-1\right) \sin (2 \phi) \\
f_{8} & =\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \sin (\phi) \\
f_{9} & =\sin \left(2 \theta_{1}\right) \sin \left(2 \theta_{2}\right) \sin (\phi),
\end{aligned}
$$

Angular moments

- Angular differential distributions, modified in the EFT

$$
\begin{aligned}
& a_{1}=\mathcal{G}^{4}\left((1+\delta a)+\frac{b m_{Z^{*}} \gamma_{b}^{2}}{m_{Z} \gamma_{a}}\right)^{2} \\
& a_{2}=\mathcal{G}^{4}\left(\frac{(1+\delta a)^{2}}{2 \gamma_{a}^{2}}+\frac{2 c^{2} m_{Z^{*}}^{2} \gamma_{b}^{2}}{m_{Z}^{2} \gamma_{a}^{2}}\right) \\
& a_{3}=-\mathcal{G}^{4}\left(\frac{1+\delta a}{2 \gamma_{a}}+\frac{b m_{Z^{*}} \gamma_{b}^{2}}{2 m_{Z} \gamma_{a}}\right)^{2} \\
& a_{4}=\mathcal{G}^{4}\left(\frac{(1+\delta a)^{2}}{2 \gamma_{a}^{2}}-\frac{2 c^{2} m_{Z^{*}}^{2} \gamma_{b}^{2}}{m_{Z}^{2} \gamma_{a}^{2}}\right) \\
& a_{5}=-\epsilon^{2} \mathcal{G}^{4}\left(\frac{2(1+\delta a)^{2}}{\gamma_{a}}+\frac{2(1+\delta a) b m_{Z^{*}} \gamma_{b}^{2}}{m_{Z} \gamma_{a}^{2}}\right) \\
& a_{6}=\epsilon^{2} \mathcal{G}^{4}\left(\frac{2(1+\delta a)^{2}}{\gamma_{a}^{2}}+\frac{8 c^{2} m_{Z}^{2} \gamma_{b}^{2}}{m_{Z}^{2} \gamma_{a}^{2}}\right) \\
& a_{7}=\mathcal{G}^{4} \frac{2(1+\delta a) c m_{Z^{*}} \gamma_{b}}{m_{Z} \gamma_{a}^{2}} \\
& a_{8}=-\epsilon^{2} \mathcal{G}^{4}\left(\frac{4(1+\delta a) c m_{Z^{*}} \gamma_{b}}{m_{Z} \gamma_{a}}+\frac{4 b c m_{Z^{*}}^{2} \gamma_{b}^{3}}{m_{Z}^{2} \gamma_{a}^{2}}\right) \\
& a_{9}=\mathcal{G}^{4}\left(\frac{(1+\delta a) c m_{Z^{*}} \gamma_{b}}{m_{Z} \gamma_{a}}+\frac{b c m_{Z^{*}}^{2} \gamma_{b}^{3}}{m_{Z}^{2} \gamma_{a}^{2}}\right),
\end{aligned}
$$

Method of Moments

- Extraction of the a_{i} 's coefficients with the Method of Moments
Dunietz et al., PRD43 (1991) 2193-2208;
James, Statistical methods in experimental physics, 2006
Beaujean et al., 1503.04100

Transparent and advantageous when statistics is low

- Let's assume there exists a dual basis $\left\{w_{i}\right\}_{i}$ orthonormal to $\left\{f_{i}\right\}_{i}, \int d \Omega w_{j} f_{i}=\delta_{i j}$,
and such that $w_{i}=\lambda_{i j} f_{j}$

$$
\begin{aligned}
& \lambda=M^{-1}, \text { with } M_{i j}=\int d \Omega f_{i} f_{j} \\
& \int d \Omega \sum_{i}\left(a_{i} f_{i}\right) w_{j}=a_{j}
\end{aligned}
$$

Method of Moments

- In our analysis

$$
M=\left(\begin{array}{ccccccccc}
\frac{512 \pi}{225} & \frac{128 \pi}{25} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{128 \pi}{25} & \frac{6272 \pi}{225} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{256 \pi}{225} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{252 \pi}{225} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{16 \pi}{9} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{8 \pi}{9} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{256 \pi}{225} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{16 \pi}{9} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{256 \pi}{225}
\end{array}\right),
$$

- Diagonalisation

$$
\begin{aligned}
& \hat{f}_{1}=\cos \beta f_{1}-\sin \beta f_{2} \\
& \hat{f}_{2}=\sin \beta f_{1}+\cos \beta f_{2}
\end{aligned}
$$

$$
\tan \beta=-\frac{1}{2}(5+\sqrt{29})
$$

$$
\hat{M}=\hat{\lambda}_{i j}^{-1}=\operatorname{diag}\left(\frac{64 \pi}{225} \xi_{+}, \frac{64 \pi}{225} \xi_{-}, \frac{256 \pi}{225}, \frac{256 \pi}{225}, \frac{16 \pi}{9}, \frac{8 \pi}{9}, \frac{256 \pi}{225}, \frac{16 \pi}{9}, \frac{256 \pi}{225}\right) \quad \xi_{ \pm}=(53 \pm 9 \sqrt{29})
$$

$\mathrm{pp} \rightarrow \mathrm{h} \rightarrow \mathrm{ZZ} \rightarrow 4 \ell$ @LHC
 Simulated events

- Monte Carlo simulation (500k events) of $g g \rightarrow h \rightarrow 4 \ell$ (MadGraph, Pythia 8)
$@ 14 \mathrm{TeV} @ \mathrm{LO}\left[\mathrm{N}^{3} \mathrm{LO} k=3.155\right]$ in the scenarios: $\mathbf{S M}, \kappa_{\mathbf{Z Z}}= \pm \mathbf{0} .5, \tilde{\kappa}_{\mathbf{Z Z}}= \pm \mathbf{0 . 5}$
- Selection of 4ℓ final state, with 2 pairs of OSSF leptons (opposite sign, same flavour)

But also irreducible background $p p \rightarrow 4 \ell: q \bar{q} \rightarrow 4 \ell$ and $g g \rightarrow 4 \ell$

Selection cut	SM $g g \rightarrow h$	$q \bar{q} \rightarrow 4 \ell$	$g g \rightarrow 4 \ell$
Jet veto	0.419	0.779	0.319
$E_{T}<25 \mathrm{GeV}$	0.348	0.667	0.248
2 pairs of isolated OSSF leptons,			
$\Delta R\left(\ell_{i}, \ell_{j}\right)>0.02$,	0.127	0.036	0.130
$M_{\ell^{+}, \ell^{\prime}-}>4 \mathrm{GeV}$			
$p_{T, \ell_{1}}>20 \mathrm{GeV}, p_{T, \ell_{2}}>10 \mathrm{GeV}, p_{T, \ell_{3}}>10 \mathrm{GeV}$	0.121	0.031	0.124
$M\left(Z_{1}\right) \in[40,120] \mathrm{GeV}, M\left(Z_{2}\right) \in[12,120] \mathrm{GeV}$	0.110	0.021	0.112
$M(4 \ell) \in[118,130] \mathrm{GeV}$	0.095	0.001	0.001

CMS, Tech. Rep. CMS-
PAS-HIG-19-001

Cut-flow showing the impact of each stage of the selection on the fraction of retained
Monte Carlo events for the SM-driven $g g \rightarrow h \rightarrow 4 \ell$ process, as well as on the $q \bar{q} \rightarrow 4 \ell$ and $g g \rightarrow 4 \ell$
irreducible backgrounds.

$\mathrm{pp} \rightarrow \mathrm{h} \rightarrow \mathrm{ZZ} \rightarrow 4 \ell$ @LHC Some differential distributions

$m_{4 \ell}$ invariant mass distribution

Azimuthal distribution

Moments estimates and bounds

- MC estimated moments:

$$
\begin{gathered}
a_{i}=\hat{N} \bar{w}_{i} \\
\hat{N} @ 3 a^{-1}
\end{gathered}
$$

$$
\begin{gathered}
\chi^{2}\left(\delta g_{Z Z}^{h}, \kappa_{Z Z}, \tilde{\kappa}_{Z Z}\right)= \\
\sum_{i j}\left(a_{i}^{E F T}-a_{i}^{S M}\right) \Sigma_{i j}^{-1}\left(a_{j}^{E F T}-a_{j}^{S M}\right) \\
\Sigma_{i j}=\left(\left(\frac{\sqrt{\hat{N}_{S M}}}{\hat{N}_{S M}}\right)^{2}+\kappa_{\text {syst }}^{2}\right) a_{i}^{S M} a_{j}^{S M}+\hat{N}_{S M} \sigma_{i j}^{S M} .
\end{gathered}
$$

with

Systematic uncertainty: $\kappa_{s y s t}=0.02$ [ATLAS coll.]
4 Bounds @68\% C.L. on CP-even couplings
Angular Distribution allows to set bounds along a flat direction

Moments estimates and bounds

- With $\kappa_{\text {syst }}=0,\left|\kappa_{Z Z}\right|<0.05$ for $\delta \hat{g}_{Z Z}^{h}=0\left(\right.$ MELA $\left.\left|\kappa_{Z Z}\right|<0.04\right)$
- $\left|\tilde{\kappa}_{Z Z}\right|<0.5$ (Marginalising over $\kappa_{Z Z}$ and $\delta \hat{g}_{Z Z}^{h}$) $\left[a_{7}, a_{8}, a_{9}\right.$: small contribution to $\left.\chi^{2}\right]$
- $1 / \Lambda^{4}$ order negligible w.r.t. $1 / \Lambda^{2}$
- \quad Blue: $p p \rightarrow h \rightarrow Z Z$
- Green: $p p \rightarrow V h$ [1912.07628]
- Combination
- Yellow ellipse: $+p p \rightarrow h \rightarrow W W$

Summary and outlooks

- Angular differential study to probe the tensor structure of the Higgs coupling to gauge bosons
- Angular moments extracted with the method of moments

Strong bounds as in the ML techniques in a more
transparent way

- Angular analysis eliminates the flat direction in $\left(\delta g_{Z Z}^{h}, \kappa_{Z Z}\right)$

Backup

EFT Lagrangian

$$
\begin{aligned}
\Delta \mathcal{L}_{6} & \supset \delta \hat{g}_{Z Z}^{h} \frac{2 m_{Z}^{2}}{v} h \frac{Z^{\mu} Z_{\mu}}{2}+\sum_{\ell} \delta g_{\ell}^{Z} Z_{\mu} \bar{\ell} \gamma^{\mu} \ell+\sum_{\ell} g_{Z \ell}^{h} \frac{h}{v} Z_{\mu} \bar{\ell} \gamma^{\mu} \ell \\
& +\kappa_{Z Z} \frac{h}{2 v} Z^{\mu \nu} Z_{\mu \nu}+\tilde{\kappa}_{Z Z} \frac{h}{2 v} Z^{\mu \nu} \tilde{Z}_{\mu \nu}
\end{aligned}
$$

EFT parameters and Warsaw basis

$$
\begin{aligned}
& \delta g_{\ell}^{Z}=-\frac{g Y_{\ell} s_{\theta_{W}}}{c_{\theta_{W}}^{2}} \frac{v^{2}}{\Lambda^{2}} c_{H W B}-\frac{g}{c_{\theta_{W}}} \frac{v^{2}}{\Lambda^{2}}\left(\left|T_{3}^{\ell}\right| c_{H L}^{(1)}-T_{3}^{\ell} c_{H L}^{(3)}+\left(1 / 2-\left|T_{3}^{\ell}\right|\right) c_{H \ell}\right) \\
& +\frac{\delta m_{Z}^{2}}{m_{Z}^{2}} \frac{g}{2 c_{\theta_{W}} s_{\theta_{W}}^{2}}\left(T_{3} c_{\theta_{W}}^{2}+Y_{\ell} s_{\theta_{W}}^{2}\right) \\
& \delta \hat{g}_{Z Z}^{h}=\frac{v^{2}}{\Lambda^{2}}\left(c_{H \square}+\frac{c_{H D}}{4}\right) \\
& g_{Z \ell}^{h}=-\frac{2 g}{c_{\theta_{W}}} \frac{v^{2}}{\Lambda^{2}}\left(\left|T_{3}^{\ell}\right| c_{H L}^{(1)}-T_{3}^{\ell} c_{H L}^{(3)}+\left(1 / 2-\left|T_{3}^{\ell}\right|\right) c_{H \ell}\right) \\
& \kappa_{Z Z}=\frac{2 v^{2}}{\Lambda^{2}}\left(c_{\theta_{W}}^{2} c_{H W}+s_{\theta_{W}}^{2} c_{H B}+s_{\theta_{W}} c_{\theta_{W}} c_{H W B}\right) \\
& \kappa_{G G}=\frac{2 v^{2}}{\Lambda^{2}} c_{H G} \\
& \tilde{\kappa}_{Z Z}=\frac{2 v^{2}}{\Lambda^{2}}\left(c_{\theta_{W}}^{2} c_{H \tilde{W}}+s_{\theta_{W}}^{2} c_{H \tilde{B}}+s_{\theta_{W}} c_{\theta_{W}} c_{H \tilde{W} B}\right), \\
& \delta g_{1}^{Z}=\frac{1}{2 s_{\theta_{W}}^{2}} \frac{\delta m_{Z}^{2}}{m_{Z}^{2}} \\
& \delta \kappa_{\gamma}=\frac{1}{t_{\theta_{W}}} \frac{v^{2}}{\Lambda^{2}} c_{H W B} . \\
& \frac{\delta m_{Z}^{2}}{m_{Z}^{2}}=\frac{v^{2}}{\Lambda^{2}}\left(2 t_{\theta_{W}} c_{H W B}+\frac{c_{H D}}{2}\right), \\
& \mathcal{O}_{H \square}=\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right) \\
& \mathcal{O}_{H D}=\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D_{\mu} H\right) \\
& \mathcal{O}_{H \ell}=i H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H \bar{e}_{R} \gamma^{\mu} e_{R} \\
& \mathcal{O}_{H L}^{(1)}=i H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H \bar{L} \gamma^{\mu} L \\
& \mathcal{O}_{H L}^{(3)}=i H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D_{\mu}} H \bar{L} \sigma^{a} \gamma^{\mu} L \\
& \mathcal{O}_{H t G}=\bar{Q}_{3} \tilde{H} T^{A} \sigma_{\mu \nu} t_{R} G^{A \mu \nu} \\
& \mathcal{O}_{H b G}=\bar{Q}_{3} \tilde{H} T^{A} \sigma_{\mu \nu} b_{R} G^{A \mu \nu} \\
& \mathcal{O}_{H G}=\left(H^{\dagger} H\right) G_{\mu \nu}^{A} G^{A \mu \nu} \\
& \begin{array}{c}
\mathcal{O}_{H B}=|H|^{2} B_{\mu \nu} B^{\mu \nu} \\
\mathcal{O}_{H W B}=H^{\dagger} \sigma^{a} H W_{\mu \nu}^{a} B^{\mu \nu} \\
\mathcal{O}_{H W}=|H|^{2} W_{\mu \nu} W^{\mu \nu} \\
\mathcal{O}_{H \tilde{B}}=|H|^{2} B_{\mu \nu} \tilde{B}^{\mu \nu} \\
\mathcal{O}_{H \tilde{W} B}=H^{\dagger} \sigma^{a} H W_{\mu \nu}^{a} \tilde{B}^{\mu \nu} \\
\mathcal{O}_{H \tilde{W}}=|H|^{2} W_{\mu \nu}^{a} \tilde{W}^{a \mu \nu} \\
\mathcal{O}_{y_{b}}=|H|^{2}\left(\bar{Q}_{3} H b_{R}+\text { h.c }\right) . \\
\mathcal{O}_{y_{t}}=|H|^{2}\left(\bar{Q}_{3} H t_{R}+\text { h.c }\right) .
\end{array}
\end{aligned}
$$

$h Z \bar{\ell} \ell$ contact interaction

- $h Z \bar{\ell} \ell: \bar{\ell}_{ \pm} \ell_{\mp}$ with $J=1$ and $M=\lambda_{Z}$
$g_{Z \ell}^{h}$ contribution to $h \rightarrow Z 2 \ell \rightarrow 4 \ell$ can be expressed as a shift in $g_{\ell_{2}}^{Z^{*}}$ in $\mathscr{M}\left(h \rightarrow Z Z^{*} \rightarrow 4 \ell\right)$

$$
g_{\ell_{2}}^{Z^{*}} \rightarrow g_{\ell_{2}}^{Z^{*}}-g_{Z \ell_{2}}^{h} \frac{m_{Z}^{2}-m_{Z^{*}}^{2}-i \Gamma_{Z} m_{Z}}{2 m_{Z}^{2}}
$$

Details of simulations

- MC: $g g \rightarrow h \rightarrow 4 \ell$ signal @14TeV @LO with MadGraph and NNPDF31_Io_as_0130 PDF set;
$q \bar{q} \rightarrow 4 \ell$ bkg @14TeV @NLO with POWHEG BOX V2 and NNPDF31_nlo_hessian_pdfas set;
$g g \rightarrow 4 \ell$ bkg (one-loop) with MCFM 7 and CTEQ6L PDF set;
$p p \rightarrow \ell \ell j j$ reducible bkg, with j to ℓ fake rate $0.016(0.044)$ for jets with $\left|y^{j}\right|<1.48\left(1.48<\left|y^{j}\right|<2.5\right)$
- PYTHIA 8 for parton shower and hadronisation
- K-factors: $g g \rightarrow h$ with N^{3} LO $k=3.155$ (LHC HXSWG), $q \bar{q} \rightarrow 4 \ell$ with NNLO/NLO $k=1.1, g g \rightarrow 4 \ell$ with NNLO/LO $k=2.27, p p \rightarrow \ell \ell j j$ with $k=0.91$
- Gaussian smearing as implemented in RIVET to simulate the detector response
- Flat leptonic reconstruction efficiency of 0.92

Backgrouds

- Reducible backgrounds:
jets as fake leptons \rightarrow Mainly $Z / \gamma^{*}+$ jets $[t \bar{t}, W W, W Z+$ jets $]$
- Irreducible backgrounds:
$g g \rightarrow 4 \ell$ and $q \bar{q} \rightarrow 4 \ell$

$M(Z)$ plots

Invariant mass distribution $M\left(Z_{i}\right)$ of the (left) Z_{1} and (right) Z_{2} candidates after defining the signal region $M(4 \ell) \in[118,130] \mathrm{GeV}$.

