Dimension-8 Operators in SMEFT and LEFT

Chris Murphy

Mostly based on
JHEP 10 (2020) 174-2005.00059
JHEP 04 (2021) 101 - 2012.13291
along with a bit of
Phys.Rev.D 96 (2017) 1, 015041 - 1704.07851 w/ S. Dawson

Dimension-8 Operators

*Why?

Dimension-8 Operators

$$
\begin{gathered}
t \rightarrow c g \gamma \\
\mu A \rightarrow e A
\end{gathered} \quad \psi \bar{\psi} \rightarrow V_{T} Z_{L}
$$

Non-standard neutrino interactions $\quad e_{L} e_{R} \rightarrow e_{L} e_{L}$

$$
e_{L} e_{R} \rightarrow e_{L} e_{L}
$$

Dimension-8 SMEFT

 Physics$\psi \bar{\psi} \rightarrow V_{L} V_{L}$

Neutron EDM

$$
e^{+} e^{-} \rightarrow \gamma \gamma
$$

Angular observables in
Drell-Yan

Positivity Bounds

Light-by-Light scattering
Quartic gauge couplings
Neutral triple gauge
Triple gauge couplings

Broken correlations

Lepton universality violation
(charged-current)

Standard Model Effective Field Theory

* Operator counting program has been hugely successful
* Now need actual (higher d) bases of operators for physics applications
* Non-trivial task due to:
* large number of operators
* presence of derivatives and repeated fields

Equations of Motion

* Avoid EOM redundancy by keeping only highest weight Lorentz reps. - Lehman, Martin 1503.07537
\% $D \psi_{L} \sim\left(D \psi_{L}\right)_{(a b), \dot{i}}, D X_{R} \sim\left(D X_{R}\right)_{a,(\dot{a} \dot{b} \dot{c})}, D^{2} H \sim\left(D^{2} H\right)_{(a b),(a \dot{b})}$

EOM + Integration by Parts

* Method based on Hays, Martin, Sanz, Setford 1808.00442
\% Example: \bar{l}, e, H, B_{L} field content $\mathrm{w} / 2$ derivatives

$\mathrm{EOM}+\mathrm{IBP}$

* Example: \bar{l}, e, H, B_{L} field content $\mathrm{w} / 2$ derivatives
* 4 non-EOM-reducible candidate ops., x_{1-4}

$$
\begin{aligned}
& x_{1}=(D \bar{l})_{a,(a \dot{c})} e_{\dot{d}}(D H)_{b, \dot{b}} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} \dot{d}} \epsilon^{\dot{c} \dot{b}}, \\
& x_{2}=\bar{l}_{\dot{c}}(D e)_{a,(\dot{a} \dot{d})}(D H)_{b, \dot{b}} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} \dot{c}} \epsilon^{d \dot{b}}, \\
& x_{3}=(D \bar{l})_{a,(\dot{a} \dot{c})}(D e)_{b,(\dot{b} \dot{d})} H B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} \dot{b}} \epsilon^{\dot{d} \dot{d}}, \\
& x_{4}=\bar{l}_{\dot{c}} e_{\dot{d}}\left(D^{2} H\right)_{(a b),(\dot{a} \dot{b})} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} \dot{c}} \epsilon^{\dot{d} \dot{d}},
\end{aligned}
$$

$\mathrm{EOM}+\mathrm{IBP}$

* Example: \bar{l}, e, H, B_{L} field content w/ 2 derivatives
* 4 non-EOM-reducible candidate ops., x_{1-4}
$\therefore 3$ independent IBP constraints, $D y_{1-3}=0$

$$
\begin{aligned}
x_{1} & =(D \bar{l})_{a,(\dot{a} \dot{)}} e_{\dot{d}}(D H)_{b, \dot{b}} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} \dot{d}} \epsilon^{\dot{b} \dot{b}}, \\
x_{2} & =\bar{l}_{\dot{c}}(D e)_{a,(\dot{a} \dot{d})}(D H)_{b, \dot{b}} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a}} \epsilon^{d \dot{b}}, \\
x_{3} & =(D \bar{l})_{a,(\dot{a})}(D e)_{b,(\dot{d})} H B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} b} \epsilon^{\dot{d}}, \\
x_{4} & =\bar{l}_{\dot{c}} e_{\dot{d}}\left(D^{2} H\right)_{(a b),(\dot{a} \dot{)})} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} \dot{c}} \epsilon^{\dot{b} \dot{d}}, \\
y_{1} & =(D \bar{l})_{a,(\dot{a} \dot{c})} e_{\dot{d}} H B_{(c d)} \epsilon^{a c} \epsilon^{\dot{a} \dot{d}}, \\
y_{2} & =\bar{l}_{\dot{c}}(D e)_{a,(\dot{a} \dot{d})} H B_{(c d)} \epsilon^{a c} \epsilon^{\dot{a} \dot{c}}, \\
y_{3} & =\bar{l}_{\dot{c}} e_{\dot{d}}(D H)_{a, \dot{a}} B_{(c d)} \frac{1}{2} \epsilon^{a c}\left(\epsilon^{\dot{a} \dot{c}}+\epsilon^{\dot{a} \dot{d}}\right) . \\
& \text { CM }-\mathrm{JHEP} 10(2020) 174-2005.00059
\end{aligned}
$$

$\mathrm{EOM}+\mathrm{IBP}$

* Example: \bar{l}, e, H, B_{L} field content $\mathrm{w} / 2$ derivatives
* 4 non-EOM-reducible candidate ops., x_{1-4}
$\because 3$ independent IBP constraints, $D y_{1-3}=0$
\therefore Keep only 4-3=1 combination of x_{1-4}

$$
\begin{aligned}
& x_{1}=(D \bar{l})_{a,(\dot{a})} e_{\dot{d}}(D H)_{b, \dot{b}} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a} d} \epsilon^{\dot{b}}, \\
& x_{2}=\bar{l}_{\dot{c}}(D e)_{a,(\hat{a d j})}(D H)_{b, \dot{B}} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{a \dot{a}} \epsilon^{d i}, \\
& x_{3}=(D \bar{l})_{a,(\dot{a})}(D e)_{b,(b \dot{d})} H B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{a}} \epsilon^{\dot{c}}{ }^{\dot{c} d} \text {, } \\
& x_{4}=\bar{l}_{\dot{c}} e_{\dot{d}}\left(D^{2} H\right)_{(a b),(a \dot{b})} B_{(c d)} \epsilon^{a c} \epsilon^{b d} \epsilon^{\dot{c} \epsilon_{\epsilon}} \dot{b \dot{d}},
\end{aligned}
$$

$$
\begin{aligned}
y_{1} & =(D \bar{l})_{a,(\dot{a} \dot{c})} e_{\dot{d}} H B_{(c d)} \epsilon^{a c} \epsilon^{\dot{a} \dot{d}}, \\
y_{2} & =\bar{l}_{\dot{c}}(D e)_{a,(\dot{a} \dot{d})} H B_{(c d)} \epsilon^{a c} \epsilon^{\dot{a} \dot{c}} \\
y_{3} & =\bar{l}_{\dot{c}} e_{\dot{d}}(D H)_{a, \dot{a}} B_{(c d)} \frac{1}{2} \epsilon^{a c}\left(\epsilon^{\dot{a} \dot{c}}+\epsilon^{\dot{a} \dot{d}}\right) . \\
& \text { CM - JHEP 10 (2020) 174-2005.00059 }
\end{aligned}
$$

Repeated Fields \& Flavor Representations

\% Method based on Fonseca 1907.12584
\% Example field content: $q^{3} l B$
(this example by CM)

Repeated Fields \& Flavor Reps.

$\{2,1\}$ is $2 d$ rep. of S_{3} - only 1 non-redundant op.

Repeated Fields \& Flavor Reps.

Repeated Fields \& Flavor Reps.

Repeated Field \& Flavor Reps.

Lagrangian terms

\%4-electron operator: $Q_{1111}^{e e}=\left(\bar{e}_{1} \gamma^{\mu} e_{1}\right)\left(\bar{e}_{1} \gamma_{\mu} e_{1}\right)$
*. associated "Lagrangian term": $\Delta \mathscr{L}=\sum_{p, r, s, t}^{\sum_{\text {prst }} C_{\text {prst }}^{e e} Q_{e e}}$
*What should be included in the sum?...

Lagrangian terms

\% ...A choice for your convenience. Physics is independent of this choice

1. Minimum number of Lagrangian terms
: CM JHEP 10 (2020) 174, 2005.00059
\% analogous to Warsaw basis
2. One Lagrangian term per flavor representation
\because Li, Ren, Shu, Xiao, Yu, Zheng 2005.00008
\because At $d=6$ would have 100 real LTs instead of 84

The result is 17 pages long...

Low-Energy EFT below the Electroweak Scale

* Contains SM particles w/ masses parametrically smaller than EW scale
* Gauge group: QCD x QED
\therefore Correct low-energy theory even when SMEFT is not the high-energy EFT
$\therefore \mathscr{L}_{\mathrm{LEFT}}=\mathscr{L}_{\mathrm{QCD}}+\mathscr{L}_{\mathrm{QED}}+\sum_{d>4} \sum_{i} L_{i}^{(d)} \mathcal{O}_{i}^{(d)}$

Dimension-8 Operators in LEFT

\because Four classes of $d=8$ LEFT operators: $X^{4}, \psi^{2} X^{2} D, \psi^{4} X, \psi^{4} D^{2}$

* all present in SMEFT!
\% Makes constructing a $d=8$ LEFT basis mostly straightforward...

Dimension-8 Operators in LEFT

$\%$...new types of 4-fermion ops. appear w/o $S U(2)_{L}$ gauge invariance

$$
\because N_{\text {ops. }}=\left.21144\right|_{\Delta B=0} ^{\Delta L=0}+\left.5442\right|_{\Delta B=0} ^{\Delta L=2}+\left.4536\right|_{\Delta B=1} ^{\Delta L=1}+\left.3888\right|_{\Delta B=1} ^{\Delta L=-1}+\left.48\right|_{\Delta B=0} ^{\Delta L=4}
$$

$=35058$ with $n_{u}=2, n_{d}=n_{e}=n_{\nu}=3$

$$
n \rightarrow p e^{-} \bar{\nu} \quad 0 \nu 2 \beta \quad p \rightarrow e^{+}+\pi^{0} \quad n \rightarrow e^{-}+\pi^{+} \quad 0 \nu 4 \beta
$$

> CM - JHEP 04 (2021) 101-2012.13291 (counting for arbitrary $n_{u, d, e, \nu}$ in paper)
> Li, Ren, Xiao, Yu, Zheng - 2012.09188 (also includes $d=9$)

Result only 16 pages long this time...

LEFTovers

* Matching from SMEFT to LEFT at $d=8$ is rich
* Contact interactions, W/Z exchange to 2nd order, Yukawa suppressed Higgs exchange, double-dipole insertions, triple-gauge insertions
\% LEFT has its own positivity bounds
* Assuming SMEFT is the correct UV EFT, is there additional info here?

Selection Rules

: Alonso, Jenkins, Manohar 1409.0868

* Cheung, Shen 1505.01844
* Operators can mix "up" or to the "right," but not "down" or to the "left"
color coding indicates "tree/loop mixing"

$d=8$ Selection Rules

* Operators can mix "up" or to the "right," but not "down" or to the "left"
* "Tree / loop mixing" is common at $d=8$ Craig, Jiang, Li, Sutherland 2001.00017

Application: Double Higgs Boson Production

* Is there a simple UV model that enhances the double Higgs boson production rate that's not already ruled out?
* Extended scalar sectors are leading candidates
$\because S U(2)_{L}$ singlets, triplets, quartets

Matching: Dimension-6 Operators

single Higgs production

Model	$\mathbf{c}_{\mathbf{H}}$	EWPD (T parameter)		
Real Singlet w/ explicit $\mathbf{Z}_{\mathbf{R}}$	$\tan ^{2} \alpha$	$\tan ^{2} \alpha\left(\lambda_{\alpha}-\frac{m_{2}}{v} \tan \alpha\right)$	0	0
Real Singlet w/ spontaneous Z	$\tan ^{2} \alpha$	0	0	0
Real Triplet	$-\frac{8 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{H}^{6}}{m_{H}^{4} v^{2}}$	$\frac{4 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$
Complex Triplet	$-\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$	$\frac{8 \sin ^{2} \beta m_{A}^{6}}{m_{H}^{4} v^{2}}$	$-\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$
Quartet ${ }_{1}$	0	$\frac{24 \tan ^{2} \beta m_{A}^{4}}{7 m_{2}^{2} v^{2}}$	0	0
Quartet ${ }_{3}$	0	$\frac{8 \tan ^{2} \beta m_{A}^{4}}{3 m_{H}^{2} v^{2}}$	0	0

Matching: Dimension-6 Operators

single Higgs production

Model	$\mathbf{c}_{\mathbf{H}}$	EWPD (T parameter)		
Real Singlet w/ explicit \mathbf{Z}_{2}	$\tan ^{2} \alpha$	$\tan ^{2} \alpha\left(\lambda_{\alpha}-\frac{m_{2}}{v} \tan \alpha\right)$	0	0
Real Singlet w/ spontaneous Z_{2}	$\tan ^{2} \alpha$	0	0	0
Real Triplet	$-\frac{8 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{H}^{6}}{m_{H}^{4} v^{2}}$	$\frac{4 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$
Complex Triplet	$-\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$	$\frac{8 \sin ^{2} \beta m_{A}^{6}}{m_{H}^{4} v^{2}}$	$-\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$
Quartet ${ }_{1}$	0	$\frac{24 \tan ^{2} \beta m_{A}^{4}}{7 m_{H}^{2} v^{2}}$	0	0
Quartet ${ }_{3}$	0	$\frac{8 \tan ^{2} \beta m_{A}^{4}}{3 m_{H}^{2} v^{2}}$	0	0

$S U(2)_{L}$ quartets seem like great candidates at $d=6$ level

EWPD in SMEFT

$\because S, T$ parameters start at $d=6$
$\% U$ parameter starts at $d=8$ - Grinstein, Wise Phys.Lett.B 265 (1991)
\because All 3 parameters receive contributions at $d=8$ (and beyond)

$$
\begin{aligned}
\frac{1}{16 \pi} S & =\frac{v_{T}^{2}}{\Lambda^{2}} c_{H W B}+\sum_{n=0}^{\infty} \frac{v_{T}^{4+2 n}}{2^{n} \Lambda^{4+2 n}} c_{W B H^{4+2 n}}^{(1)} \\
\bar{\alpha} T & =-\frac{v_{T}^{2}}{2 \Lambda^{2}} c_{H D}-\frac{v_{T}^{4}}{2 \Lambda^{4}} c_{H^{6} D^{2}}^{(2)} \\
\frac{1}{16 \pi} U & =\sum_{n=0}^{\infty} \frac{v_{T}^{4+2 n}}{2^{n} \Lambda^{4+2 n}} c_{W^{2} H^{4+2 n}}^{(3)}
\end{aligned}
$$

Double Higgs vs. EWPD: beyond $d=6$

Difference in experimental precision necessitates matching beyond $d=6$

Model	$\mathbf{c}_{\mathbf{H}}$	$\mathbf{c}_{\mathbf{6}} \lambda_{\mathbf{S M}}$	$\mathbf{c}_{\mathbf{T}}$	$\mathbf{c}_{\mathbf{f}}$
Real Singlet w/ explicit Z \mathbf{Q}^{2}	$\tan ^{2} \alpha$	$\tan ^{2} \alpha\left(\lambda_{\alpha}-\frac{m_{2}}{v} \tan \alpha\right)$	0	0
Real Singlet w/ spontaneous $Z_{\mathbf{Q}}$	$\tan ^{2} \alpha$	0	0	0
Real Triplet	$-\frac{8 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{H}^{6}}{m_{H}^{4} v^{2}}$	$\frac{4 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{H}^{4}}{m_{H}^{4}}$
Complex Triplet	$-\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$	$\frac{8 \sin ^{2} \beta m_{A}^{6}}{m_{H}^{4} v^{2}}$	$-\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$	$\frac{4 \sin ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$
Quartet ${ }_{1}$	0	$\frac{24 \tan ^{2} \beta m_{A}^{4}}{7 m_{H}^{2} v^{2}}$	$\frac{24 \tan ^{2} \beta m_{A}^{4}}{7 m_{H}^{4}}$	0
Quartet $_{3}$	0	$\frac{8 \tan ^{2} \beta m_{A}^{4}}{3 m_{H}^{2} v^{2}}$	$-\frac{8 \tan ^{2} \beta m_{A}^{4}}{m_{H}^{4}}$	0

$S U(2)_{L}$ quartets generate T at $d=8$ level

Summary

* Broad physics program at dimension-8
\therefore Many different motivations for going beyond $d=6$
\% Complete bases of $d=8$ operators in the SMEFT and LEFT are now known
* Ops. w/ derivatives \& repeated fields are handled in systematic fashion

Thanks!

All Things EFT search engine optimization

all things eft
All Images Videos News Maps Shopping Settings

All regions v Safe search: moderate v Any time v

All Things EFT - YouTube
https://www.youtube.com/channel/UC1_KF6kdJFoDEcLgpcegwCQ
This channel is dedicated to a new cross-cutting global lecture series titled "All Things EFT" starting 30 Sep . 2020. The lecture series is weekly on Wednesdays at 4pm CET, with talks being given...

Improvement from October!

All Things EFT - Google Sites

G https://sites.google.com/view/all-things-eft

\squareAll Things EFT is launched as a weekly international online lecture series in fall 2020, on September 30th. Topics include all aspects of EFTs such as SMEFT, HEFT, LEFT, Dark Matte EFT, EFTs of...

All Things EFT Tapping Manual: Emotional Freedom Technique ...
? a https://www.amazon.com/All-Things-EFT-Tapping-Manual/dp/1938525477
All Things EFT Tapping Manual: Emotional Freedom Technique [Cason, Tessa] on Amazon.com. *FREE* shipping on qualifying offers. All Things EFT Tapping Manual: Emotional Freedom Technique

All Things EFT Tapping Manual - Kindle edition by Cason a https://www.amazon.com/All-Things-EFT-Tapping-Manual-ebook/dp/B017QGLDOW
? All Things EFT Tapping Manual EFT Tapping - Emotional Freedom Technique If we want to make changes in our lives, long-lasting, permanent, constructive changes, we have to change the destructive, dysfunctional, mis-beliefs in the subconscious. We have to change the programming in the subconscious.

EFT disambiguation

Repeated Fields \& Flavor Reps.

Flavor Reps. Example: $q^{3} l B$

\because Given a contraction of Lorentz indices, how should the $S U(2)_{L}$ indices be contracted?
$\therefore\{2,1\}$ is a $2 d$ representation of the permutation group S_{3}
\therefore Consider $Q_{q^{3} l B}^{(1)}$ from previous slide and $Q_{q^{3} l B}^{(3)}=\epsilon_{\alpha \beta \gamma} \epsilon_{m j} \epsilon_{k n}\left(q_{p}^{m \alpha} C q_{r}^{j \beta}\right)\left(q_{s}^{k \gamma} C \sigma^{\mu \nu} l_{t}^{n}\right) B_{\mu \nu}$

$\therefore p \leftrightarrow r$ symmetry of $Q_{q^{3} l B}^{(3)}$ doesn't allow for the antisymmetric $\{1,1,1\}$ rep. of S_{3}
\therefore whereas $\underset{\substack{q^{3} l B \\ p r s t}}{Q^{(1)}}+\underset{\substack{q^{3} l B \\ r p s t}}{(1)}=\underset{\substack{q^{3} l B \\ s p r t}}{Q_{\text {spt }}^{(1)}}+\underset{\substack{q^{3} l B \\ \text { srpt }}}{(1)}$ allows for all 3 flavor representations

More Selection Rules

$\%$ "Tree/loop mixing" is common at $d=8$ 2001.00017 Craig, Jiang, Li, Sutherland

* Selection rules from angular momentum 2001.04481 Jiang, Shu, Xiao, Zheng
$\because d=6$ selection rules at two-loops 2005.12917 Bern, Parra-Martinez, Sawyer

8 \bar{w}	X_{L}^{4}	$\begin{aligned} & X_{L}^{3} H^{2}, \\ & X_{L}^{2} \psi^{2} H, \\ & X_{L} \psi^{4} \end{aligned}$	$\begin{aligned} & X_{L}^{2} H^{4} \\ & X_{L} \psi^{2} H^{3} \\ & \psi^{4} H^{2} \end{aligned}$	$\psi^{2} H^{5}$	H^{8}
6		$\begin{aligned} & X_{L}^{2} H^{2} D^{2} \\ & X_{L}^{2} \psi \bar{\psi} D \\ & X_{L} \psi^{2} H D^{2} \\ & \psi^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{L} H^{4} D^{2}, \\ & X_{L}^{2} \bar{\psi}^{2} H, \\ & X_{L} \psi \bar{\psi} H^{2} D, \\ & \psi^{2} H^{3} D^{2}, \\ & X_{L} \psi^{2} \bar{\psi}^{2}, \\ & \psi^{3} \bar{\psi} H D \end{aligned}$	$\begin{aligned} & H^{6} D^{2} \\ & \psi \bar{\psi} H^{4} D \\ & \psi^{2} \bar{\psi}^{2} H^{2} \end{aligned}$	$\bar{\psi}^{2} H^{5}$
4			$\begin{aligned} & X_{L}^{2} X_{R}^{2}, \\ & X_{L} X_{R} H^{2} D^{2}, \\ & H^{4} D^{4}, \\ & X_{L} X_{R} \psi \bar{\psi} D, \\ & X_{R} \psi^{2} H D^{2}, \\ & X_{L} \bar{\psi}^{2} H D^{2}, \\ & \psi \bar{\psi} H^{2} D^{3}, \\ & \psi^{2} \bar{\psi}^{2} D^{2} \end{aligned}$	$\begin{aligned} & X_{R} H^{4} D^{2}, \\ & X_{R}^{2} \psi^{2} H, \\ & X_{R} \psi \bar{\psi} H^{2} D, \\ & \bar{\psi}^{2} H^{3} D^{2}, \\ & X_{R} \psi^{2} \bar{\psi}^{2}, \\ & \psi \bar{\psi}^{3} H D \end{aligned}$	$\begin{aligned} & X_{R}^{2} H^{4}, \\ & X_{R} \bar{\psi}^{2} H^{3}, \\ & \bar{\psi}^{4} H^{2} \end{aligned}$
2				$\begin{aligned} & X_{R}^{2} H^{2} D^{2} \\ & X_{R}^{2} \psi \bar{\psi} D \\ & X_{R} \bar{\psi}^{2} H D^{2} \\ & \bar{\psi}^{4} D^{2} \end{aligned}$	$\begin{aligned} & X_{R}^{3} H^{2} \\ & X_{R}^{2} \bar{\psi}^{2} H \\ & X_{R} \bar{\psi}^{4} \end{aligned}$
0					X_{R}^{4}
	0	2	4	6	8

Muon $g-2$

$\therefore d=8$ effects can be parametrically different from $d=6$
UV theory w/ heavy
Higgs φ

SMEFT

$\psi^{4}, \quad d=6$
$\psi^{2} X^{2} H, \quad d=8$
(vector leptoquark instead generates $\psi^{4} X$)

Non-standard neutrino interactions

* At $d=6$ all $\left(\bar{\nu} \gamma_{\mu} \nu\right)\left(\bar{f} \gamma^{\mu} f\right)$ operators are experimentally constrained by $\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{f} \gamma^{\mu} f\right)$ operators
* $\psi^{4} H^{2}$ operators allow for independent $\nu^{2} f^{2}$ ops. at low-energy

$d=6$ correlations broken at $d=8$

\therefore Lepton universality violation - no $d=6$ SMEFT contribution to LEFT operator $\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{L \tau}\right)\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)$
$\% W, Z, \gamma$ dipole moments - only 2 of 3 are independent at $d=6$
\because Triple gauge couplings

* $X^{3} H^{2} \rightarrow \lambda_{Z} \neq \lambda_{y}$
$\because X H^{4} D^{2} \rightarrow g_{1}^{V}, \kappa_{V} \not \propto C_{H W B}$
\% Higgs measurements $-\psi^{2} H^{5}$ breaks correlation between Yukawa contribution to single and double Higgs production

Multi-boson processes

\because Quartic gauge couplings $-X^{4}, H^{4} D^{4}, X^{2} H^{2} D^{2}$

* Light-by-light scattering $-X^{4}$
* Neutral triple gauge couplings $-X^{2} H^{2} D^{2}$
* $\psi \bar{\psi} \rightarrow V_{L} V_{L}$ from $\psi^{2} H^{2} D^{3}$ can dominate over $\psi^{2} H^{2} D$
$\therefore \psi \bar{\psi} \rightarrow V_{T} Z_{L}$ from $\psi^{2} X H D^{2}$ can dominate over $C_{H W B}$

More $d=8$ physics

* Radiative FCNC decays or lepton flavor violating processes from $\psi^{2} X^{2} H$ e.g. 1803.00313, 2103.07212
$\%$ Helicity violating scattering e.g. $e_{L} e_{R} \rightarrow e_{L} e_{L}$ from $\psi^{2} H D$
* Novel angular observables - 2003.11615
\% Testing positivity at colliders e.g. $e^{+} e^{-} \rightarrow \gamma \gamma-2011.03055$
\% Neutron EDM: $G^{3} \widetilde{G}$ can dominate over $G^{2} \widetilde{G}$

