Dimension-8 Operators in SMEFT and LEFT

Chris Murphy

Mostly based on JHEP 10 (2020) 174 - 2005.00059 JHEP 04 (2021) 101 - 2012.13291 along with a bit of Phys.Rev.D 96 (2017) 1, 015041 - 1704.07851 w/ S. Dawson

Dimension-8 Operators

Why?

Dimension-8 Operators

Aren't there already a lot of dimension-6 operators?

 $t \rightarrow cg\gamma$ $\mu A \rightarrow eA$

Non-standard neutrino interactions

U

S, T

EWPD

parametrically new contributions to g - 2

Dimension-6

 W, Z, γ dipole moments

Broken correlations

Lepton universality violation (charged-current)

 $\psi\bar{\psi} \to V_T Z_L$

$\psi\bar{\psi} \to V_L V_L$

Neutron EDM

Drell-Yan

$e_L e_R \rightarrow e_L e_L$

Dimension-8 SMEFT Physics

Positivity Bounds

 $W^{\pm}h$

Light-by-Light scattering

 $e^+e^- \rightarrow \gamma\gamma$

Quartic gauge couplings

Neutral triple gauge couplings

Triple gauge couplings

Higgs measurements $pp \rightarrow p$

Standard Model Effective Field Theory

- Operator counting program has been hugely successful
- Now need actual (higher d) bases of operators for physics applications
- Non-trivial task due to:
 - large number of operators
 - presence of derivatives and repeated fields

Equations of Motion

 Avoid EOM redundancy by keeping only highest weight Lorentz reps. - Lehman, Martin 1503.07537

* $D\psi_L \sim (D\psi_L)_{(ab),\dot{a}}, DX_R \sim (DX_R)_{a,(\dot{a}\dot{b}\dot{c})}, D^2H \sim (D^2H)_{(ab),(\dot{a}\dot{b})}$

EOM + Integration by Parts

 Method based on Hays, Martin, Sanz, Setford 1808.00442 * Example: \overline{l}, e, H, B_L field content w/ 2 derivatives

EOM + IBP

* Example: \overline{l}, e, H, B_L field content w/ 2 derivatives * 4 non-EOM-reducible candidate ops., x_{1-4}

$$\begin{aligned} x_1 &= (D\bar{l})_{a,(\dot{a}\dot{c})} e_{\dot{d}} (DH)_{b,\dot{b}} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{d}} \epsilon^{\dot{c}\dot{d}} \\ x_2 &= \bar{l}_{\dot{c}} (De)_{a,(\dot{a}\dot{d})} (DH)_{b,\dot{b}} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{d}\dot{b}} \\ x_3 &= (D\bar{l})_{a,(\dot{a}\dot{c})} (De)_{b,(\dot{b}\dot{d})} HB_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{b}\dot{d}} \\ x_4 &= \bar{l}_{\dot{c}} e_{\dot{d}} (D^2 H)_{(ab),(\dot{a}\dot{b})} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{b}\dot{d}}, \end{aligned}$$

CM - JHEP 10 (2020) 174 - 2005.00059

EOM + IBP

- Example: l, e, H, B_L field content w/ 2 derivatives
- * 4 non-EOM-reducible candidate ops., x_{1-4}
- ✤ 3 independent IBP constraints, $Dy_{1-3} = 0$

$$\begin{aligned} x_1 &= (D\bar{l})_{a,(\dot{a}\dot{c})} e_{\dot{d}} (DH)_{b,\dot{b}} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{d}} \epsilon^{\dot{c}\dot{b}} \\ x_2 &= \bar{l}_{\dot{c}} (De)_{a,(\dot{a}\dot{d})} (DH)_{b,\dot{b}} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{d}\dot{b}} \\ x_3 &= (D\bar{l})_{a,(\dot{a}\dot{c})} (De)_{b,(\dot{b}\dot{d})} HB_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{b}\dot{d}} \\ x_4 &= \bar{l}_{\dot{c}} e_{\dot{d}} (D^2H)_{(ab),(\dot{a}\dot{b})} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{b}\dot{d}}, \end{aligned}$$

$$y_{1} = (D\bar{l})_{a,(\dot{a}\dot{c})}e_{\dot{d}}HB_{(cd)}\epsilon^{ac}\epsilon^{\dot{a}\dot{d}},$$

$$y_{2} = \bar{l}_{\dot{c}}(De)_{a,(\dot{a}\dot{d})}HB_{(cd)}\epsilon^{ac}\epsilon^{\dot{a}\dot{c}},$$

$$y_{3} = \bar{l}_{\dot{c}}e_{\dot{d}}(DH)_{a,\dot{a}}B_{(cd)}\frac{1}{2}\epsilon^{ac}(\epsilon^{\dot{a}\dot{c}} + \epsilon^{\dot{a}\dot{c}})$$

CM - JHEP 10 (2020) 174 - 2005.00059

EOM + IBP

- * Example: \overline{l}, e, H, B_L field content w/ 2 derivatives
- * 4 non-EOM-reducible candidate ops., x_{1-4}
- * 3 independent IBP constraints, $Dy_{1-3} = 0$
- Keep only 4 3 = 1 combination of x_{1-4}

$$\begin{aligned} x_1 &= (D\bar{l})_{a,(\dot{a}\dot{c})} e_{\dot{d}} (DH)_{b,\dot{b}} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{d}} \epsilon^{\dot{c}\dot{b}} \\ x_2 &= \bar{l}_{\dot{c}} (De)_{a,(\dot{a}\dot{d})} (DH)_{b,\dot{b}} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{d}\dot{b}} \\ x_3 &= (D\bar{l})_{a,(\dot{a}\dot{c})} (De)_{b,(\dot{b}\dot{d})} HB_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{b}\dot{d}} \epsilon^{\dot{a}\dot{b}} \epsilon^{\dot{a}\dot{c}} \\ x_4 &= \bar{l}_{\dot{c}} e_{\dot{d}} (D^2 H)_{(ab),(\dot{a}\dot{b})} B_{(cd)} \epsilon^{ac} \epsilon^{bd} \epsilon^{\dot{a}\dot{c}} \epsilon^{\dot{b}\dot{d}}, \end{aligned}$$

$$y_{1} = (D\bar{l})_{a,(\dot{a}\dot{c})}e_{\dot{d}}HB_{(cd)}\epsilon^{ac}\epsilon^{\dot{a}\dot{d}},$$

$$y_{2} = \bar{l}_{\dot{c}}(De)_{a,(\dot{a}\dot{d})}HB_{(cd)}\epsilon^{ac}\epsilon^{\dot{a}\dot{c}},$$

$$y_{3} = \bar{l}_{\dot{c}}e_{\dot{d}}(DH)_{a,\dot{a}}B_{(cd)}\frac{1}{2}\epsilon^{ac}(\epsilon^{\dot{a}\dot{c}} + \epsilon^{\dot{a}\dot{c}})$$

CM - JHEP 10 (2020) 174 - 2005.00059

Repeated Fields & Flavor Representations

Method based on Fonseca 1907.12584 * • Example field content: $q^3 lB$

(this example by **CM**)

{2,1} is 2*d* rep. of S_3 - only 1 non-redundant op.

 $\operatorname{Field}(s)$

Group

 $SU(3)_c$

 $SU(2)_L$

 $SU(2)_{\ell}$

 Multiply rows together to get valid operator contractions

Field(s) Group

 $SU(3)_c$

 Multiply rows together to get valid operator contractions

 $SU(2)_L$

 $SU(2)_{\ell}$

enforce Bose or Fermi sym.——Grassmann

- Multiply rows together to get valid operator contractions
- Multiply columns together to get flavor representations

Field(s)Group $SU(3)_c$ $SU(2)_L$ $SU(2)_{\ell}$ Grassmann

Flavor

Lagrangian terms

* 4-electron operator: $Q_{ee} = (\bar{e}_1 \gamma^{\mu} e_1)(\bar{e}_1 \gamma_{\mu} e_1)$

What should be included in the sum?... *

associated "Lagrangian term": $\Delta \mathscr{L} = \sum_{p,r,s,t} C_{ee} Q_{ee}_{prst}$ flavor indices

Lagrangian terms

- * ... A choice for your convenience. Physics is independent of this choice
- 1. Minimum number of Lagrangian terms
 - **CM** JHEP 10 (2020) 174, 2005.00059
 - analogous to Warsaw basis
- 2. One Lagrangian term per flavor representation
 - Li, Ren, Shu, Xiao, Yu, Zheng 2005.00008
 - At d = 6 would have 100 real LTs instead of 84

The result is 17 pages long...

CM - JHEP 10 (2020) 174 - 2005.00059

 $\begin{array}{l} \displaystyle \underset{q_{\rm BWDD}}{\operatorname{QBWDD}} & \overset{({\rm Op})}{=} \frac{1}{D} \overset{({\rm Op})}{\operatorname{Pri}} \overset{({\rm Op})}{=} \frac{1}{D} \overset{({\rm Op})}{\operatorname{Qri}} \overset{({\rm Op})}{\operatorname{Qri}} \overset{({\rm Op})}{=} \overset{({\rm Op})}{\operatorname{Qri}} \overset{({\rm Op}$

 $(d_p \gamma^{\nu} I^{\nu} d_r) (H^{\dagger} D^{\nu} H) G_{\mu}^{\mu}$ $(\tilde{d}_p \gamma^{\nu} d_r) D^{\mu} (H^{\dagger} \tau^I H) W_{\mu I}^{I}$ $(\tilde{d}_p \gamma^{\nu} d_r) D^{\mu} (H^{\dagger} \tau^I H) \tilde{W}_{\mu I}^{I}$ $(\tilde{d}_p \gamma^{\nu} d_r) (H^{\dagger} \overline{D}^{I \mu} H) W_{\mu I}^{I}$ $(\tilde{d}_p \gamma^{\nu} d_r) (H^{\dagger} \overline{D}^{I \mu} H) \tilde{W}_{\mu I}^{I}$ $(\bar{d}_p \gamma^\nu d_r) D^\mu (H^{\dagger}H) B_{\mu i}$ $(\tilde{d}_p \gamma^\nu d_r) D^\mu (H^\dagger H) \widetilde{B}_\mu$

 $\gamma^{\mu} \overleftrightarrow{D}^{\nu} u_r)(\bar{u}_* \gamma_{\nu} \overleftrightarrow{D}_{\nu} u$

Low-Energy EFT below the Electroweak Scale

Gauge group: QCD x QED * * $\mathscr{L}_{\text{LEFT}} = \mathscr{L}_{\text{QCD}} + \mathscr{L}_{\text{QED}} + \sum_{d>4} \sum_{i} L_{i}^{(d)} \mathcal{O}_{i}^{(d)}$

Contains SM particles w/ masses parametrically smaller than EW scale

Correct low-energy theory even when SMEFT is not the high-energy EFT

Dimension-8 Operators in LEFT

• Four classes of d = 8 LEFT operators: $X^4, \psi^2 X^2 D, \psi^4 X, \psi^4 D^2$

all present in SMEFT!

• Makes constructing a d = 8 LEFT basis <u>mostly</u> straightforward...

Dimension-8 Operators in LEFT

* ...new types of 4-fermion ops. appear w/o $SU(2)_L$ gauge invariance * $N_{\text{ops.}} = 21144 |_{\Delta B=0}^{\Delta L=0} + 5442 |_{\Delta B=0}^{\Delta L=2} + 4536 |_{\Delta B=1}^{\Delta L=1} + 3888 |_{\Delta B=1}^{\Delta L=-1} + 48 |_{\Delta B=0}^{\Delta L=4}$ = 35058 with $n_{\mu} = 2, n_d = n_e = n_{\nu} = 3$ $n \to p e^- \bar{\nu}$ $0\nu 2\beta$ $p \to e^+ + \pi^0$ $n \to e^- + \pi^+$

 $0\nu 4\beta$

CM - JHEP 04 (2021) 101 - 2012.13291 (counting for arbitrary $n_{u,d,e,\nu}$ in paper) Li, Ren, Xiao, Yu, Zheng - 2012.09188 (also includes d = 9)

Result only 16 pages long this time...

LEFTovers

• Matching from SMEFT to LEFT at d = 8 is rich

- LEFT has its own positivity bounds

Contact interactions, W/Z exchange to 2nd order, Yukawa suppressed Higgs exchange, double-dipole insertions, triple-gauge insertions

Assuming SMEFT is the correct UV EFT, is there additional info here?

Selection Rules

- Alonso, Jenkins, Manohar 1409.0868
- * Cheung, Shen 1505.01844
 - Operators can mix "up" or to the "right," but not "down" or to the "left"

color coding indicates "tree/loop mixing"

d = 8 Selection Rules

- Operators can mix "up" or to the "right," but not "down" or to the "left"
- * "Tree/loop mixing" is common at d = 8 -Craig, Jiang, Li, Sutherland 2001.00017

CM - JHEP 10 (2020) 174 - 2005.00059

w

	8	X_L^4	$egin{array}{llllllllllllllllllllllllllllllllllll$	$X_L^2 H^4, X_L \psi^2 H^3, \psi^4 H^2$	$\psi^2 H^5$	H^8
w	6		$X_{L}^{2}H^{2}D^{2},$ $X_{L}^{2}\psi\bar{\psi}D,$ $X_{L}\psi^{2}HD^{2},$ $\psi^{4}D^{2}$	$\begin{array}{c} X_{L}H^{4}D^{2}, \ X_{L}^{2}ar{\psi}^{2}H, \ X_{L}\psiar{\psi}H^{2}D, \ \psi^{2}H^{3}D^{2}, \ X_{L}\psi^{2}ar{\psi}^{2}, \ \psi^{3}ar{\psi}HD \end{array}$	$egin{array}{ll} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2 H^2 \end{array}$	$ar{\psi}^2 I$
	4			$egin{aligned} &X_L^2 X_R^2, \ &X_L X_R H^2 D^2, \ &H^4 D^4, \ &X_L X_R \psi ar{\psi} D, \ &X_R \psi^2 H D^2, \ &X_L ar{\psi}^2 H D^2, \ &\psi ar{\psi} H^2 D^3, \ &\psi^2 ar{\psi}^2 D^2 \end{aligned}$	$egin{aligned} &X_RH^4D^2,\ &X_R^2\psi^2H,\ &X_R\psi\bar\psi H^2D,\ &ar\psi^2H^3D^2,\ &X_R\psi^2ar\psi^2,\ &\psiar\psi^3HD \end{aligned}$	$egin{array}{c} X_R^2 \ X_R \ ar{\psi}^4 I \end{array}$
	2				$egin{aligned} &X_R^2 H^2 D^2,\ &X_R^2 \psi ar{\psi} D,\ &m{X_R} ar{\psi}^2 H D^2,\ &ar{\psi}^4 D^2 \end{aligned}$	$egin{array}{c} X_R^3 \ X_R^2 \ X_R \ X_R \end{array}$
	0					X_R^4
		0	2	4	6	8

Application: Double Higgs Boson Production

- Is there a simple UV model that enhances the double Higgs boson production rate that's not already ruled out?
- Extended scalar sectors are leading candidates *
 - * $SU(2)_I$ singlets, triplets, quartets

Matching: Dimension-6 Operators

Model	c _H
Real Singlet w/ explicit 🏾	$\tan^2 \alpha$
Real Singlet w/ spontaneous $\mathbb{Z}_{\mathbb{Q}}$	$\tan^2 \alpha$
Real Triplet	$-\frac{8\sin^2\beta m_H^4}{m_H^4}$
Complex Triplet	$-\frac{4\sin^2\beta m}{m_H^4}$
$Quartet_1$	0
$Quartet_3$	0

S. Dawson, CM - Phys.Rev.D 96 (2017) 1, 015041 - 1704.07851

Matching: Dimension-6 Operators

Model	C _H
Real Singlet w/ explicit 🛛	$\tan^2 \alpha$
Real Singlet w/ spontaneous	$\mathbb{K}_{\mathbf{X}} = \tan^2 \alpha$
Real Triplet	$-\frac{8\sin^2\beta m_H^2}{m_H^4}$
Complex Triplet	$-\frac{4\sin^2\beta m}{m_H^4}$
$Quartet_1$	0
$Quartet_3$	0

 $SU(2)_L$ quartets seem like great candidates at d = 6 level

S. Dawson, CM - Phys.Rev.D 96 (2017) 1, 015041 - 1704.07851

EWPD in SMEFT

- *S*, *T* parameters start at d = 6
- *U* parameter starts at *d* = 8 Grinstein,
 Wise Phys.Lett.B 265 (1991)
- * All 3 parameters receive contributions at d = 8 (and beyond)

$$\begin{aligned} \frac{1}{16\pi}S &= \frac{v_T^2}{\Lambda^2}c_{HWB} + \sum_{n=0}^{\infty} \frac{v_T^{4+2n}}{2^n \Lambda^{4+2n}}c_{WBH^4}^{(1)}\\ \bar{\alpha}T &= -\frac{v_T^2}{2\Lambda^2}c_{HD} - \frac{v_T^4}{2\Lambda^4}c_{H^6D^2}^{(2)},\\ \frac{1}{16\pi}U &= \sum_{n=0}^{\infty} \frac{v_T^{4+2n}}{2^n \Lambda^{4+2n}}c_{W^2H^{4+2n}}^{(3)}, \end{aligned}$$

CM - JHEP 10 (2020) 174 - 2005.00059 see also the geoSMEFT papers by Corbett, Hays, Helset, Martin, Trott

Double Higgs vs. EWPD: beyond d = 6

Difference in experimental precision necessitates matching beyond d = 6

Model	$\mathbf{c}_{\mathbf{H}}$	$c_6 \lambda_{SM}$	$\mathbf{c_T}$	$\mathbf{c_f}$
Real Singlet w/ explicit 🖉	$\tan^2 \alpha$	$\left \tan^2 \alpha \left(\lambda_{\alpha} - \frac{m_2}{v} \tan \alpha\right)\right $	0	0
Real Singlet w/ spontaneous 🛛	$\tan^2 \alpha$	0	0	0
Real Triplet	$-\frac{8\sin^2\beta m_{H^+}^4}{m_H^4}$	$\frac{4 \sin^2 \beta m_{H^+}^6}{m_H^4 v^2}$	$\frac{4\sin^2\beta m_{H^+}^4}{m_H^4}$	$\frac{4\sin^2\beta m_{H^+}^4}{m_H^4}$
Complex Triplet	$-\frac{4\sin^2\beta m_A^4}{m_H^4}$	$\frac{8\sin^2\beta m_A^6}{m_H^4 v^2}$	$-\frac{4\sin^2\beta m_A^4}{m_H^4}$	$\frac{4\sin^2\beta m_A^4}{m_H^4}$
$Quartet_1$	0	$\frac{24\tan^2\beta m_A^4}{7m_H^2v^2}$	$\frac{24\tan^2\betam_A^4}{7m_H^4}$	0
Quartet ₃	0	$\frac{8\tan^2\beta m_A^4}{3m_H^2v^2}$	$-\frac{8\tan^2\betam_A^4}{m_H^4}$	0

 $SU(2)_L$ quartets generate T at d = 8 level S. Dawson, CM - Phys.Rev.D 96 (2017) 1, 015041 - 1704.07851

Broad physics program at dimension-8
Many different motivations for going beyond *d* = 6
Complete bases of *d* = 8 operators in the SMEFT and LEFT are now known
Ops. w/ derivatives & repeated fields are handled in systematic fashion

Thanks!

5

All Things EFT search engine optimization

all things eft

All Images Videos News Maps Shopping

Settings •

Q

All regions

Safe search: moderate

Any time

All Things EFT - YouTube

https://www.youtube.com/channel/UC1_KF6kdJFoDEcLgpcegwCQ

This channel is dedicated to a new cross-cutting global lecture series titled "All Things EFT" starting 30 Sep. 2020. The lecture series is weekly on Wednesdays at 4pm CET, with talks being given...

All Things EFT - Google Sites

G https://sites.google.com/view/all-things-eft

All Things EFT is launched as a weekly international online lecture series in fall 2020, on September 30th. Topics include all aspects of EFTs such as SMEFT, HEFT, LEFT, Dark Matter EFT, EFTs of...

All Things EFT Tapping Manual: Emotional Freedom Technique ...

a https://www.amazon.com/All-Things-EFT-Tapping-Manual/dp/1938525477

All Things EFT Tapping Manual: Emotional Freedom Technique [Cason, Tessa] on Amazon.com. *FREE* shipping on qualifying offers. **All Things EFT** Tapping Manual: Emotional Freedom Technique

All Things EFT Tapping Manual - Kindle edition by Cason ...

a https://www.amazon.com/All-Things-EFT-Tapping-Manual-ebook/dp/B017QGLDOW

All Things EFT Tapping Manual EFT Tapping - Emotional Freedom Technique If we want to make changes in our lives, long-lasting, permanent, constructive changes, we have to change the destructive, dysfunctional, mis-beliefs in the subconscious. We have to change the programming in the subconscious.

Improvement from October!

EFT disambiguation

all things eft

All Images Videos News Maps Shopping

Settings •

Q

All regions 🔹 Safe search: moderate 💌 Any time 💌

All Things EFT - YouTube

https://www.youtube.com/channel/UC1_KF6kdJFoDEcLgpcegwCQ

This channel is dedicated to a new cross-cutting global lecture series titled "All Things EFT" starting 30 Sep. 2020. The lecture series is weekly on Wednesdays at 4pm CET, with talks being given...

All Things EFT - Google Sites

G https://sites.google.com/view/all-things-eft

All Things EFT is launched as a weekly international online lecture series in fall 2020, on September 30th. Topics include all aspects of EFTs such as SMEFT, HEFT, LEFT, Dark Matter EFT, EFTs of...

All Things EFT Tapping Manual: Emotional Freedom Technique ...

a https://www.amazon.com/All-Things-EFT-Tapping-Manual/dp/1938525477

All Things EFT Tapping Manual: Emotional Freedom Technique [Cason, Tessa] on Amazon.com. *FREE* shipping on qualifying offers. **All Things EFT** Tapping Manual: Emotional Freedom Technique

All Things EFT Tapping Manual - Kindle edition by Cason ...

a, https://www.amazon.com/All-Things-EFT-Tapping-Manual-ebook/dp/B017QGLDOW

All Things EFT Tapping Manual **EFT** Tapping - Emotional Freedom Technique If we want to make changes in our lives, long-lasting, permanent, constructive changes, we have to change the destructive, dysfunctional, mis-beliefs in the subconscious. We have to change the programming in the subconscious.

		$\operatorname{Field}(s)$
		Group
* N 8	Aultiply rows together to get valid operator	$SU(3)_c$
C	ontractions	$SU(2)_L$
* N te	Aultiply columns ogether to get flavor	$SU(2)_\ell$
r	epresentations	Grassmann
$Q^{(1)}_{lq^3B}$	$\epsilon_{\alpha\beta\gamma}\epsilon_{mn}\epsilon_{jk}(q_p^{m\alpha}Cq_r^{j\beta})(q_s^{k\gamma}C\sigma^{\mu\nu}l_t^n)$	$B_{\mu u}$
		Flavor
$Q_{lq^3B}^{(2)}$	$\epsilon_{\alpha\beta\gamma}\epsilon_{mn}\epsilon_{jk}(q_p^{m\alpha}C\sigma^{\mu\nu}q_r^{j\beta})(q_s^{k\gamma}Cl_t^n)$	$B_{\mu u}$

Flavor Reps. Example: q³*lB*

- Given a contraction of Lorentz indices, how should the $SU(2)_{I}$ indices be contracted? *
 - * $\{2,1\}$ is a 2*d* representation of the permutation group S_3

• Consider $Q_{a^{3}lB}^{(1)}$ from previous slide and $Q_{a^{3}lB}^{(3)} = \epsilon_{\alpha\beta\gamma}\epsilon_{mj}\epsilon_{kn}(q_{p}^{m\alpha}Cq_{r}^{j\beta})(q_{s}^{k\gamma}C\sigma^{\mu\nu}l_{t}^{n})B_{\mu\nu}$

*	$-Q_{q^{3}lB}^{(3)} =$	$= Q_{q^3 l B}^{(1)}$ +	$-Q_{q^{3}lB}^{(1)}$
	prst	prst	rpst

 $\bullet p \leftrightarrow r$ symmetry of $Q_{a^{3}lB}^{(3)}$ doesn't allow for the antisymmetric {1,1,1} rep. of S_{3}

whereas $Q_{q^{3}lB}^{(1)} + Q_{q^{3}lB}^{(1)} = Q_{q^{3}lB}^{(1)} + Q_{q^{3}lB}^{(1)}$ allows for all 3 flavor representations rpst sprt srpt prst

More Selection Rules

- * "Tree / loop mixing" is common at d = 8 -2001.00017 Craig, Jiang, Li, Sutherland
- Selection rules from angular momentum -2001.04481 Jiang, Shu, Xiao, Zheng
- * d = 6 selection rules at two-loops -2005.12917 Bern, Parra-Martinez, Sawyer

CM - JHEP 10 (2020) 174 - 2005.00059

w

	8	X_L^4	$egin{array}{llllllllllllllllllllllllllllllllllll$	$X_L^2 H^4,$ $X_L \psi^2 H^3,$ $\psi^4 H^2$	$\psi^2 H^5$	H^8
w	6		$egin{aligned} X_L^2 H^2 D^2,\ X_L^2 \psi ar \psi D,\ X_L \psi^2 H D^2,\ \psi^4 D^2 \end{aligned}$	$egin{aligned} X_L H^4 D^2, \ X_L^2 ar{\psi}^2 H, \ X_L \psi ar{\psi} H^2 D, \ \psi^2 H^3 D^2, \ X_L \psi^2 ar{\psi}^2, \ \psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{ll} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2 H^2 \end{array}$	$ar{\psi}^2 I$
	4			$egin{aligned} X_L^2 X_R^2, \ X_L X_R H^2 D^2, \ H^4 D^4, \ X_L X_R \psi ar{\psi} D, \ X_R \psi^2 H D^2, \ X_L ar{\psi}^2 H D^2, \ \psi ar{\psi} H^2 D^3, \ \psi^2 ar{\psi}^2 D^2 \end{aligned}$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar{\psi} H^2 D, \ &ar{\psi}^2 H^3 D^2, \ &X_R \psi^2 ar{\psi}^2, \ &\psi ar{\psi}^3 H D \end{aligned}$	$egin{array}{c} X_R^2 \ X_R \ ar{\psi}^4 P \end{array}$
	2				$egin{aligned} &X_R^2 H^2 D^2,\ &X_R^2 \psi ar{\psi} D,\ &X_R ar{\psi}^2 H D^2,\ &ar{\psi}^4 D^2 \end{aligned}$	$egin{array}{c} X_R^3 \ X_R^2 \ X_R \ X_R \end{array}$
	0					X_R^4
		0	2	4	6	8

Muon *g* – 2

* d = 8 effects can be parametrically different from d = 6

UV theory w/ heavy Higgs φ

SMEFT

(SM Higgs lines not drawn)

 $\psi^4, \quad d=6$

 $\psi^2 X^2 H, \quad d=8$

(vector leptoquark instead generates $\psi^4 X$)

Non-standard neutrino interactions

* At d = 6 all $(\bar{\nu}\gamma_{\mu}\nu)(\bar{f}\gamma^{\mu}f)$ operators are experimentally constrained by $(\bar{e}\gamma_{\mu}e)(\bar{f}\gamma^{\mu}f)$ operators

* $\psi^4 H^2$ operators allow for independent $\nu^2 f^2$ ops. at low-energy

d = 6 correlations broken at d = 8

- W, Z, γ dipole moments only 2 of 3 are independent at d = 6
- Triple gauge couplings

$$* X^3 H^2 \to \lambda_Z \neq \lambda_\gamma$$

- * $XH^4D^2 \rightarrow g_1^V, \kappa_V \not \propto C_{HWB}$
- Higgs measurements $\psi^2 H^5$ breaks correlation between Yukawa contribution to single and double Higgs production

* Lepton universality violation - no d = 6 SMEFT contribution to LEFT operator $(\bar{\tau}_L \gamma_\mu \nu_L \tau) (\bar{c}_R \gamma^\mu b_R)$

Multi-boson processes

• Quartic gauge couplings - X^4 , H^4D^4 , $X^2H^2D^2$ Light-by-light scattering - X⁴ • Neutral triple gauge couplings - $X^2H^2D^2$ • $\psi \bar{\psi} \rightarrow V_I V_I$ from $\psi^2 H^2 D^3$ can dominate over $\psi^2 H^2 D$ • $\psi \bar{\psi} \rightarrow V_T Z_L$ from $\psi^2 XHD^2$ can dominate over C_{HWR}

More d = 8 physics

- e.g. 1803.00313, 2103.07212
- * Helicity violating scattering e.g. $e_I e_R \rightarrow e_I e_I$ from $\psi^2 HD$
- Novel angular observables 2003.11615
- * Testing positivity at colliders e.g. $e^+e^- \rightarrow \gamma\gamma 2011.03055$
- Neutron EDM: $G^3 \widetilde{G}$ can dominate over $G^2 \widetilde{G}$

• Radiative FCNC decays or lepton flavor violating processes from $\psi^2 X^2 H$

