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Motivation:
Connect Positivity bounds with phenomenology
Test unitarity and analyticity of the Minimal flavor Violation assumption in the Standard Model
Effective Field Theory

Investigate bounds on Flavor Violating couplings

Outline:
Introduction: SMEFT, Minimal Flavor Violation and Positivity Bounds on dimension-8 4-Fermi

operators
Positivity bounds under MFV: analysis of the tensor structure, difference between N; = 2.3, how to

disentangle external states
Results

Summary



The Standard Model is generally intended as the renormalizable part of a larger description, that includes the effects
from heavy resonances that cannot be produced on-shell
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The operators are gauge invariants built with SM fields, and the coefficients are in principle arbitrary, and get fixed
only when specifying the UV completion or by measurements.



The Minimal Flavor Violation ansatz comes from the observation that sending the Yukawa couplings to O
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the SM Lagrangian enjoys a global U(3)° flavor symmetry, that can be extended to the Yukawa sector by promoting Y, de
to spurions
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MFV requires the whole SMEFT Lagrangian to be a singlet of the flavor symmetry.

This takes care of the flavor structure of the higher dimensional operators coefficients, e.qg.:
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and prevents large FCNCs.



The coefficients appearing in front of EFT higher dimensional operators are not arbitrary!

Assuming analyticity and unitarity in the UV requires them to respect some bounds:
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Dimension 8 4-Fermi operators

The set of operators we focus on is:

Type  Content Operator Symmetry
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There is another set of dimension 8, 4-fermions operators O = 0, (VYo Wn)O* (Xp7 ' Xq), ¥ # X
but their contribution to the amplitude vanishes as r - 0 so we cannot bound them
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We now have to impose the MFV andata on this set of operators to see:

how do the bounds depend on the Yukawa entries?
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up to 0(Y?) and with the p expected to be 6(1)




Positivity bounds: dimension 8, 4-Fermi operators

To get the bounds:

o ¢1> — Uy |ﬂmz> 9 ¢2> — Bmi ‘Umz>
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- marginalize over gauge indices

To simplify them a bit
1

. perform linear redefinition gl = piot 4 gp;‘;’g and €% =p for k=1,2,3,4,

© turn to the study of  ¢(&);,,, = &) "(6mndpq) + &5 (MinnOpg + SmnMpg) + €57 (SmgOpn) + 47 (MingOpn + g M

Finally: OszzZﬁnﬁ;C(f)u’i > 0 1 =1,3
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First a simple check: are the bounds either trivial or empty?
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Now, we want bounds on the coefficients alone, so we need to get rid of the external states o, 3,

Define C(8),,, = ¢, (§)B.B5 with eigenvalues r(B), I=1,...,N;

Then we can trade the positivity bounds for

CrnnpgBn By amar > 0 — r(B)r >0 I=1,...,Ny
Va, § with |af = [[5]] =1 Vg with ||8]| =1

and deal with g alone!



Results for Nf =

With two flavors, the only independent parameter is y., and we can remove ¢, because it is redundant in SU(2).
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Marginalizing over g we get

\

21,2 (63” +§4M) FEM € >0,
&7+ &7 >0,

v — e (67 +36) + 86 U2 +4(67) >0 or

(—4y3 (g + ) +ut (8 -eb) - 45?”55”) <0

2
We can visualise them as Ve
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for growing y..
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allowed up to y.

Positivity Bounds on MFV| Emanuele Gendy

10



Results for Nf = 3

The large value of y, requires us to resum the series in powers of Y, and to set y, — 1 in the end.

Thus the bounds are a fixed region, with no Yukawa dependence. We can rescale & — 1 and visualise the bounds:

The degenerate point ¢, =& =&6=¢&,=1is well
inside this region!
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We could expect the bounds to depend not only on the Yukawa couplings, but on the CKM matrix entries, too.
Why doesn’t this happen?

Let us look again at the tensor structure at this order:

leri’iizpq = p1” (Omndpg) + P2 (MimnOpq + OmnMpg) + 37 (0mgOpn) + p5" (MmqOpn + OmqMpn)
As we only kept Y, (remember M = Y'Y ) we can always pick a basis where V., is entirely in Y,

This can be done in the Lagrangian, or with a unitary rotation on a , f,

There are two ways we can force the CKM to appear in the bounds:
Project N.=3 onto N;=2 M;; = (Yqu)ij ~ (Vornm)si(Vorar)s; i,7=1,2
We obtain the same results for the true N, =2, but now the parameter is y, » ¢ = AA*

Go further in the expansion
Including 6(Y7) one cannot get rid of the CKM anymore.

Appearing at higer orders, it has conversely subleading effects on the bounds



Other operators

Following the same procedure as for the operators with 4 up fields, we get bounds on the others.

Self-quartic operators

- 4-Q operators are obtained by sending M — M and produce the same bounds

- 4-d operators are obtained by sending M — 0

. . ﬁ \3
bt et S ’

Cross—quartic operators

Degenerate point is inside!

Those are easier to deal with, because of the less rich tensor structure. For the (2u)(2Q) operators we get

LS 0

EJJQ,Z n qu,

?Q,i n qu, |
?Q,’i N qu, qu, SUQ, <~ 0
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The Minimal Flavor Violation assumption can be made consistent with positivity bounds in the Standard Model
Effective Field Theory

The bounds for the flavor-blind coefficients are consistently controlled by the largest Yukawas

A method to disentangle the arbitrary external states of the elastic scattering has been shown
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Explicit extraction of the bounds for N, =2

. re'fs ; 102
Parametrize B=1|" ., | =% (" |, 22+4°=1
ye v Y

Tr[C(B)] = @g”+@z)%4¢912+§1ﬂ+%32>0
det[C(B)] =" <f2 g ’i)Q ye — z°y; (52 & Z) (yg (52 & Z) — 2&3 z) +
+( Q2?4 el ) ( 1@”’453”) > 0

get

The trace is linear in x* € [0,1], so it is positive everywhere iff it is positive at the boundaries.

The determinant is quadratic in x?, it is positive iff:
It is positive at the boundaries

At least one of the following is met: A < 0ora <0 or b(b+ 2a) > 0, with det[C(8)] = az* + bz* + ¢
e >0,
202 (687 +€27) + €% + 687 > 0
N+ >0, 2
yaes — &) (52 T3¢ z) + 8¢5 2+4(§3 Z) >0 or
(—4y2 Q962 4 £29627) 1yt (27— 627) — agie§ ) <0
\




Proof that i u i uq( ) is redundant in Ny = 2.

mgOpn  OmgMpn
. _ ~ 1 1 ~
Define X, = i1,u, toget X;;XpejreimeinMpm = | Xy + §Xab5ab5ij Xy + §Xcd5cd5kl EjkEimEinMpm =

- ~ 1 ~
— X{ij}X{kl}Ejk:glmginMnm + XabeabenkglmX{kl}Mnm — ZgabXabECdXCdgannm

One sees that the second term can be reabsorbed in p, and the third in p,. The remaining one can be split as:

- N 1 N
X{ij}X{]{l}gjkEZmé“inMnm — X{ij}X{kl}gjkglmgin (M{nm} + ignmgefMef> —

) 1
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whose second term can be reabsorbed in p;, while the first one vanishes

2" (i) (k1)
AL} X ety M{nm} €jkEImEin = — X Xy M ypmyErj€imEin R

m<—-n

= =X X Minm)€it€jmekn =
= — Xy X oty Minm) €€ jnim =
[k

= = Xun X MinmiEji€in€rkm =
= — Xy X (k3 Minm)€jkEimEin.



