Overview of recent EFT interpretations from ATLAS

Lailin Xu

University of Sci. & Tech. of China On behalf of the ATLAS Collaboration HEFT 2021, Apr 14-17, 2021, Hefei, China

Outline

- Introduction
- Latest EFT results from ATLAS
 - Electroweak
 - Higgs
 - Тор
- Future plans
- Summary

Introduction

- EFT interpretation: increasingly important physics program in ATLAS
 - Complementary to precision measurements in the EWK, Higgs and Top sector
 - Probe new physics with minimal model dependence, in a coherent way
- Recent EFT results from ATLAS

Combination HWW* + SM WW (<u>ATL-PHYS-PUB-2021-010</u>) Higgs STXS combination(<u>ATLAS-CONF-2020-053</u>)

Top W polarization in top-quark decays (*JHEP08(2020)51*) Charge asymmetry in $t\overline{t}$ (ATLAS-CONF-2019-026) ttW+ttZ (*PRD99(2019)072009*) FCNC tq γ (*PLB800(2020)135082*) FCNC tqZ (*JHEP07(2018)176*)

Overview

• EFT interpretations in ATLAS are quite complicated in methodology

$$\sigma = \sigma_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \sigma_i^{\rm dim-6, \ lin.} + \sum_{i,j} \frac{c_i c_j}{\Lambda^4} \sigma_{ij}^{\rm dim-6, \ quad.} + \sum_{i} \frac{c_i}{\Lambda^4} \sigma_i^{\rm dim-8, \ lin.} + \dots$$

- Experimental observables
 - Detector level or unfolded?
 - Fiducial or differential cross-sections?
- EFT formalism
 - Dim-6: Warsaw basis, Higgs basis or SILH basis?
 - Linear only or linear + quadratic terms?
 - How to deal with dim-8 operators?
 - Simulation tools and flavor assumptions?
- Statistical analysis
 - Treatment of flat directions?
 - Systematic uncertainties on EFT predictions?

So far interpretations have been tailored for individual analyses

Now the collaboration is moving towards a more coherent approach using the acquired expertise

EFT interpretation in the EWK sector

EWK precision measurements

• Wide range of phase spaces being measured

ATL-PHYS-PUB-2021-005

From anomalous couplings to EFT

- Traditionally BSM effects are presented in the form of effective Lagrangian or Vertices
 - e.g. Charged TGC, CP conserving, with LEP parametrization: $\Delta g_1^Z, \Delta \kappa_Z, \lambda_Z$
- Limitations of the effective Lagrangian/Vertices approach
 - Only at tree level
 - Need ad hoc form factors to avoid unitarity violation
- aTGC in EFT
 - At dim-6 in the HISZ basis, two CP odd operators, and three CP conserving ones

$$\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \qquad \mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi) \qquad \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline Degrande, Cen Zhang et al,} \\ \mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi) \qquad \text{Céline$$

 $c
ightarrow rac{c}{(1+rac{\hat{s}}{\Lambda^2_{rr}})^n}$

$$\Delta g_{1}^{Z} = \frac{g^{2} + g'2}{8} c_{W} \frac{v^{2}}{\Lambda^{2}}$$

$$\Delta g_{1}^{Z} = -\frac{v^{2}}{\Lambda^{2}} \frac{g_{L}^{2} + g_{Y}^{2}}{4(g_{L}^{2} - g_{Y}^{2})} (4\frac{g_{Y}}{g_{L}} c_{HWB} + c_{HD} - ...)$$

$$\Delta \kappa_{\lambda} = \frac{g^{2}}{8} (c_{W} + c_{B}) \frac{v^{2}}{\Lambda^{2}}$$

$$\lambda_{Z} = \frac{3g^{4}}{8} c_{WWW} \frac{v^{2}}{\Lambda^{2}}$$

$$TGC \rightarrow Warsaw$$

$$\Delta \kappa_{\lambda} = \frac{v^{2}}{\Lambda^{2}} \frac{g_{Y}}{g_{L}} c_{HWB}$$

$$\Delta \kappa_{\lambda} = \frac{v^{2}}{\Lambda^{2}} \frac{g_{Y}}{g_{L}} c_{HWB}$$

$$\lambda_{Z} = -\frac{v^{2}}{\Lambda^{2}} \frac{3}{2} g_{L} c_{W}$$

$$Adam Falkowski et al, arXiv:1609.06312$$

From anomalous couplings to EFT

• **nTGC** in EFT: only appears at dim-8

$$\mathcal{O}_{\widetilde{B}W} = i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H,$$

 $\mathcal{O}_{BW} = i H^{\dagger} B_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H,$ $\mathcal{O}_{WW} = i H^{\dagger} W_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H,$ $\mathcal{O}_{BB} = i H^{\dagger} B_{\mu\nu} B^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H.$

• aQGC in EFT: dim-8

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0}, \mathcal{L}_{S,1}$	X	Х	Х	0	0	0	0	0	0
$igsquarbox{} \mathcal{L}_{M,0},\mathcal{L}_{M,1},\!\mathcal{L}_{M,6},\!\mathcal{L}_{M,7}$	X	Х	Х	Х	Х	Х	Х	0	0
$igsquarbox{} \mathcal{L}_{M,2} \ , \mathcal{L}_{M,3}, \ \mathcal{L}_{M,4} \ , \mathcal{L}_{M,5}$	0	Х	Х	Х	Х	Х	Х	0	0
$\mathcal{L}_{T,0} \; , \! \mathcal{L}_{T,1} \; , \! \mathcal{L}_{T,2}$	X	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	0	Х	Х	Х	Х	Х	Х	Х	Х
$\mathcal{L}_{T,9} \; , \mathcal{L}_{T,9}$	0	0	Х	0	0	Х	Х	Х	Х

Eboli, Gonzalez-Garcia, arXiv:1604.03555

This talk is focused on dim-6 EFT interpretations

WW+jets

Unfolded with p_{T} (leading jet) >

- Fiducial and differential cross-section measurements with full Run-2 data
 - First jet-inclusive measurement of WW production at the LHC
 - One-jet topology enhances the interference with aTGC (A. Azatov et al arXiv:1707.08060)
- EFT interpretation using unfolded $m_{e\mu}$ distributions

Detector level

Lailin Xu

Unfolded ($p_T(jets) > 30 \text{ GeV}$)

4/14/21

WW+jets

 EFT interpretation $Q_W = \epsilon^{IJK} W^{I
u}_\mu W^{J
ho}_
u W^{K\mu}_
u$ Based on **SMEFTsim** with the **Warsaw** basis, only **c**_w considered $\mathcal{L}(\vec{\mu},\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^k |C|}} \exp(-\frac{1}{2} (\vec{\sigma}_{data} - \vec{\sigma}_{pred}(\vec{\mu},\vec{\theta}))^T C^{-1} (\vec{\sigma}_{data} - \vec{\sigma}_{pred}(\vec{\mu},\vec{\theta}))) \mathcal{G}(\vec{\theta})$ $\vec{\sigma}_{\text{pred}}(\vec{\mu}, \vec{\theta}) = \sigma_{\text{SM}} + \sum_{i} \mu_i \sigma_i^{\text{dim-6, lin.}} + \sum_{i,j} \mu_i \mu_j \sigma_{ij}^{\text{dim-6, quad.}}$ ATLAS - 68% CL $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ----- 95% CL - Linear Four scenarios: $pp \rightarrow e^{\pm} v \mu^{\mp} v i$ Linear + Quadratic [linear only, linear + quadratic] x [p_T (jet) > 30 GeV, > 200 GeV] The 200 GeV jet requirement indeed increases sensitivity in fit p_{τ}^{jet} > 30 GeV of terms linear in **c**_w Quadratic term still dominant, comparable to the 36 fb⁻¹ WW+0j $p_{_{\rm T}}^{\rm jet}$ > 200 GeV constraints(*EPJC 79 (2019) 884*) -2 2 0 c_w/Λ^2 [TeV⁻²]

arXiv:2103.01918

• Differential measurements of inclusive $pp \rightarrow 4l$ production

Though nTGC is suppressed, 4l events are sensitive to dim-6 EFT due to rich contributing processes

arXiv:2103.01918

- Various observables unfolded in 4 slices of m₄₁
 - $m_{12}, m_{34}, p_{T,12}, p_{T,34}, \cos \theta_{12}^*, \cos \theta_{34}^*, |\Delta y_{\text{pairs}}|, |\Delta \phi_{\text{pairs}}|, |\Delta \phi_{\text{ll}}|.$
 - single Z: (60, 100), Higgs: (120, 130), on-shell ZZ: (180, 2000), off-shell ZZ: others
- EFT interpretation
 - Based on **SMEFsim** with the **Warsaw** basis
 - Scanned all 59 operators and found 22 coefficients that give non-negligible contribution
 - three affecting Higgs couplings: c_{HG} , \tilde{c}_{HG} , c_{HD} ;
 - one affecting gauge boson couplings: c_{HWB} ;
 - seven affecting the $Z \rightarrow II$ vertex: c_{Hd} , c_{Hu} , c_{He} , $c_{Hl}^{(1)}$, $c_{Hl}^{(3)}$, $c_{Hq}^{(1)}$, $c_{Hq}^{(3)}$
 - eleven from four-fermion interactions (contact terms): c_{ed} , c_{ee} , c_{eu} , c_{ld} , c_{le} , c_{ll} , $c_{ll}^{(1)}$, $c_{lg}^{(1)}$, $c_{lg}^{(3)}$, c_{lu} , c_{qe} .
 - Fitting only one coefficient at a time

arXiv:2103.01918

- EFT constraints
 - Both linear and linear + quadratic fits
 - Fit one parameter at a time

Linear + quad.

с _{<i>нwв</i> [95% CL]}	<i>m</i> _{4l} [GeV]	Expected	Observed
H4I STXS [<u>EPJC 80(2020)957]</u>	[115, 130]	[-1.1, 1.0]	[-1.1, 1.0]
Inclusiv 4I	[20, 2000]	[-0.2, 0.21]	[-0.29, 0.13]

 c_{HWB} affect the entire m_{4I} spectrum, not just the region close to $m_H \rightarrow$ The advantange of being inclusive

VBF Zjj measurements

 $\wedge \wedge Z$

1 1

<u>EPJC81(2021)163</u>

- Differential measurements of EW Zjj •
 - Sensitive to aTGC
 - Signed $\Delta \phi_{ii} = \phi_f \phi_b$, sensitive to CP-odd EFT operators

VBF Zjj measurements

- 1-D fit results, both linear and linear + quadratic fits

Wilson	Includes	95% confidence	95% confidence interval [TeV $^{-2}$]	
coefficient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

Sensitivity dominated by the linear term only, thanks to the signed $\Delta \phi_{ii}$

EPJC81(2021)163

EFT interpretation in the Higgs sector

EFT interpretation in the Higgs sector

- More precise measurements of Higgs properties are coming out
 - Signal strength (μ)
 - Simplified Template Cross-sections (STXS)
 - Differential cross-sections
- ... also come with constraints on BSM
 - Anomalous couplings strategy also followed in the Higgs sector
 - Moving to EFT interpretations in the meanwhile
- EFT interpretations
 - Results presented in several bases: Warsaw, SILH, Higgs basis
 - Mapping from one basis to another can be done (Rosetta, Ken Mimasu et al, <u>arXiv:1508.05895</u>)
 - Methodology for EFT interpretation of STXS results documented in <u>ATL-PHYS-PUB-2019-042</u>

$VH(H \rightarrow bb)$ resolved

5-D results

- STXS results are used to constrain Wilson coefficients of the Warsaw basis
 - 1-D results by fitting one parameter at a time (with others fixed at 0)
 - 5-D fits using most sensitive directions of the measurement
 - eigenvectors, an orthogonal set of linear combinations of the Wilson coefficients

$H \rightarrow \gamma \gamma$ differential

• EFT interpretation from differential cross-sections using Warsaw and SILH bases

4/14/21

EFT interpretation in the Top sector

EFT interpretation in the Top sector

- Measurements in the top-quark sector offer an unique window to BSM
 - Largest top Yukawa coupling \rightarrow interplay with the Higgs sector
 - Two complementary approaches
 - Direct searches: Flavor-changing neutral currents (FCNC)
 - Precision measurements: differential cross-sections and other top-quark properties
- EFT interpretation
 - Distinguish from the EW and Higgs sector due to the flavor assumption
 - **U(3)**⁵ flavor assumption used for EW and Higgs EFT interpretations
 - Agreement in the top-quark community for common standards for EFT interpretation (LHC TopWG note arXiv:1802.07237)
 - Dim-6 SMEFT, Warsaw basis
 - 3 different flavor assumptions, baseline is $U(2)_q \times U(2)_u \times U(2)_d$
 - FCNC is treated separately (breaks the $U(2)_q \times U(2)_u \times U(2)_d$ symmetry)
 - Identify the linear combinations of Warsaw-basis operators to reduce the number of relevant parameters

Charge asymmetry in $t\bar{t}$

ATLAS-CONF-2019-026

- Charge asymmetry A_c:
 - At the LHC top-quarks produced more forward than anti-top quarks
 - Extremely challenging to measure (<1% effect)
 - Sensitive to BSM (eg, anomalous vector or axial couplings)
 - Extracted from unfolded Δlyl distributions, in the single-lepton channel
- EFT interpretation
 - A_C is sensitive to 7 four-fermion operators in the Warsaw basis
 - Reduced to 4 by using a flavor-specific linear combination
 - EFT predictions simulated with <u>dim6top</u> UFO

$$\begin{split} C_{u}^{1} &= C_{qq}^{(8,1)} + C_{qq}^{(8,3)} + C_{ut}^{(8)} \\ C_{u}^{2} &= C_{qu}^{(1)} + C_{qt}^{(1)} \\ C_{d}^{1} &= C_{qq}^{(8,1)} - C_{qq}^{(8,3)} + C_{dt}^{(8)} \\ C_{d}^{2} &= C_{qd}^{(1)} + C_{qt}^{(1)} \end{split}$$

Further assume equal couplings to up- and down-type quarks

$$C_u^1 = C_d^1 = C^1$$

 $C_u^2 = C_d^2 = C^2$

Charge asymmetry in $t\bar{t}$

- EFT results derived from the measured $\rm A_{\rm c}$
 - Both the inclusive measurement, and each differential $m_{t\bar{t}}$ bins
 - Two scenarios: linear vs linear + quadratic

Small dependence on quadratic terms:→ dim-6 approach is stable and appropriate.

ATLAS Preliminary √s = 13 TeV, 139 fb⁻¹ differential $A_{C}^{t\bar{t}}$ vs. NNLO QCD + NLO EW m,, interval $-\Lambda^{-2}$ $-\Lambda^{-2} + \Lambda^{-4}$ 68% C.L. limits > 1500 GeV 1000 - 1500 GeV 750 - 1000 GeV 500 - 750 GeV 0 - 500 GeV inclusive -LHC8 combination pp, 8 TeV, JHEP 1804 (2018) 033 Tevatron combination pp, 1.96 TeV, PRL 120 (2018) 042001 -2 2 0

ATLAS-CONF-2019-026

Lailin Xu

 C^{T} [TeV⁻²]

W polarization in top decays

- ATLAS+CMS combined measurements of W polarization (8 TeV)
 - Sensitive to the V-A structure of the weak interaction
 - Polarization fractions (F_L , F_R , F_0) fit from $\cos\theta^*$ distributions at the detector level
- EFT interpretation
 - Combined polarization results are used to constrain dim-6 operators that modify effective tWb couplings in the Warsaw basis

Lailin Xu

JHEP08(2020)51

Combined EFT results

See more details by Philipp Windischhofer (Thu. Afternoon)

Combined Higgs STXS

- Combination of STXS from $H \rightarrow 4I$, $H \rightarrow \gamma \gamma$ and VH(bb)
 - SMEFT in Warsaw basis
 - An eigenvalue decomposition approach used to avoid flat directions
 - Two scenarios: linear vs linear + quadratic
 - With all coefficients profiled simultaneously

ATLAS-CONF-2020-053

HWW* + SM WW combination

<u>ATL-PHYS-PUB-2021-010</u>

- H→WW* measurements: <u>*PLB* 789 (2019) 508</u>
 - Signal strength measurements in ggF,VBF production modes
- SM WW measurements: EPJC 79 (2019) 884
 - 36 fb⁻¹ WW+0j differential cross-sections, leading lepton p_T
- EFT combination
 - SMEFT in Warsaw basis, 22 CP-even operators
 - Eigenvalue decomposition approach
- Instructional test case towards future global EFT combination
 - Correlation of systematic uncertainties is taken into account carefully
 - EFT effects on the WW "background" in the HWW* signal regions are also taken into account
 - We try to avoid setting parameters to zero as much as possible

2×10² 3×10²

40 50 60

p_⊤lead ℓ [GeV]

HWW + SM WW combination

ATL-PHYS-PUB-2021-010

Towards ATLAS EFT combination

ATLAS EFT combination

- Complementary constraints from different sectors
 - Need wide combination to fully leverage EFT
 - Also the original idea behind the EFT theory development
- To include some of the most relevant existing **H** + **EW** + **top** + **non-ATLAS** constraints
 - Higgs : STXS combination
 - EW: WW + WZ + 4I + VBF Z (Gaussian model with NPs)
 - One distribution from each to avoid correlation issues (eg. p_T^{lep} , m_{WZ} , m_{34} vs. m_{4I} , $\Delta \phi_{ij}$)
 - **Top** : possible observables are ttV, $t\bar{t}$ differential cross-section, $t\bar{t}$ charge asymmetries, 4t
 - Non-ATLAS constraints:
 - Z-pole (LEP-1/SLC) and diboson (LEP-2) data, others?
 - Not strictly needed but simplifies treatment of flat combinations
 - Implemented as a multivariate Gaussian term in the likelihood

Not a finalized blueprint Feedback and discussion welcome! See also

Sandra Kortner, LHC EFT WG meeting, Oct 2020 Nicolas Berger, Area 3&4 meeting, Feb 2021

EFT framework

- SMEFT Model
 - Basis: Dim-6 Warsaw basis, $\Lambda = 1 \text{ TeV}$
 - Focus on CP-even operators for now
 - Flavor structure:
 - Investigate the "topU31" structure $(U(2)_q \times U(2)_u \times U(2)_d, U(3)_l \times U(3)_e)$ in <u>SMEFTsim3.0</u>
 - → Well-suited to top measurements
 - Also consider the simpler U(3)⁵
- SMEFT Predictions
 - Use (m_W, m_Z, G_F) scheme, consider (α, m_Z, G_F) as alternate
 - Use LO predictions
 - Except for loop effects (gg \rightarrow H, gg \rightarrow ZH, H \rightarrow YY), which are calculated with <u>SMEFT@NLO</u>
 - Use **SMEFTsim** and **SMEFT@NLO** to simulate SMEFT impact

SMEFT@NLO, Gauthier Durieux et al, <u>arXiv:2008.11743</u>

I. Brivio, Y. Jiang and M. Trott, arXiv:1709.06492

SMEF

I. Brivio, arXiv:2012.11343

EFT parametrization

- SMEFT Predictions (cont.) :
 - Linear EFT expansion (terms up to $1/\Lambda^2$) as a baseline
 - Inclusion of all dim-8 operators impractical
 - Also report results with linear + quadratic terms
 - This can be used as an estimate of EFT convergence
 - Rescale predictions to best SM computations
- SMEFT uncertainties
 - How to define uncertainties on the EFT predictions?
 - Missing terms in EFT expansion?
 - Higher order QCD/EW corrections?

$$ec{\sigma}(c) = ec{\sigma}^{ ext{SM, best}} \cdot rac{ec{\sigma}^{ ext{EFT}}(c)}{ec{\sigma}^{ ext{EFT}}(c=0)}$$

Summary

- Growing number of EFT measurements in ATLAS
 - New results coming out with full Run-2 data
 - Individual measurements across the SM/Higgs/Top sectors
 - And also small-scope combined results:
 - Higgs STXS combination, $H \rightarrow WW^* + SM WW$ combination
- Plans for an ATLAS-wide combination
 - Aim for a (Higgs + EW + Top + EWPD) scope
 - A first attempt to pave the road and to gain experience
 - Possibly leaving for later the optimal treatment of some of the more difficult issues
 - Common ground (theory framework) is largely in place
 - Still many challenges to meet
 - Feedback welcome

Summary of ATLAS EFT results

	EW	Higgs	Тор	Combination
	<u>WW+jets, 140 fb⁻¹</u>	VH(bb) boosted STXS, 140fb ⁻¹	<u>W polarization in top-</u> quark decays (8 TeV)	Higgs STXS combination, 140 fb ⁻¹
Meas.	Inclusive 4I, 140 fb ⁻¹	VH(bb) resolved STXS, 140fb ⁻¹	<u>ttZ signal strength, 36 fb⁻¹</u>	H→WW* and SM WW combination, 36 fb ⁻¹
	<u>VBF Zjj, 140 fb⁻¹</u>	H4I STXS, 140fb ⁻¹	<u>tī charge asymmetry,</u> differential, 36 fb ⁻¹	
	<u>WW+0j, 36 fb⁻¹</u>	$H \rightarrow \gamma \gamma$ differential, 140fb ⁻¹	<u>FCNC tqγ, 81 fb⁻¹</u>	
			FCNC tqZ, 36 fb ⁻¹	
EFT framework	Warsaw and HISZ basis SMEFTsim and EWdim6	SILH and Warsaw basis SMEFTsim and SMEFT@NLO	Warsaw bais topFCNC, dim6top	Warsaw basis SMEFTsim and SMEFT@NLO
Wilson coefficients in the fit	1-D fit	Simultaenous fit, 1-D fit	1-D fit	Simultaenous fit, 1-D fit

- Both detector and particle level measurements are used
- ✤ U(3)⁵ flavor assumption is used in Higgs & EW EFT interpretations, while U(2)_q × U(2)_u × U(2)_d for Top
- Usually EFT results reported for both linear and linear+quadratic fits

WW+jets

A. Azatov et al <u>arXiv:1707.08060</u>

Figure 4: $\sigma_{\text{int}}/\sigma_{\text{SM}}$ as a function of m_{WZ} for the process $pp \to WZ$ (blue) and the process $pp \to VW + j$, with $p_j^T > m_{WZ}/5$ (pink), $p_j^T > m_{WZ}/10$ (red), and $p_j^T > 100$ GeV (purple).

EFT in WW

Some details $\mathcal{L}(\vec{\mu},\vec{\theta}) = \frac{1}{\sqrt{(2\pi)^{k}|C|}} exp(-\frac{1}{2}(\vec{\sigma}_{data} - \vec{\sigma}_{pred}(\vec{\mu},\vec{\theta}))^{T}C^{-1}(\vec{\sigma}_{data} - \vec{\sigma}_{pred}(\vec{\mu},\vec{\theta})))\mathcal{G}(\vec{\theta})$ $\vec{\sigma}_{\text{pred}}(\vec{\mu}, \vec{\theta}) = \vec{\sigma}_{\text{SM}} + \sum_{i} \mu_{i} \vec{\sigma}_{i}^{\text{dim-6, lin.}} + \sum_{i,i} \mu_{i} \mu_{j} \vec{\sigma}_{ij}^{\text{dim-6, quad.}}$ High-order corrections: $\vec{\sigma}_{\text{pred}} = \vec{\sigma}_{\text{SM}} \times (1 + c_i \cdot \frac{\vec{\sigma}_i^{\dim - 6, \text{lin.}}}{\vec{\sigma}_{\text{LO,SM}}} + c_i^2 \cdot \frac{\vec{\sigma}_i^{\dim - 6, \text{quad.}}}{\vec{\sigma}_{\text{LO,SM}}}$ WW+jets, 140/fb, arXiv:2103.10319, SMEFT Warsaw basis 68% CI exp. 95% CI exp. Linear only 68% CI obs. 95% CI obs. Jet $p_{\rm T}$ > 30 GeV [-1.64, 2.86] [-3.85, 4.97] [-2.30, 2.27][-4.53, 4.41]yes > 30 GeV [-0.20, 0.20] [-0.33, 0.33] [-0.28, 0.27][-0.39, 0.38]no > 200 GeV [-0.29, 1.84][-1.37, 2.81] [-1.12, 1.09][-2.24, 2.10]yes $> 200 \, \text{GeV}$ [-0.43, 0.46][-0.60, 0.58][-0.38, 0.33][-0.53, 0.48]no

Compared to the results from 36/fb WW 0j (arXiv:1905.04242)

HISZ basis, EWdim6

Operator	95% CL (linear and quadratic terms)	95% CL (linear terms only)
$\overline{c_{WWW}}/\Lambda^2$	$[-3.4 \text{ TeV}^{-2}, 3.3 \text{ TeV}^{-2}]$	$[-179 \text{ TeV}^{-2}, -17 \text{ TeV}^{-2}]$
c_W/Λ^2	$[-7.4 \text{ TeV}^{-2}, 4.1 \text{ TeV}^{-2}]$	$[-13.1 \text{ TeV}^{-2}, 7.1 \text{ TeV}^{-2}]$
c_B/Λ^2	$[-21 \text{ TeV}^{-2}, 18 \text{ TeV}^{-2}]$	$[-104 \text{ TeV}^{-2}, 101 \text{ TeV}^{-2}]$

Lailin Xu

arXiv:2103.01918

• Example: how c_{HWB} affects the m₃₄ prediction

arXiv:2103.01918

• EFT results with linear fit only vs linear + quadratic fit

VBF Zjj measurements

EPJC81(2021)163

Differential measurements of EW Zjj • Sensitive to aTGC EW Zjj $\leq \sim z$ Large background contribution from QCD Zjj subtracted $\langle \rangle$ Events [fb] ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ \sqrt{s} = 13 TeV, 139 fb⁻¹, Zjj \rightarrow Iljj -ATLAS Postfit 10^{5 1} EW Zjj (Powheg+Py8) 🔜 Strong Zjj (Sherpa) $N_{\text{jets}}^{\text{gap}} = 0, \ \xi_Z < 0.5 \ (\text{EW SR})$ EW $Zjj \rightarrow Iljj$ d σ / d $\Delta \phi_{
m jj}$ $ZV(V \rightarrow jj) \blacksquare t\bar{t}$, single top Other VV // Uncertainty Data, stat. unc. 10⁴ CRb CRc SR CRa Total unc. 10 10^{3} 10² 10 △ SHERPA 2.2.1 HERWIG7+VBFNLO POWHEG+PY8 Data / pred. Ratio to data .5 -3 -2 2 З m_{ii} bin $\Delta \phi_{\rm ii}$ Dedicated data control regions are used to Signed $\Delta \phi_{ii} = \phi_f - \phi_b$, with $y > y_b$, constrain the modelling of QCD Zjj sensitive to CP-odd EFT operators

EFT interpretation in the Higgs sector

- Relative impact of selected SMEFT operators on STXS
 - Warsaw basis

• Eigenvectors

Wilson coefficient	Eigenvalue	Eigenvector
c_{E0}	2000	$0.98 \cdot c_{Hq}^{(3)}$
c_{E1}	38	$0.85 \cdot c_{Hu} - 0.39 \cdot c_{Hq}^{(1)} - 0.27 \cdot c_{Hd}$
c_{E2}	8.3	$0.70\cdot\Delta\mathrm{BR}/\mathrm{BR}_\mathrm{SM}+0.62\cdot c_{HW}$
c_{E3}	0.2	$0.74 \cdot c_{HWB} + 0.53 \cdot c_{Hq}^{(1)} - 0.32 \cdot c_{HW}$
c_{E4}	$6.4 \cdot 10^{-3}$	$0.65 \cdot c_{HW} - 0.60 \cdot \Delta BR/BR_{SM} + 0.35 \cdot c_{Hq}^{(1)}$

$VH(H \rightarrow bb)$ boosted

EPJC81(2021)178

5-D results

- Similar strategy as in the resolved analysis
- Expected better sensitivity to EFT at higher p_T

H→4I STXS

- STXS results are used to constrain 5 CP-even and 5 CP-odd operators
 - Acceptance effects taken into account
 - 1-D fit results (2-D results also provided)

HWW + SM WW combination

- Statistical model
 - HWW: Poisson
 - SM WW: a multivariate Gaussian

$$\begin{pmatrix} N, \boldsymbol{x} | \boldsymbol{c}, \boldsymbol{\theta}^{\text{comb}} \end{pmatrix} = \prod_{\substack{b \notin WW-CR}}^{n_{\text{bins}}^{\text{SR+CR}}} \text{Poisson} \left(N_b \middle| \sum_p \mu_p(\boldsymbol{c}) S_p(\boldsymbol{\theta}^{HWW}) + B(\boldsymbol{c}, \boldsymbol{\theta}^{HWW}) \right)$$

$$\times \frac{1}{\sqrt{(2\pi)^{n_{\text{bins}}^{WW}} \det(C)}} \exp \left(-\frac{1}{2} \Delta \boldsymbol{x} \left(\boldsymbol{c}, \boldsymbol{\theta}^{WW} \right)^{\mathsf{T}} C^{-1} \Delta \boldsymbol{x} \left(\boldsymbol{c}, \boldsymbol{\theta}^{WW} \right) \right)$$

$$\times \prod_{i}^{n_{\text{syst}}^{\text{comb}}} f_i(\boldsymbol{\theta}_i^{\text{comb}}).$$

- Overlap of the two measurements:
 - These control regions of the HWW analysis are removed and the signal region of the WW measurement is used instead

Lcomb

- Uncertainties on this extrapolation are implicitly taken into account by the statistical model
 - Uncertainties affecting WW production are treated as fully correlated between the two

HWW* + SM WW combination

ATL-PHYS-PUB-2021-010

- EFT combination
 - SMEFT in Warsaw basis, 22 CP-even operators
 - Eigenvalue decomposition approach

HWW + SM WW combination

FCNC $tq\gamma$

- Direct searches using detector level observables
 - A neural network discriminant used
 - EFT samples simulated with the <u>TopFCNC</u> UFO

Observable	Vertex	Coupling	Obs.	Exp.
$C_{\rm uW}^{(13)*} + C_{\rm uB}^{(13)*}$	tuγ	LH	0.19	$0.22^{+0.04}_{-0.03}$
$\left C_{\rm uW}^{(31)} + C_{\rm uB}^{(31)}\right ^{-1}$	tuγ	RH	0.27	$0.27^{+0.05}_{-0.04}$
$\left C_{\rm uW}^{(23)*} + C_{\rm uB}^{(23)*} \right $	tcγ	LH	0.52	$0.57^{+0.11}_{-0.09}$
$\left C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}\right $	tcγ	RH	0.48	$0.59^{+0.12}_{-0.09}$

Complementary to limits on the single operators from the ATLAS FCNC tqZ search <u>JHEP 07 (2018) 176</u>

PLB800(2020)135082

 Z, γ

u, c

ttW, ttZ measurements

- Direct probe of the weak couplings of the top quark
 - Signal strength measurements at the detector level μ_{ttW} , μ_{ttZ}
- EFT interpretation
 - Using σ_{ttZ} measurement only
 - EFT predictions simulated with $\underline{dim6top}$ UFO

Process	$t\bar{t}$ decay	Boson decay	Channel
$t\bar{t}W$	$ \begin{array}{l} (\ell^{\pm}\nu b)(q\bar{q}b) \\ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b) \end{array} $	$\ell^{\pm}\nu\\\ell^{\pm}\nu$	SS dilepton Trilepton
$t\bar{t}Z$	$\begin{array}{l} (q\bar{q}b)(q\bar{q}b)\\ (\ell^{\pm}\nu b)(q\bar{q}b)\\ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b) \end{array}$	$\ell^+ \ell^- \\ \ell^+ \ell^- \\ \ell^+ \ell^-$	OS dilepton Trilepton Tetralepton

PRD99(2019)072009

					_ ح
Coefficients	${\cal C}^{(3)}_{\phi Q}/\Lambda^2$	$\mathcal{C}_{\phi t}/\Lambda^2$	$\mathcal{C}_{tB}/\Lambda^2$	$\mathcal{C}_{tW}/\Lambda^2$	section
Previous indirect constraints at 68% CL Previous direct constraints at 95% CL	$[-4.7,\ 0.7]\ [-1.3,\ 1.3]$	$[-0.1,\ 3.7]\ [-9.7,\ 8.3]$	$[-0.5, 10] \\ [-6.9, 4.6]$	$[-1.6,\ 0.8]\ [-0.2,\ 0.7]$	tīZ cross
Expected limit at 68% CL Expected limit at 95% CL Observed limit at 68% CL Observed limit at 95% CL	$\begin{matrix} [-2.1,\ 1.9] \\ [-4.5,\ 3.6] \\ [-1.0,\ 2.7] \\ [-3.3,\ 4.2] \end{matrix}$	$\begin{array}{l} [-3.8, 2.7] \\ [-23, 4.9] \\ [-2.0, 3.5] \\ [-25, 5.5] \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{matrix} [-1.8, \ 1.9] \\ [-2.6, \ 2.6] \\ [-2.2, \ 2.1] \\ [-2.9, \ 2.9] \end{matrix}$	
Expected limit at 68% CL (linear) Expected limit at 95% CL (linear)	$[-1.9, 2.0] \\ [-3.7, 4.0]$	$[-3.0, \ 3.2] \\ [-5.8, \ 6.3]$	_	_	
Observed limit at 68% CL (linear) Observed limit at 95% CL (linear)	[-1.0, 2.9] [-2.9, 4.9]	[-1.8, 4.4] [-4.8, 7.5]	_	_	

Operators in the Warsaw basis

Sandra Kortner

Coefficient	Operator	Vertex	Higgs production and decay modes	SM processes	Only CP-even operators
с _{НG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	Hgg	ggH, ttH, Γ_H	(WW), ZZ, (VBFZ)	-
с _{НЬох}	$(H^{\dagger}H)\Box(H^{\dagger}H)$	HVV	$VBFH, VH, ttH, 4\ell, WW, au au, bb, \Gamma_H$	WW, ZZ	
<i>c</i> HDD	$(H^{\dagger}D_{\mu}H)^{*}(H^{\dagger}D_{\mu}H)$	VVV, HVV, δ	$VBFH, VH, ttH, 4\ell, WW, au au, bb, \Gamma_H$	WW, WZ, ZZ, VBFZ	
c _{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	HVV	$VBFH, VH, ttH, \gamma\gamma, 4\ell, WW, \Gamma_H$	(WW), ZZ	
с _{НВ}	$H^{\dagger} H B_{\mu u} B^{\mu u}$	HVV	VBFH, VH, ttH, $\gamma\gamma$, 4 ℓ , , Γ_H	ZZ	
с _{НWB}	$H^{\dagger} au^{I}HW^{I}_{\mu u}B^{\mu u}$	VVV, HVV, δ	$VBFH, VH, ttH, \gamma\gamma, 4\ell, WW, \Gamma_H$	WW, WZ, ZZ, VBFZ	
c _W	$\epsilon^{ijk}W^{i u}_{\mu}W^{j ho}_{ u}W^{j ho}_{ ho}W^{k\mu}_{ ho}$	VVV		WW, WZ, VBFZ	
c _{Hq1}	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Vqq, HVqq	VBFH, VH	WW, WZ, ZZ, VBFZ	_
c _{Hq3}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{\prime}H)(\bar{q}_{p}\tau^{\prime}\gamma^{\mu}q_{r})$	Vqq, HVqq	VBFH, VH, ttH, Γ _H	WW, WZ, ZZ, VBFZ	
с _{Ни}	$(H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{u}_{p} \gamma^{\mu} u_{r})$	Vqq, HVqq	VBFH, VH	WW, ZZ, VBFZ	
с _{Нd}	$(H^{\dagger}i \overleftarrow{D}_{\mu} H)(\bar{d}_{p}\gamma^{\mu} d_{r})$	Vqq, HVqq	VBFH, VH	WW, ZZ, VBFZ	_
с _{Не}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	VII, HVII	$VH, 4\ell, WW$	WZ, ZZ, VBFZ	
c _{HI1}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{\rho}\gamma^{\mu}l_{r})$	VII, HVII	VH, 4ℓ	WW, WZ, ZZ, VBFZ	
сніз	$(H^{\dagger}i\overleftarrow{D}_{\mu}^{\dagger}H)(\dot{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	VII, HVII,	VBFH, VH, ttH,	WW, WZ, ZZ, VBFZ	
	F	VVV, HVV, δ	4 ℓ , WW, ττ, bb, Γ _H		_
c_{II1}	$(\bar{l}_{P}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$		$VBFH, VH, ttH, 4\ell, WW, au\tau, bb, \Gamma_H$		
c _{lq1}	$(I_p \gamma_\mu I_r)(ar q_s \gamma^\mu q_t)$	qqll		WW, WZ	
	$(- \mu\nu \tau A) \tilde{\mu} c A$				_
C _u G	$(q_p\sigma^{\mu\nu})HG^{\mu\nu}_{\mu\nu}$	gttH			
					-

Fit inputs and statistical analysis

- Input measurements:
 - Higgs STXS should include (A $\times \epsilon$) changes where relevant
 - $H \rightarrow 4I$ for now, $H \rightarrow WW^*$ being investigated
 - Unfolded measurements: "uninterested" processes usually subtracted
 - The impact of SMEFT on those "background" processes missing, eg VBF Zjj, VH(bb)
 - Analysis overlaps should be removed
 - e.g. HWW* and SM WW, $H\rightarrow$ 4I and SM inclusive 4I
- Statistical analysis:
 - Use principal component analysis (PCA) to identify and remove flat directions
 - Define measurement eigenvectors in the remaining parameter space
 - Combined likelihood:
 - Poisson for detector level measurements
 - Multi-Gaussian for unfolded
 - Use common Gaussian nuisance parameters to describe correlated exp/ and the. Uncertainties
- Report confidence intervals with all parameters floating simultaneously (profiled)
 4/14/21

$ZZ \rightarrow 2I2v$ and $Z(vv)\gamma$ measurements

- ZZ→2l2v <u>JHEP 10 (2019) 127</u>
 - Unfolded p_T^{ll} fiducial cross section used for limit extraction <u>JHEP 12 (2018) 010</u>
- Z(vv) γ
 - The yields of $Z\gamma$ events with high E_T^{γ} (>600 GeV) from the exclusive (zero-jet) selection are used to set limits on

$$N_{Z\gamma}^{\text{aTGC}}(h_3^V, h_4^V) = \sigma_{Z\gamma}^{\text{aTGC}}(h_3^V, h_4^V) \cdot C_{Z\gamma} \cdot A_{Z\gamma} \cdot C^{*(\text{parton} \rightarrow \text{particle})} \cdot \int L \, \mathrm{d}t$$

Summary of aQGC constraints

Summary of aQGC constraints

Link

Charge asymmetry in $t\bar{t}$

• Interference between $q\bar{q}$ Born and Box diagrams

Effective Wtb vertices

• Effective Lagrangian by adding dim-6 anomalous couplings

$$\mathcal{L}_{tWb} = -\frac{g}{\sqrt{2}}\overline{b} \gamma^{\mu} (V_{L}P_{L} + V_{R}P_{R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}}\overline{b} \frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}} (g_{L}P_{L} + g_{R}P_{R}) t W_{\mu}^{-} + \text{h.c.},$$

 $V_{L,R}$ and $g_{L,R}$ are left- and right-handed vector and tensor couplings, respectively $P_{L,R}$ refers to the left- and right-handed chirality projection operators

In the SM, VL is given by the CKM matrix element Vtb, with a measured value of ≈ 1 , V_R = $g_L = g_R = 0$ at the tree level

The polarization fractions can be translated into the couplings V_L , V_R , g_L , and g_R

• From anomalous couplings to Dim-6 EFT

$$\begin{split} \delta V_L &= C_{\phi q}^{(3,33)*} \frac{v^2}{\Lambda^2} \,, \qquad \qquad \delta g_L &= \sqrt{2} C_{dW}^{33*} \frac{v^2}{\Lambda^2} \,, \\ \delta V_R &= \frac{1}{2} C_{\phi \phi}^{33} \frac{v^2}{\Lambda^2} \,, \qquad \qquad \delta g_R &= \sqrt{2} C_{uW}^{33} \frac{v^2}{\Lambda^2} \,. \end{split}$$