| Weiguang Cao | Franz Herzog | Tom Melia | Jasper RN |
| :---: | :---: | :---: | :---: |
| 'iPMV̌U' | (2) | 'iPMAVU' | (ty |

ArXiv: 21.... (to appear)

# Higher order renormalisation in scalar effective field theory 

## Outline

- Introduction:
- Basis of conformal primaries
- Anomalous dimensions
- $R^{*}$-operation
- General form of results
- Example: mass dimension 8


## Massless scalar effective field theory

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{g}{4!} \phi^{4}+\sum_{d>4} \frac{\sum_{i} c_{i}^{d} \mathcal{O}_{i}^{d}}{\Lambda^{d-4}}
$$

For example:


## Operator basis of conformal primaries

"Special" choice of operator basis given by the set of conformal primaries*:
$K_{\mu} \mathcal{O}_{\text {prim }}=0$
$K_{\mu}=\sum_{i}^{\mathrm{N}}\left(2 \frac{d}{d p_{i}^{\mu}}+2 p_{i}^{\nu} \frac{d}{d p_{i}^{\nu}} \frac{d}{d p_{i}^{\mu}}-p_{i \mu} \frac{d}{d p_{i}^{\nu}} \frac{d}{d p_{i \nu}}\right)$

## Operator basis of conformal primaries

"Special" choice of operator basis given by the set of conformal primaries*:

For example :

$$
\begin{aligned}
& K_{\mu}\left(-\frac{2}{4} \phi^{2} \partial_{\mu} \partial_{\nu} \partial_{\rho} \phi \partial^{\mu} \partial^{\nu} \partial^{\rho} \phi+9 \phi \partial_{\mu} \phi \partial_{\nu} \partial_{\rho} \phi \partial^{\mu} \partial^{\nu} \partial^{\rho} \phi-\frac{72}{6} \phi \partial_{\mu} \partial_{\nu} \phi \partial_{\rho} \partial^{\mu} \phi \partial^{\nu} \partial^{\rho} \phi-\frac{72}{6} \partial_{\mu} \phi \partial_{\nu} \phi \partial_{\rho} \phi \partial^{\mu} \partial^{\nu} \partial^{\rho} \phi-\frac{126}{4} \partial_{\mu} \phi \partial^{\mu} \phi \partial_{\nu} \partial_{\rho} \phi \partial^{\nu} \partial^{\rho} \phi+\frac{108}{2} \partial_{\mu} \phi \partial_{\nu} \phi \partial_{\rho} \partial^{\mu} \phi \partial^{\rho} \partial^{\nu} \phi\right)
\end{aligned}
$$

$$
\begin{aligned}
& K_{\mu} \mathcal{O}_{\text {prim }}=0 \\
& K_{\mu}=\sum_{i}^{\mathrm{N}}\left(2 \frac{d}{d p_{i}^{\mu}}+2 p_{i}^{\nu} \frac{d}{d p_{i}^{\nu}} \frac{d}{d p_{i}^{\mu}}-p_{i \mu} \frac{d}{d p_{i}^{\nu}} \frac{d}{d p_{i \nu}}\right)
\end{aligned}
$$

## Operator basis of conformal primaries

"Special" choice of operator basis given by the set of conformal primaries*:

$$
\begin{aligned}
& K_{\mu} \mathcal{O}_{\text {prim }}=0 \\
& K_{\mu}=\sum_{i}^{\mathrm{N}}\left(2 \frac{d}{d p_{i}^{\mu}}+2 p_{i}^{\nu} \frac{d}{d p_{i}^{\nu}} \frac{d}{d p_{i}^{\mu}}-p_{i \mu} \frac{d}{d p_{i}^{\nu}} \frac{d}{d p_{i \nu}}\right)
\end{aligned}
$$

For example :
$K_{\mu}\left(-\frac{2}{4} \phi^{2} \partial_{\mu} \partial_{\nu} \partial_{\rho} \phi \partial^{\mu} \partial^{\nu} \partial^{\rho} \phi+9 \phi \partial_{\mu} \phi \partial_{\nu} \partial_{\rho} \phi \partial^{\mu} \partial^{\nu} \partial^{\rho} \phi-\frac{72}{6} \phi \partial_{\mu} \partial_{\nu} \phi \partial_{\partial} \partial^{\mu} \phi \partial^{\nu} \partial^{\rho} \phi-\frac{72}{6} \partial_{\mu} \phi \partial_{\nu} \phi \partial_{\rho} \phi \partial^{\mu} \partial^{\nu} \partial^{\rho} \phi-\frac{126}{4} \partial_{\mu} \phi \partial^{\mu} \phi \partial_{\nu} \partial_{\rho} \phi \partial^{\nu} \partial^{\rho} \phi+\frac{108}{2} \partial_{\mu} \phi \partial_{\nu} \phi \partial_{\rho} \partial^{\mu} \phi \partial^{\rho} \partial^{\nu} \phi\right)$

Consider the phase space integral:
$\left\langle\mathcal{O}_{1}, \mathcal{O}_{2}\right\rangle=\left[\prod_{i=1}^{N} \int d^{4} p_{i} \delta^{+}\left(p_{i}^{2}\right)\right] \delta\left(P-\Sigma_{i} p_{i}\right) \mathcal{O}_{1}\left(p_{i}\right) \cdot \mathcal{O}_{2}\left(-p_{i}\right) \stackrel{N=4}{=}$


$$
\left\langle P \mathcal{O}, \mathcal{O}_{\text {prim }}\right\rangle=0
$$

## Anomalous dimensions

Definition: $\quad \frac{d c_{i}^{d}(\mu)}{d \log (\mu)} \equiv \gamma_{i j}^{d} c_{j}^{d}+\sum_{\left\{d_{a}\right\}} \gamma_{i j_{1} \ldots j_{r}}^{\left(d_{1} \ldots d_{r}\right)}\left(c_{j_{1}}^{d_{1}} \cdot \ldots \cdot c_{j_{r}}^{d_{r}}\right)$
For example :

$$
\begin{array}{r}
\frac{d c_{i}^{8}(\mu)}{d \log (\mu)}=\gamma_{i j}^{8} c_{j}^{8}+\gamma_{i j k}^{(6,6)} c_{j}^{6} c_{k}^{6}=-\beta\left(Z^{8}\right)_{i y}^{-1} \frac{d Z_{y j}^{8}}{d g} c_{j}^{8}-\beta\left(Z^{8}\right)_{i y}^{-1} \frac{d Z_{y j k}^{(6,6)}}{d g} c_{j}^{6} c_{k}^{6} \\
-2\left(Z^{8}\right)_{i y}^{-1} Z_{y j k}^{(6,6)} \gamma_{j j^{\prime}}^{6} c_{j^{\prime}}^{6} c_{k}^{6}
\end{array}
$$

$\cup \operatorname{sing}: \quad\left(c_{b}\right)_{i}^{d}=Z_{i j}^{d} c_{j}^{d}+\sum_{\left\{d_{a}\right\}} Z_{i j_{1} \ldots j_{r}}^{\left(d_{1} \ldots d_{r}\right)}\left(c_{j_{1}}^{d_{1}} \cdot \ldots \cdot c_{j_{r}}^{d_{r}}\right)$

## Renormalisation: $R^{*}$-operation ${ }^{1}$

- Recursively subtracts both UV and IR subdivergences
- Overall UV divergence is local
$\rightarrow$ Taylor expand the counterterm
$\rightarrow$ Infrared Rearrangement


## Renormalisation: $R^{*}$-operation ${ }^{1}$

- Recursively subtracts both UV and IR subdivergences
- Overall UV divergence is local
$\rightarrow$ Taylor expand the counterterm
$\rightarrow$ Infrared Rearrangement

- We renormalise off-shell Greens functions
$\rightarrow$ Counterterms outside the physical operator basis required
$\rightarrow$ Need the full set of operators that are independent under IBP
- No explicit counterterms for subdivergences necessary
$\rightarrow$ Calculations with only $V_{\text {PHYS }}$
- Implemented in Maple, Form ${ }^{2}$, Forcer ${ }^{3}$

1: -For original developments, see Chetyrkin \& Tkachov (1982), Chetyrkin \& Smirnov (1984) and Smirnov \& Chetyrkin (1985). -For recent developments, see Herzog \& Ruijl [1703.03776], Beekveldt, Borinsky \& Herzog [2003.04301]

2: Vermaseren [math-ph/OO1OO25]
3: Ueda, Ruijl and Vermaseren [1607.07318]

## Results

Considered loop order and mass dimension :


Mass dimension

General anomalous dimension matrix $\gamma$ at mass dimension $N$


## Example: Complex scalar Mass dimension 8

$$
\begin{aligned}
& \text { Number } \\
& \text { of fields }
\end{aligned}
$$

$$
0 g+0 g^{2}+0 g^{3}
$$

$$
\begin{gathered}
0 g-240 g^{2} \\
+\left(2304 \zeta_{3}+5882\right) g^{3} \\
4 g-\frac{122 g^{2}}{3} \\
+\left(216 \zeta_{3}+\frac{4559}{12}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{679 g}{5}+\frac{14209 g^{2}}{12} \\
-\left(\frac{29216 \zeta_{3}}{5}+\frac{3248605}{324}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{164 g}{5}-\frac{9233 g^{2}}{36} \\
+\left(\frac{6056 \zeta_{3}}{5}+\frac{2740291}{1296}\right) g^{3}
\end{gathered}
$$

$$
\begin{array}{lc}
0 g+0 g^{2}+0 g^{3} & 0 g+0 g^{2}+\frac{5 g^{3}}{108} \\
0 g+0 g^{2}+0 g^{3} & 0 g+0 g^{2}+\frac{115 g^{3}}{324}
\end{array}
$$

$$
\begin{gathered}
\frac{11 g}{3}-\frac{29 g^{2}}{180} \\
-\left(\frac{32 \zeta_{3}}{3}+\frac{97091}{9720}\right) g^{3} \\
\frac{46 g}{3}-\frac{14557 g^{2}}{540} \\
+\left(96 \zeta_{3}+\frac{198001}{2430}\right) g^{3}
\end{gathered}
$$

$$
-\frac{4 g}{3}+\frac{1057 g^{2}}{540}
$$

$$
-\left(\frac{16 \zeta_{3}}{3}+\frac{10868}{1215}\right) g^{3}
$$

$$
\begin{gathered}
-\frac{19 g}{3}+\frac{2809 g^{2}}{180} \\
-\left(\frac{176 \zeta_{3}}{3}+\frac{718739}{9720}\right) g^{3}
\end{gathered}
$$

## Example: Complex scalar Mass dimension 8

$$
\begin{aligned}
& \begin{array}{l}
\text { Number } \\
\text { of fields } \\
\downarrow \\
N
\end{array} \\
& =\begin{array}{c}
2 \\
N-2 \\
\ldots \\
n<N
\end{array} \\
& \\
& n
\end{aligned}
$$

$$
\left(\begin{array}{c}
29 g-409 g^{2} \\
+\left(2352 \zeta_{3}+\frac{57765}{8}\right) g^{3} \\
0 g+0 g^{2}+0 g^{3}
\end{array}\right.
$$

$$
\begin{gathered}
\frac{54216 g}{5}-\frac{958314 g^{2}}{5} \\
+\left(\frac{4083264 \zeta_{3}}{5}+\frac{55731313}{15}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{O}_{4, \text { prim }}^{(8)}(0,1) \\
-\frac{8856 g}{5}+\frac{159894 g^{2}}{5} \\
-\left(\frac{713664 \zeta_{3}}{5}+\frac{9281093}{15}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{164 g}{5}-\frac{9233 g^{2}}{36} \\
+\left(\frac{656 \zeta_{3}}{5}+\frac{2740291}{1296}\right) g^{3}
\end{gathered}
$$

$$
0 g+0 g^{2}+0 g^{3} \quad 0 g+0 g^{2}+\frac{5 g^{3}}{108}
$$

$$
0 g+0 g^{2}+0 g^{3}
$$

$$
0 g+0 g^{2}+\frac{115 g^{3}}{324}
$$

$$
\begin{gathered}
\frac{11 g}{3}-\frac{29 g^{2}}{180} \\
-\left(\frac{32 \zeta_{3}}{3}+\frac{97091}{9720}\right) g^{3} \\
\frac{46 g}{3}-\frac{14557 g^{2}}{540} \\
+\left(96 \zeta_{3}+\frac{198001}{2430}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{O}_{6, \text { prim }}^{(8)} \\
+\left(2 g-240 g^{2}\right. \\
\left.+2304 \zeta_{3}+5882\right) g^{3} \\
+\left(216 \zeta_{3}+\frac{4559}{12}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{679 g}{5}+\frac{14209 g^{2}}{12} \\
-\left(\frac{29216 \zeta_{3}}{5}+\frac{3248605}{324}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{4 g}{3}+\frac{1057 g^{2}}{540} \\
-\left(\frac{16 \zeta_{3}}{3}+\frac{10868}{1215}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{19 g}{3}+\frac{2809 g^{2}}{180} \\
-\left(\frac{176 \zeta_{3}}{3}+\frac{718739}{9720}\right) g^{3}
\end{gathered}
$$

## Example: Complex scalar Mass dimension 8

$$
0 g+0 g^{2}+\frac{5 g^{3}}{108}
$$

$$
0 g+0 g^{2}+0 g^{3}
$$

$$
0 g+0 g^{2}+\frac{115 g^{3}}{324}
$$



$$
\left.\begin{array}{c}
\frac{11 g}{3}-\frac{29 g^{2}}{180} \\
-\left(\frac{32 \zeta_{3}}{3}+\frac{97091}{9720}\right) g^{3} \\
+\left(96 \zeta_{3}+\frac{46 g}{3}-\frac{14557 g^{2}}{540}\right. \\
+(93001
\end{array}\right) g^{3}
$$



$$
\begin{gathered}
-\frac{4 g}{3}+\frac{1057 g^{2}}{540} \\
-\left(\frac{16 \zeta_{3}}{3}+\frac{10868}{1215}\right) g^{3} \\
-\frac{19 g}{3}+\frac{2809 g^{2}}{180} \\
-\left(\frac{176 \zeta_{3}}{3}+\frac{718739}{9720}\right) g^{3}
\end{gathered}
$$

## Example: Complex scalar Mass dimension 8

$$
\begin{gathered}
\mathcal{O}_{4, \text { prim }}^{(8)}(0,1) \\
-\frac{8856 g}{5}+\frac{159894 g^{2}}{5} \\
-\left(\frac{713664 \zeta_{3}}{5}+\frac{9281093}{15}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{54216 g}{5}-\frac{958314 g^{2}}{5} \\
+\left(\frac{4083264 \zeta_{3}}{5}+\frac{55731313}{15}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{679 g}{5}+\frac{14209 g^{2}}{12} \\
-\left(\frac{29216 \zeta_{3}}{5}+\frac{3248605}{324}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{164 g}{5}-\frac{9233 g^{2}}{36} \\
+\left(\frac{6056 \zeta_{3}}{5}+\frac{2740291}{1296}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{11 g}{3}-\frac{29 g^{2}}{180} \\
-\left(\frac{32 \zeta_{3}}{3}+\frac{97091}{9720}\right) g^{3} \\
\frac{46 g}{3}-\frac{14557 g^{2}}{540} \\
+\left(96 \zeta_{3}+\frac{198001}{2430}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{4 g}{3}+\frac{1057 g^{2}}{540} \\
-\left(\frac{16 \zeta_{3}}{3}+\frac{10868}{1215}\right) g^{3} \\
-\frac{19 g}{3}+\frac{2809 g^{2}}{180} \\
-\left(\frac{176 \zeta_{3}}{3}+\frac{718739}{9720}\right) g^{3}
\end{gathered}
$$

## Example: Complex scalar Mass dimension 8

$$
\begin{array}{cc}
\mathcal{O}_{4, \text { prim }}^{(8)}(1,0) & \mathcal{O}_{4, \text { prim }}^{(8)}(0,1) \\
\frac{54216 g}{5}-\frac{958314 g^{2}}{5} & -\frac{8856 g}{5}+\frac{159894 g^{2}}{5} \\
+\left(\frac{4083264 \zeta_{3}}{5}+\frac{55731313}{15}\right) g^{3} & -\left(\frac{713664 \zeta_{3}}{5}+\frac{9281093}{15}\right) g^{3}
\end{array}
$$

$$
\begin{gathered}
-\frac{679 g}{5}+\frac{14209 g^{2}}{12} \\
-\left(\frac{29216 \zeta_{3}}{5}+\frac{3248605}{324}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{164 g}{5}-\frac{9233 g^{2}}{36} \\
+\left(\frac{6056 \zeta_{3}}{5}+\frac{2740291}{1296}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{11 g}{3}-\frac{29 g^{2}}{180} \\
-\left(\frac{32 \zeta_{3}}{3}+\frac{97091}{9720}\right) g^{3} \\
\frac{46 g}{3}-\frac{14557 g^{2}}{540} \\
+\left(96 \zeta_{3}+\frac{198001}{2430}\right) g^{3}
\end{gathered}
$$

$$
-\frac{4 g}{3}+\frac{1057 g^{2}}{540}
$$

$$
-\left(\frac{16 \zeta_{3}}{3}+\frac{10868}{1215}\right) g^{3}
$$

$$
\begin{gathered}
-\frac{19 g}{3}+\frac{2809 g^{2}}{180} \\
-\left(\frac{176 \zeta_{3}}{3}+\frac{718739}{9720}\right) g^{3}
\end{gathered}
$$

## Example: Complex scalar Mass dimension 8


$\mathcal{O}_{6, p r i m}^{(8)}$

$$
\begin{gathered}
0 g-240 g^{2} \\
+\left(2304 \zeta_{3}+5882\right) g^{3} \\
4 g-\frac{122 g^{2}}{3} \\
+\left(216 \zeta_{3}+\frac{4559}{12}\right) g^{3}
\end{gathered}
$$

$$
0 g+0 g^{2}+0 g^{3}
$$

$$
0 g+0 g^{2}+\frac{5 g^{3}}{108}
$$

$$
0 g+0 g^{2}+0 g^{3}
$$

$$
0 g+0 g^{2}+\frac{115 g^{3}}{324}
$$

$\mathcal{O}_{4, \text { prim }}^{(8)}(1,0)$
$\mathcal{O}_{4, \text { prim }}^{(8)}(0,1)$
$\frac{54216 g}{5}-\frac{958314 g^{2}}{5}$
$+\left(\frac{4083264 \zeta_{3}}{5}+\frac{55731313}{15}\right) g^{3}$

$$
\begin{gathered}
-\frac{8856 g}{5}+\frac{159894 g^{2}}{5} \\
-\left(\frac{713664 \zeta_{3}}{5}+\frac{9281093}{15}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{679 g}{5}+\frac{14209 g^{2}}{12} \\
-\left(\frac{29216 \zeta_{3}}{5}+\frac{3248605}{324}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{164 g}{5}-\frac{9233 g^{2}}{36} \\
+\left(\frac{6056 \zeta_{3}}{5}+\frac{2740291}{1296}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{11 g}{3}-\frac{29 g^{2}}{180} \\
-\left(\frac{32 \zeta_{3}}{3}+\frac{97091}{9720}\right) g^{3} \\
\frac{46 g}{3}-\frac{14557 g^{2}}{540} \\
+\left(96 \zeta_{3}+\frac{198001}{2430}\right) g^{3}
\end{gathered}
$$

$$
\begin{gathered}
-\frac{4 g}{3}+\frac{1057 g^{2}}{540} \\
-\left(\frac{16 \zeta_{3}}{3}+\frac{10868}{1215}\right) g^{3} \\
-\frac{19 g}{3}+\frac{2809 g^{2}}{180} \\
-\left(\frac{176 \zeta_{3}}{3}+\frac{718739}{9720}\right) g^{3}
\end{gathered}
$$

## Example: I-loop submatrix of length-4 operators

$$
\gamma_{\mathrm{sub}}=\left(\begin{array}{cc}
\frac{11}{3} & -\frac{4}{3} \\
\frac{46}{3} & -\frac{19}{3}
\end{array}\right)
$$

for

$$
\begin{aligned}
& \mathcal{O}_{4, \text { prim }}^{(8)}(1,0) \\
& \mathcal{O}_{4, \text { prim }}^{8 c}(0,1)
\end{aligned}
$$

Instead choose

$$
\begin{aligned}
\mathcal{O}_{4, \text { prim }}^{8}(a, b) & =\mathcal{O}_{4, \text { prim }}^{8}(3 \sin \theta, 13 \sin \theta+2 \sqrt{5} \cos \theta) \\
\mathcal{O}_{4, \text { prim }}^{8 c}\left(a^{\prime}, b^{\prime}\right) & =\mathcal{O}_{4, \text { prim }}^{8 c}(3 \cos \theta, 13 \cos \theta-2 \sqrt{5} \sin \theta)
\end{aligned}
$$



$$
\left\langle\mathcal{O}_{4}^{8}(a, b), \mathcal{O}_{4}^{8}\left(a^{\prime}, b^{\prime}\right)\right\rangle=\left[\prod_{i=1}^{N} \int d^{4} p_{i} \delta^{+}\left(p_{i}^{2}\right)\right] \delta\left(P-\Sigma_{i} p_{i}\right) \mathcal{O}\left(p_{i}\right) \cdot \mathcal{O}^{\prime}\left(-p_{i}\right)=0
$$

$$
\left\langle\mathcal{O}_{4}^{8}(a, b), \mathcal{O}_{4}^{8}(a, b)\right\rangle=\left\langle\mathcal{O}_{4}^{8}\left(a^{\prime}, b^{\prime}\right), \mathcal{O}_{4}^{8}\left(a^{\prime}, b^{\prime}\right)\right\rangle \quad \text { for any angle } \theta
$$

Note the effect of a change of basis on the AD $\gamma_{\text {sub }}$ :

$$
\vec{c}=R \vec{c}^{\prime} \quad \Longrightarrow \gamma^{\prime}=R^{-1} \gamma R
$$

## Example: I-loop submatrix of length-4 operators

Orthonormal basis:

$$
\begin{aligned}
& \mathcal{O}_{4, \text { prim }}^{8}(a, b)=\mathcal{O}_{4, \text { prim }}^{8}(3 \sin \theta, 13 \sin \theta+2 \sqrt{5} \cos \theta) \\
& \mathcal{O}_{4, \text { prim }}^{8 c}\left(a^{\prime}, b^{\prime}\right)=\mathcal{O}_{4, \text { prim }}^{8 c}(3 \cos \theta, 13 \cos \theta-2 \sqrt{5} \sin \theta) \\
& \gamma_{\mathrm{sub}}^{\prime}=\left(\begin{array}{ll}
a & a^{\prime} \\
b & b^{\prime}
\end{array}\right)^{-1}\left(\begin{array}{cc}
\frac{11}{3} & -\frac{4}{3} \\
\frac{46}{3} & -\frac{19}{3}
\end{array}\right)\left(\begin{array}{ll}
a & a^{\prime} \\
b & b^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{1}{9}(12-7 \cos 2 \theta+8 \sqrt{5} \sin 2 \theta) & -\frac{1}{9}(8 \sqrt{5} \cos 2 \theta+7 \sin 2 \theta) \\
-\frac{1}{9}(8 \sqrt{5} \cos 2 \theta+7 \sin 2 \theta) & -\frac{1}{9}(12+7 \cos 2 \theta-8 \sqrt{5} \sin 2 \theta)
\end{array}\right)
\end{aligned}
$$

$\rightarrow$ Symmetric submatrix!

## Submatrix of same length operator mixing

Form Factor method for anomalous dimensions*:



Note: $\left\langle P \mathcal{O}, \mathcal{O}_{\text {prim }}\right\rangle=0 \Longrightarrow$

Submatrix of physical AD, $\gamma_{\text {sub }}$, is symmetric if the conformal primary part is orthonormal

## Conclusion

First application of $R^{*}$-operation in EFT
$\rightarrow$ useful for renormalisation at high loop order and high mass dimension

Analysed the general structure of the anomalous dimensions and its basisdependence


Confirmed existing predictions
Open questions:

- Red and orange zeros


Thank you!

