Effective Field Theory at the LHC

Eleni Vryonidou University of Manchester

EFT school online, 11/04/21

LHC physics applications

Outline

How to look for new physics?

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

Deviations in tails

E.Vryonidou

How to look for new physics?

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

E.Vryonidou

A Taylor expansion

A Taylor expansion

E.Vryonidou

A Taylor expansion

E.Vryonidou

EFT for New Physics

Low Energy Effective Theory without the Z'

E.Vryonidou

EFT for New Physics

Low Energy Effective Theory without the Z'

E.Vryonidou

Does the effective theory work?

An example of a successful EFT:

 $n \to p + e^- + \bar{\nu}_e$

Fermi formulated his theory in the 1930's

It described β-decay data very well Energy of β-decay: ~MeV

But this is not the full theory: cross-section rising with energy, violating unitarity

1983 Discovery of W-boson at CERN UA1 and UA2 M_w =80 GeV >> Q_β

Energy borrowed from the vacuum A virtual W-boson exchange

A toy-model example

We want to describe the same physics, below scale M

Matching

Matching improvements

We looked at the matching at dimension-6: How can we improve the matching?

Higher order terms in the momentum expansion: dimension-8 operators

$$\mathcal{L}_{p^2,\lambda^2} = i\overline{\psi}\,\partial\!\!\!/\psi + \frac{\lambda^2}{M^2}\,\frac{1}{2}\,\overline{\psi}\psi\,\overline{\psi}\psi + \frac{d\,\partial_\mu\overline{\psi}\partial^\mu\psi\,\overline{\psi}\psi}{d\,\psi}\, \qquad d = -\frac{\lambda^2}{M^4}$$

EFT expansion systematically improvable by adding higher dimension operators

Matching improvements

Higher-order corrections in the QED or QCD couplings: 1-loop matching instead of tree-level matching

Origin of RG-running

Toy-model example: $\mathcal{L}_{p^{2},\lambda^{2}} = i\overline{\psi} \, \partial \!\!\!/ \psi + \frac{c}{2} \, \overline{\psi} \psi \, \overline{\psi} \psi + d \, \partial_{\mu} \overline{\psi} \partial^{\mu} \psi \, \overline{\psi} \psi + \frac{1}{2} (\partial_{\mu} \varphi)^{2} - \frac{m^{2}}{2} \varphi^{2} - \eta \, \overline{\psi} \psi \varphi \quad \text{Light scalar}$ Self-energy computation

$$\begin{split} \psi \psi \to \psi \psi \quad O(\lambda^2 \eta^2) : \quad \underbrace{\frac{\sqrt{k}}{p}}_{p+k} &= (-i\eta)^2 \int \frac{d^d k}{(2\pi)^d} \frac{i(k+p)}{(k+p)^2} \frac{i}{k^2 - m^2} = \eta^2 \int \frac{d^d l}{(2\pi)^d} \int_0^1 dx \frac{l+(1-x)p}{[l^2 - \Delta^2]^2} \\ &= \frac{i\eta^2}{(4\pi)^2} \frac{1}{\epsilon} \left(\int_0^1 dx (1-x)p \right) + \text{ finite} = \boxed{\frac{i\eta^2 p}{2(4\pi)^2} \frac{1}{\epsilon}} + \text{ finite}, \end{split}$$

a)
$$-\frac{2ic\eta^{2}}{(4\pi)^{2}}\frac{1}{\epsilon} + \text{ finite}$$

b)
$$\frac{ic\eta^{2}}{2(4\pi)^{2}}\frac{1}{\epsilon}\overline{u}_{3}\gamma^{\mu}u_{1}\overline{u}_{4}\gamma_{\mu}u_{2} + \text{ finite}} \sum_{\text{cancellation of the}} C) - \frac{ic\eta^{2}}{2(4\pi)^{2}}\frac{1}{\epsilon}\overline{u}_{3}\gamma^{\mu}u_{1}\overline{u}_{4}\gamma_{\mu}u_{2} + \text{ finite}}$$

Origin of RG-running

Divergences require CT:

Writing the Lagrangian in terms of bare and renormalised fields and couplings

$$\mathcal{L}_{p^{0},\lambda^{2}\eta^{2}\log} = i\overline{\psi}_{0} \, \partial \!\!\!/ \psi_{0} + \frac{c_{0}}{2} \, \overline{\psi}_{0} \psi_{0} \, \overline{\psi}_{0} \psi_{0} = iZ_{\psi} \overline{\psi} \, \partial \!\!\!/ \psi + \frac{c}{2} \, Z_{c} Z_{\psi}^{2} \mu^{2\epsilon} \overline{\psi} \psi \, \overline{\psi} \psi$$

$$= i\overline{\psi} \, \partial \!\!\!/ \psi + \mu^{2\epsilon} \frac{c}{2} \, \overline{\psi} \psi \, \overline{\psi} \psi + i(Z_{\psi} - 1) \overline{\psi} \, \partial \!\!\!/ \psi + \mu^{2\epsilon} \frac{c}{2} (Z_{c} Z_{\psi}^{2} - 1) \, \overline{\psi} \psi \, \overline{\psi} \psi$$

From the loop calculations: $Z_{\psi} - 1 = -\frac{\eta^2}{2(4\pi)^2} \frac{1}{\epsilon}$ and $c(Z_c Z_{\psi}^2 - 1) = \frac{2c\eta^2}{(4\pi)^2} \frac{1}{\epsilon}$

Solving the RG equation for c

$$c(m) = c(M) - \frac{6\eta^2}{(4\pi)^2} c \log\left(\frac{M}{m}\right) = \frac{\lambda^2}{M^2} \left[1 - \frac{6\eta^2}{(4\pi)^2} \log\left(\frac{M}{m}\right)\right]$$

c runs with the scale

E.Vryonidou

Origin of RG-running

Divergences require CT:

Writing the Lagrangian in terms of bare and renormalised fields and couplings

$$\mathcal{L}_{p^{0},\lambda^{2}\eta^{2}\log} = i\overline{\psi}_{0} \, \partial \!\!\!/ \psi_{0} + \frac{c_{0}}{2} \, \overline{\psi}_{0} \psi_{0} \, \overline{\psi}_{0} \psi_{0} = iZ_{\psi} \overline{\psi} \, \partial \!\!\!/ \psi + \frac{c}{2} \, Z_{c} Z_{\psi}^{2} \mu^{2\epsilon} \overline{\psi} \psi \, \overline{\psi} \psi$$

$$= i\overline{\psi} \, \partial \!\!\!/ \psi + \mu^{2\epsilon} \frac{c}{2} \, \overline{\psi} \psi \, \overline{\psi} \psi + i(Z_{\psi} - 1) \overline{\psi} \, \partial \!\!\!/ \psi + \mu^{2\epsilon} \frac{c}{2} (Z_{c} Z_{\psi}^{2} - 1) \, \overline{\psi} \psi \, \overline{\psi} \psi$$

From the loop calculations

$$0 = \mu \frac{d}{d\mu} c_0 = \mu \frac{d}{d\mu} (c\mu^{2\epsilon} Z_c) = \beta_c \mu^{2\epsilon} Z_c$$

Solving the RG equation fc

$$c(m) = c(M) - \frac{6\eta^2}{(4\pi)^2} c \log\left(\frac{M}{m}\right) = \frac{\lambda^2}{M^2} \int_{\frac{1}{2}}^{\frac{1}{2}} dr$$

 n^2 1 $2cn^2$ 1 TASI Lectures on Effective Field Theory and Precision Electroweak Measurements

Witold Skiba

Department of Physics, Yale University, New Haven, CT 06520

Abstract

The first part of these lectures provides a brief introduction to the concepts and techniques of effective field theory. The second part reviews precision electroweak constraints using effective theory methods. Several simple extensions of the Standard Model are considered as illustrations. The appendix contains some new results on the one-loop contributions of electroweak triplet scalars to the T parameter and contains a discussion of decoupling in that case.

E.Vryonidou

Origin of RG-mixing

Starting by integrating out a vector field:

$$\mathcal{L}_{p^{0},V} = i\overline{\psi} \, \partial \!\!\!/ \psi + \frac{c_{V}}{2} \overline{\psi} \gamma^{\mu} \psi \, \overline{\psi} \gamma_{\mu} \psi + \frac{1}{2} (\partial_{\mu} \varphi)^{2} - \frac{m^{2}}{2} \varphi^{2} - \eta \, \overline{\psi} \psi \varphi$$

RG of c_V

Loop corrections turn one operator into another

The operators mix

$$\mu \frac{d}{d\mu} \left(\begin{array}{c} c_V \\ c_T \end{array} \right) = \frac{2\eta^2}{(4\pi)^2} \left(\begin{array}{c} 0 & 6 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} c_V \\ c_T \end{array} \right)$$

A new operator

Need to consider: $\frac{c_V}{2}\overline{\psi}\gamma^{\mu}\psi\overline{\psi}\gamma_{\mu}\psi + \frac{c_T}{2}\overline{\psi}\sigma^{\mu\nu}\psi\overline{\psi}\sigma_{\mu\nu}\psi$

E.Vryonidou

Origin of RG-mixing

Starting by integrating out a vector field:

$$\mathcal{L}_{p^{0},V} = i\overline{\psi}\,\partial\!\!\!/\psi + \frac{c_{V}}{2}\,\overline{\psi}\gamma^{\mu}\psi\,\overline{\psi}\gamma_{\mu}\psi + \frac{1}{2}(\partial_{\mu}\varphi)^{2} - \frac{m^{2}}{2}\varphi^{2} - \eta\,\overline{\psi}\psi\varphi$$
RG of c_V

Loop corrections turn one operator into another

The operators mix

EFT calculations from amplitude methods	Alex POMAROL	
科大东区物质科研楼3楼报告厅 and Zoom online	17:35 - 17:55	
Higher order renormalisation in scalar effective field theory	Jasper ROOSMALE NEPVEU	
科大东区物质科研楼3楼报告厅 and Zoom online	17:35 - 18:00	
Diagrammatic one-loop renormalization within the EChL in the Rxi gauges and applications to scattering and decays	d Roberto MORALES	

E.Vryonidou

What we learnt so far

What we will learn

E.Vryonidou

What we will learn

15

SMEFT@LHC

- Focus on SMEFT:
 - only SM fields
 - respecting SM symmetries
 - valid below scale Λ
- Gauge invariant
- Higher-order corrections: renormalisable order by order in $1/\!\Lambda$

$$\mathcal{O}(\alpha_s) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) +$$

- Complete description
- Model Independent

Tuesday tutorial

SMEFT

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

Buchmuller, Wyler Nucl. Phys. B268 (1986) 621-653

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$		
Q_G	$Q_G = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$		$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
$X^2 \varphi^2$			$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{\varphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r)(ar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$Q_{dd} = (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$		$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$Q_{lq}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$		$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$_{d}$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$		$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating				
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	$^{T}Cu_{r}^{\beta}\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k} ight]$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$			

4-fermion operators

E.Vryonidou

EOM

$$\mathcal{L}_{\varphi} = \frac{1}{2} (\partial_{\mu} \varphi)^2 - \frac{m^2}{2} \varphi^2 - \frac{\eta}{4!} \varphi^4 - c_1 \varphi^6 + c_2 \varphi^3 \partial^2 \varphi, \qquad (46)$$

where both coefficients c_1 and c_2 are coefficients of operators of dimension 6. We perform a field redefinition $\varphi \to \varphi' + c_2 \varphi'^3$ in the Lagrangian in Eq. (46). Field redefinitions do not alter the S matrix as long as $\langle \varphi_1 | \varphi' | 0 \rangle \neq 0$, where $| \varphi_1 \rangle$ is a one-particle state created by the field φ . In other words, φ' is an interpolating field for the single-particle state $| \varphi_1 \rangle$. This is guaranteed by the LSZ reduction formula which picks out the poles corresponding to the physical external states in the scattering amplitude.

Under the $\varphi \to \varphi' + c_2 \varphi'^3$ redefinition

E.Vryonidou

$$\mathcal{L}_{\varphi} \rightarrow \frac{(\partial_{\mu}\varphi')^{2}}{2} - c_{2}\varphi'^{3}\partial^{2}\varphi' - \frac{m^{2}}{2}\varphi'^{2} - c_{2}m^{2}\varphi'^{4} - \frac{\eta}{4!}\varphi'^{4} - \frac{\eta}{3!}c_{2}\varphi'^{6} - c_{1}\varphi'^{6} + c_{2}\varphi'^{3}\partial^{2}\varphi' + \dots$$

$$= \frac{(\partial_{\mu}\varphi')^{2}}{2} - \frac{m^{2}}{2}\varphi'^{2} - (\frac{\eta}{4!} + c_{2}m^{2})\varphi'^{4} - (c_{1} + \frac{\eta c_{2}}{3!})\varphi'^{6} + \dots, \qquad (47)$$

where we omitted terms quadratic in the coefficients $c_{1,2}$. This field redefinition removed the $\varphi^3 \partial^2 \varphi$ term and converted it into the φ^6 term. Field redefinitions are equivalent to using the lowest oder equations of motions to find redundancies among higher dimensional operators. The equation of motion following from the Lagrangian in Eq. (46) is $\partial^2 \varphi = -m^2 \varphi - \frac{\eta}{3!} \varphi^3$.

Substituting the derivative part of the $\varphi^3 \partial^2 \varphi$ operator with the equation of motion gives

$$\mathcal{L}_{D>4} = -c_1\varphi^6 + c_2\varphi^3\partial^2\varphi \to -c_1\varphi^6 + c_2\varphi^3(-m^2\varphi - \frac{\eta}{3!}\varphi^3) = -(c_1 + \frac{\eta c_2}{3!})\varphi^6 - c_2m^2\varphi^4, \quad (48)$$

EFT bases

Bases:

- SILH, G. Giudice et al [hep-ph/0703164].
- Warsaw arXiv:1008.4884
- BSM primaries Gupta, Pomarol, Riva arXiv:1405.0181
- Higgs, LHCHXSWG
- someone's favourite basis

Bases construction:

E.Vryonidou

EFT bases

EW and Higgs Physics	
$\mathcal{O}_W = rac{ig}{2} \left(H^\dagger \sigma^a \stackrel{\leftrightarrow}{D^\mu} H ight) D^ u W^a_{\mu u}$	2
${\cal O}_B = {ig'\over 2} \left(H^\dagger {\stackrel{\leftrightarrow}{D^\mu}} H ight) \partial^ u B_{\mu u}$	2
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	2
$\mathcal{O}_T = rac{1}{2} \left(H^\dagger \stackrel{\leftrightarrow}{D}_\mu H ight)^2$	1
${\cal O}_{Hu} = (i H^\dagger \stackrel{\leftrightarrow}{D_\mu} H) (ar{u}_R \gamma^\mu u_R)$	1
${\cal O}_{Hd} = (i H^\dagger \stackrel{\leftrightarrow}{D_\mu} H) (\bar{d}_R \gamma^\mu d_R)$	1
${\cal O}_{He} = (i H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H) (\bar{e}_R \gamma^{\mu} e_R)$	1
$\mathcal{O}_{HQ} = (iH^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{Q}_L \gamma^{\mu} Q_L)$	1
$\mathcal{O}'_{HQ} = \overrightarrow{(iH^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_{L}\sigma^{a}\gamma^{\mu}Q_{L})}$	1

\mathcal{O}_B	$=\mathcal{O}_{HB}+\mathcal{O}_{BB}+\mathcal{O}_{WB},$
\mathcal{O}_W	$=\mathcal{O}_{HW}+\mathcal{O}_{WW}+\mathcal{O}_{WB},$
\mathcal{O}_{HV}	$_{V} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$
\mathcal{O}_W	$_{B} = \frac{gg'}{4} (H^{\dagger} \sigma^{a} H) W^{a}_{\mu\nu} B^{\mu\nu}$

$$\{\mathcal{O}_{HL}, \mathcal{O}'_{HL}, \mathcal{O}_{WB}\} \to \{\mathcal{O}_W, \mathcal{O}_B, \mathcal{O}_{HB}\}$$

$$\begin{split} \mathcal{O}_W &= g^2 \left[\frac{3}{2} \mathcal{O}_r - \frac{1}{4} \sum_{u,d,e} \mathcal{O}_y - \mathcal{O}_6 + \frac{1}{4} (\mathcal{O}_{HL}' + \mathcal{O}_{HQ}') \right] \,. \\ \mathcal{O}_B &= g'^2 \left[-\frac{1}{2} \mathcal{O}_T + \frac{1}{2} \sum_F Y_F \mathcal{O}_{HF} \right] \,. \end{split}$$

with $F = \{L_L, e_R, Q_L, u_R, d_R\}, Y_F$ the hypercharge, and

Biekotter et al., 1406.7320

 $\mathcal{O}_{HL} \equiv (i H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{L}_L \gamma^{\mu} L_L), \quad \mathcal{O}'_{HL} \equiv (i H^{\dagger} \sigma^a \overset{\leftrightarrow}{D_{\mu}} H) (\bar{L}_L \sigma^a \gamma^{\mu} L_L) \,.$

E.Vryonidou

Tools for EFT bases

ROSETTA translation between bases: Falkowski et al. arXiv:1508.05895)

1						i			EW and Higgs Physics
X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$			Higgs Physics Only		$\mathcal{O}_{\mu\nu} = \frac{ig}{g} \left(H^{\dagger} \sigma^a \stackrel{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^a$
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{\nu}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$		inggo i nysico Oniy		$U_W = \frac{1}{2} \left(H U D H \right) D W_{\mu\nu} \qquad 2$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$		$\mathcal{O}_r = H ^2 D^\mu H ^2$	1	$\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} \vec{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \qquad 2$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		$\mathcal{O}_{BB} = \frac{g}{4} H ^2 B_{\mu\nu} B^{\mu\nu}$	2	$O_{\mu\nu} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B$
$Q_{\widetilde{i}\widetilde{i}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}W^{J\rho}W^{K\mu}$						$\mathcal{O}_{WW} = \frac{g^2}{4} H ^2 W^a_{\mu\nu} W^{a\mu\nu}$	2	$C_{HB} = ig (D^{*} H)^{*} (D^{*} H) D_{\mu\nu}$ 2
	$\chi^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		$\sigma_G = \frac{g_s^2}{4} H ^2 G^A_{\mu\nu} G^{A\mu\nu}$	2	$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)^2 $ 1
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$		$\mathcal{O}_{y_u} = y_u H ^2 ar{Q}_L \widetilde{H} u_R$	1	$\mathcal{O}_{Hu} = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{u}_R \gamma^{\mu} u_R) \qquad 1$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	1	$\mathcal{O}_{Hd} = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)(\bar{d}_R \gamma^{\mu} d_R) \qquad 1$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$		$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L H e_R$	1	$\mathcal{O}_{H_e} = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)(\bar{e}_B \gamma^{\mu} e_B) $ 1
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$		$\mathcal{O}_{2} = \lambda H ^{6}$		$(111) \stackrel{((111)}{\leftrightarrow} 11) \stackrel{((111)}{\sim} 11) \stackrel{(((111))}{\sim} 11) \stackrel{(((111))}{\sim} 11) \stackrel{(((111))}{\sim} 11) \stackrel{((((111)))}{\sim} 11) (((((((((((((((((((((((((((((((((((($
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		$V_6 = \lambda \Pi $	1	$\mathcal{O}_{HQ} = (iH^{\dagger}D_{\mu}H)(Q_L\gamma^{\mu}Q_L) \qquad 1$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$				$\mathcal{O}'_{HQ} = (iH^{\dagger}\sigma^{a}\bar{D}_{\mu}H)(\bar{Q}_{L}\sigma^{a}\gamma^{\mu}Q_{L}) 1$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	Ricketter et al. 1406 7220			
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$				ai., 1400.7020

Grzadkowski et al arxiv:1008.4884

Physics applications

SMEFT in Monte Carlos

E.Vryonidou
SMEFT in Monte Carlos

	● feynrules.irmp.ucl.ac.be	Ċ		
LjubljanaTraining	Event < VBSCan < TWiki	EffectiveModels – FeynRules		
2		Login Preferences Help/G Wiki Timeline	uide About View Ticket	
ffectiveModels		Start Page	Index His	
ngly-coupled models and effective field f	Short Description	Contact	Statue	
Avion-l ike Particles	Effective Theories for a light Avion-Like Particle		Availab	
Anomalous Gauge Boson Couplings	Model including anomalous couplings among gauge bosons	0.1.P. Fholi, M.C. Gonzalez-Garcia	Availab	
BSM Characterisation	The SM FFT Lagrangian in the mass basis	B. Fuks, K. Mawatari	Availah	
Complete top-quark EFT implementation	A complete top-guark EFT implementation	G. Durieux and C. Zhang	Availab	
Chiral perturbation theory	The effective Lagrangian describing the low-energy interaction of mesons.	C. Degrande	Availab	
EFT mass basis	The SM EFT Lagrangian in the mass basis	B. Fuks, K. Mawatari	Availab	
Effective theory for 4 top production	Dimension-six operators invariant under the SM symmetries affecting 4 top interactions	operators invariant under the SM symmetries affecting 4 top C.Degrande		
Effective theory for weak gauge boson production	Dimension-six operators invariant under the SM symmetries affecting triple gauge boson interactions	C.Degrande	Availab	
Effective top-Higgs interactions	Dimension 6 Higgs-top interactions.	E. Salvioni and J. Dror	Availab	
FCNC Higgs interactions	The SM plus higher-dimensional flavor changing Higgs interactions.	S. Krastanov	Availat	
FCNC Top interactions	The SM plus higher-dimensional flavor changing top-quark interactions.	A. Amorim, J. Santiago, N. Castro, R. Santos	Availal	
Four-fermion FCNC	Contact Interaction model with b-s-I-I FCNC terms	Y. Afik and J. Cohen	Availat	
HiggsCharacterisation	The model file for the spin/parity characterisation of a 125 GeV resonance.	F. Demartin, K. Mawatari	Availat	
Higgs Effective Lagrangian	Higgs effective Lagrangian including operators up-to dimension 6.	A. Alloul, B. Fuks and V. Sanz	Availat	
Higgs effective theory	An add-on for the SM implementation containing the dimension 5 gluon fusion operator.			
Mimimal Higgsless Model (3-Site Model)	A higgsless model, including new heavy fermions and a Z' and a W' boson. N. Christensen			
nTGC Effective theory	dimension-8 operators invariant under the SM symmetries affecting neutral triple gauge boson couplings C. Degrande			
Strongly Interacting Light Higgs	A model including higher-dimensional SM operators to describe strongly coupled theories of EWSB.			
Technicolor	The Minimal Walking Technicolor Model	M. Järvinen, T. Hapola, E. Del Nobile, C. Pica	Availab	
TFCNC	The SM, plus FCNC top interactions.	M. Buchkremer, G. Cacciapaglia, A. Deandrea L. Panizzi		
The SMEFT in the Warsaw basis	Standard Model Effective Field Theory	I. Brivio, Y. Jiang, M. Trott,	Availab	

E.Vryonidou

Outline

EFT basics

LHC physics applications

Associated top quark production using EFT at CMS	Brent YATES
科大东区物质科研楼3楼报告厅 and Zoom online	19:40 - 20:10
Putting SMEFT Fits to Work	Dr. Samuel HOMILLER
科大东区物质科研楼3楼报告厅 and Zoom online	20:10 - 20:35
\$A_{FB}\$ in the SMEFT: the LHC as a Z-physics laboratory	Mr. Víctor BRESÓ
科大东区物质科研楼3楼报告厅 and Zoom online	20:35 - 21:00
Reviving the interference: framework and proof-of-principle for the anomalous gluon self-interactions in the SMEFT	Mr. Matteo MALTONI
Break	
科大东区物质科研楼3楼报告厅 and Zoom online	21:25 - 21:35
Precision from Diboson Processes at FCC-hh	Philipp ENGLERT
科大东区物质科研楼3楼报告厅 and Zoom online	21:35 - 22:00
All things EFT: SMEFT Practicalities	Sally DAWSON
科大东区物质科研楼3楼报告厅 and Zoom online	22:00 - 23:00

Recent EFT interpretations in Higgs measurements at ATLAS	Philipp WINDISCHHOFER
科大东区物质科研楼3楼报告厅 and Zoom online	15:00 - 15:20
Probing Higgs couplings to light quarks via Higgs pair production	Lina ALASFAR
科大东区物质科研楼3楼报告厅 and Zoom online	15:25 - 15:45
Light quark Yukawas in triboson final states	Natascia VIGNAROLI
科大东区物质科研楼3楼报告厅 and Zoom online	15:50 - 16:10
The present and future of four top operators	Javi SERRA
科大东区物质科研楼3楼报告厅 and Zoom online	16:15 - 16:35
Break	
利士左区物质利亚#2 #招生店 and Zoom online	16.40 17.10
科入东区初原科研授5度报告/Janu Zoom onine	16:40 - 17:10
The SMEFT at one-loop	Eleni VRYONIDOU
科大东区物质科研楼3楼报告厅 and Zoom online	17:10 - 17:30

E.Vryonidou

Examples of operators

Dimension-6 operators of the SMEFT:

		Interaction	Impact
$X^3: \epsilon_{IJK} W^{I}_{\mu\nu} W^{J,\nu\rho} W^{K,\rho}_{\rho}$	μ gauge bose	on self-coupling	diboson
$H^6:(arphi^\daggerarphi)^3$	Higgs potentia	di-Higgs	
$\psi^2 H^3 : (\varphi^{\dagger} \varphi) \ (\bar{q}_i u_j \tilde{\varphi})$	Higgs-fe	ttH, H→bb	
$\psi^2 H^2 D: (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{q}_i \gamma^{\mu} q_j)$	gaug	Z,W prod.	
$X^2 H^2 : (\varphi^{\dagger} \varphi) \ G^a_{\mu\nu} G^{\mu\nu}_a$		gauge-Higgs	ggH, H→VV
$H^4D^2: (\varphi^{\dagger} D^{\mu} \varphi)^* (\varphi^{\dagger} D^{\mu} \varphi)$		Higgs-Z	mz (LEP)
$\psi^2 XH : (\bar{q}_i \sigma^{\mu\nu} u_j \tilde{\varphi}) B_{\mu\nu}$		dipole	ffV, ffVH
$\psi^4:(\bar{q}_i\gamma^\muq_j)(\bar{q}_k\gamma_\muq_l)$	SM gauge group singlets	four fermion	ffff scattering

What do these operators do?

1) New Lorentz structures: contact interactions & derivatives

• Explicit source of energy growth

 $\psi^{4}: (\bar{q}_{i} \gamma^{\mu} q_{j})(\bar{q}_{k} \gamma_{\mu} q_{l}) \quad X^{3}: \epsilon_{IJK} W^{I}_{\mu\nu} W^{J,\nu\rho} W^{K,\mu}_{\rho}$

- 2) Modification of SM (dim-4) terms
- After electroweak symmetry breaking

- Shift of SM-like interactions
- Spoiling of unitarity cancellations of the SM → energy growth
- SM inputs are extracted by comparing a few measurements to theory
- → Extraction of SM inputs now **depends on c**_i $(g_1, g_2, v) \rightarrow (\alpha, G_F, m_Z)$ or (G_F, m_Z, m_W)

Online, HEFT school, 11/04/21

Modification

G_F example

Muon decay data gives: $G_F = 1.17 \times 10^{-5} \text{ GeV}^{-2} \rightarrow v = 246 \text{ GeV}$

- EFT contribution: A $[\mathcal{O}_{ll}]^{ijkl} = \left[\overline{l}^{(i)} \gamma^{\mu} l^{(j)}\right] \left[\overline{l}^{(k)} \gamma_{\mu} l^{(l)}\right]$ B,C $[\mathcal{O}_{\varphi l}^{(3)}]^{ij} = \left[\varphi^{\dagger} \tau_{k} \overleftarrow{D}_{\mu} \varphi\right] \left[\overline{l}^{(i)} \tau^{k} \gamma^{\mu} l^{(j)}\right], \quad i = 1, 2.$
- A contains the O_F up to a Fierz transformation $[\mathcal{O}_u]^{1212} = \frac{1}{2} (\bar{e} \gamma^\mu (1 \gamma_5) \nu_e) (\bar{\nu}_\mu \gamma_\mu (1 \gamma_5) \mu) + \cdots$

$$\frac{G_F}{\sqrt{2}} = \frac{1}{2v^2} \left[1 + \frac{v^2}{\Lambda^2} \left[C_{\varphi l}^{(3)} \right]^{11} \right] \left[1 + \frac{v^2}{\Lambda^2} \left[C_{\varphi l}^{(3)} \right]^{22} \right] - \frac{1}{4} \frac{1}{\Lambda^2} \left(2 \left[c_{ll} \right]^{1212} + \left[c_{ll} \right]^{1221} + \left[c_{ll} \right]^{2112} \right) \right]$$

 $v_{\mu}^{\nu_{\mu}} = v_{0}^{2} = \frac{1}{\sqrt{2}G_{f}}$ New relation between Higgs vev and Fermi constant $v = v_{0} \left(1 + \left(\left[C_{\varphi l}^{(3)} \right]^{11} + \left[C_{\varphi l}^{(3)} \right]^{22} - \left[c_{ll} \right]^{1212} - \left[c_{ll} \right]^{1221} \right) \frac{v_{0}^{2}}{\Lambda^{2}} \right)^{\frac{1}{2}}$

Propagate to all observables that depend on v! (expanded to order $1/\Lambda^2$)

Current operators

							C	Contact operato	or
							pr	edicted by gaug	ge
	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		inva	ariant construct	tion
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$				
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$		/		
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$	– •			
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					Z, V	$\frac{v^2}{v^2}$		+
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		Λ^2		I
$Q_{arphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$			▲ لر	
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$		D=4	D=5	
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	``	1		
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$			No enero	av
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	~		arowth w r	т.SM
$Q_{arphi \widetilde{B}}$	$arphi^{\dagger} arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_{p} \gamma^{\mu} u_{r})$		$\overline{\Lambda^2}$		
$Q_{arphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	_		(overall resc	aling)
$Q_{arphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		Ň		
						Pre	ecision EW (on the Z peak (LEP)
	/ `						Energy grov	wth from non	
			$\begin{cases} \underline{vE} \\ \underline{vE} \end{cases}$		$\sim \frac{E}{\Lambda}$	2	energy grov	wing vertex?	
×						-		↓	
E/	N Higgs pro	oduc	ction	Dik	poson produc	ction	Unitarity n in ff→WW	on-cancellation scattering!)

E.Vryonidou

• qqZ / qq'W couplings in SM are simply gauge couplings

• To deviate from SM, we need:

 $\bar{f}\gamma_{\mu}f H^{\dagger}\overleftrightarrow{D}_{\mu}H$

• qqZ / qq'W couplings in SM are simply gauge couplings

• To deviate from SM, we need: $\bar{f}\gamma_{\mu}f H^{\dagger}\overleftrightarrow{D}_{\mu}H$

$$\frac{\delta\sigma(\hat{s})}{\sigma_{SM}(\hat{s})} \sim \delta g_i \frac{\hat{s}}{m_Z^2} \,.$$

30% in $\delta\sigma \Rightarrow 0.3\%$ in couplings

"High energy primaries"

(with the caveat of "interference resurrection", see [G. Panico, F. Riva, A. Wulzer 1708.07823])

Gauge only operators

		_			
X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$				
$X^2 \varphi^2$			$\psi^2 X \varphi$		$\psi^2 arphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})\right)$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r}) \right $
$Q_{\varphi \widetilde{B}}$	$arphi^{\dagger} arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu \nu} B^{\mu \nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Large energy growth w.r.t SM

Multi-jet production

Operators also have CP violating versions

E.Vryonidou

Gauge only operators

E.Vryonidou

Gauge/Higgs operators

X ³		$arphi^6$ and $arphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi\square}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	T-p	arameter
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 arphi^2 D$
$Q_{arphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})\right)$
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu u} W^{I \mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$\left (\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right $
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Qac	$(\bar{a}_{r}\sigma^{\mu u}T^{A}d_{r})\omega G^{A}_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	S-parameter		$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

EW Higgs production & decay

Gluon fusion: Higgs, di-Higgs

[Ellis et al.; JHEP 06 (2018) 146]

E.Vryonidou

Online, HEFT school, 11/04/21

 W^3

kinetic mixing

EW precision test

Two fermion operators

						Yukawa operators
	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$	$\frac{\sqrt{v^2}}{\Lambda^2}$ $\sqrt{\frac{vE}{\Lambda^2}}$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	Dipole operators: Z, W, γ, q
$Q_{arphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{l}_{p} \gamma^{\mu} l_{r})$	
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{arphi \widetilde{W}}$	$arphi^{\dagger}arphi \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$ \qquad \qquad$
$Q_{arphi B}$	$arphi^{\dagger} arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i \overset{O}{D}{}^{I}_{\mu} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{u}_{p} \gamma^{\mu} u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{d}_{p} \gamma^{\mu} d_{r})$	Non-Abelian
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
In	terplay betv	veel	n Yukawa, c	lipol	es & ggH	Different energy & helicity structure
$\oint \frac{v}{h}$	$\frac{2}{2}$	\sum_{v}	E	لالا	200	$b \longrightarrow t \qquad \qquad \downarrow W^+$
	v^2				$\frac{vE}{\Lambda^2}$	
			$\frac{vE}{\Lambda^2}$		$\frac{v^2}{12}$	$ \sum_{i=1}^{\Lambda^2} t - \sum_{i=1}^{N^2} \frac{vE}{vE}$
					Λ^2	
3		Ş		. ი0		$q \qquad \qquad$
aal	4		аНН		++H	EW top production & decay
ggi	1	9	9			· · · •

E.Vryonidou

Higgs Couplings without the Higgs

Brian Henning, Davide Lombardo, Marc Riembau, and Francesco Riva Départment de Physique Théorique, Université de Genève, 24 quai Ernest-Ansermet, 1211 Genève 4, Switzerland

The measurement of Higgs couplings constitute an important part of present Standard Model precision tests at colliders. We show that modifications of Higgs couplings induce energy-growing effects in specific amplitudes involving longitudinally polarized vector bosons, and we initiate a novel program to study these very modifications of Higgs couplings off-shell and at high-energy, rather than on the Higgs resonance. Our analysis suggests that these channels are complementary and, at times, competitive with familiar on-shell measurements; moreover, they offer endless opportunities for refinements and improvements.

[Henning, Lombardo, Riembau, Riva 1812.09299]

E^2 vs v^2

EFT in Higgs physics

How do all these operators enter?

E.Vryonidou

Application: EFT fits in the Higgs sector

Use predictions+measurements: ggh, VBF, VH, ttH, Higgs decays

Current, 300fb⁻¹,3000fb⁻¹

TGC not included 1511.0517 Englert, Kogler, Schulz, Spannowsky

E.Vryonidou

SMEFT in processes with tops

E.Vryonidou

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

D

000000

$$\begin{split} O^{(3)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O^{(1)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$

+non-top operators (mixing)

E.Vryonidou

see

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$

$$O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} Q)$$

$$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{t} \gamma^{\mu} t)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I$$

$$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$

$$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A,$$

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi\right) (\bar{Q} t) \tilde{\phi}$$
see for example: Aguilar-Saavedra (arXiv:0811.3842)
Zhang and Willenbrock (arXiv:1008.3869)
+four-fermion operators
+non-top operators (mixing)

E.Vryonidou

+non-top operators (mixing)

$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A}, \\ O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$

e for example: Aguilar-Saavedra (arXiv:0811.3842)
Zhang and Willenbrock (arXiv:1008.3869) \\ + four-fermion operators \\ + non-top operators (mixing) \end{array}

see

$$\begin{array}{l} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$

E.Vryonidou

see

$$\begin{array}{l} O^{(3)}_{\varphi Q} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O^{(1)}_{\varphi Q} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} , \\ O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \end{array}$$

see

$$\begin{split} O^{(3)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O^{(1)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{t W} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{t B} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{t G} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} , \\ O_{t \phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \text{see for example: Aguilar-Saavedra (arXiv:0811.3842) \\ Zhang and Willenbrock (arXiv:1008.3869) \\ + \text{four-fermion operators} \\ + \text{non-top operators (mixing)} \end{split}$$

$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{\psi t} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{tQ} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \text{see for example: Aguilar-Saavedra (arXiv:0811.3842)} \\ \text{Zhang and Willenbrock (arXiv:1008.3869)} \\ + \text{four-fermion operators} \\ + \text{non-top operators (mixing)} \end{array}$$

$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{t W} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{t B} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{t G} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t \phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ + \text{four-fermion operators} \\ + \text{non-top operators (mixing)} \end{array}$$

Operators entering various processes: Global approach needed

Top EFT: a global picture (1)i33i $O_{qq}^{(1)ii33}, O_{qu}^{(1,8)}, O_{qd}^{(1,8)}, O_{qd}^{(1,8)}, O_{uu}^{(1,8)}, O_{uu}$ $O_{qq}^{(1,3)}, O_{qu}^{(1,8)}, O_{ad}^{(1,8)},$ O_{uW}^{33}, O_{dW}^{33} $O_{ud}^{(1,8)}, O_{aua}^{(1,8)}$ $\mathcal{P}_{qq}^{(3)ii33}$ b-pdf suppressed 0000 00000 00000 0000 single top tτγ tīH tW tīZ tīttī tītbb tŦW tī tΖ O_{uG}^{33} O³³³³ uu $O_{u\phi}^{33}$ only double insertion this is a LO picture (3)33 O^{33} O_{uB}^{33} oud NLO has more connections directly and through operator mixing)33 $, O_{0u}^{33}$ arrows show contributions at $O(\Lambda^{-2})$ and $O(\Lambda^{-4})$ Owg

P.Galler(University of Glasgow)

TopFitter

ICHEP2020, 31.07.2020

EFT in top production

Single top production

E.Vryonidou

Single top production and decay

 $\begin{array}{rcl}
&\mathcal{O}_{\varphi Q}^{(3)} &=& i\frac{1}{2}y_{t}^{2}\left(\varphi^{\dagger}\overleftarrow{D}_{\mu}^{I}\varphi\right)(\bar{Q}\gamma^{\mu}\tau^{I}Q)\\ O_{tW} &=& y_{t}g_{w}(\bar{Q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\varphi}W_{\mu\nu}^{I} \quad \text{CP-violation}\\ O_{qQ,rs}^{(3)} &=& \left(\bar{q}_{r}\gamma^{\mu}\tau^{I}q_{s}\right)\left(\bar{Q}\gamma_{\mu}\tau^{I}Q\right)
\end{array}$

Identify the optimal observables and provide precise and reliable predictions:

Top polarisation angles

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_i^z} = \frac{1}{2} \left(1 + a_i P \, \cos\theta_i^z \right)$$

Study including production and decay

de Beurs, Laenen, Vreeswijk, EV arXiv:1807.03576

Top-pair+Z/photon

E.Vryonidou

Results for tt+V

E.Vryonidou

ttH in the EFT

E.Vryonidou

Differential distributions for ttH

Different shapes for different operators for the squared terms

Maltoni, EV, Zhang arXiv:1607.05330

E.Vryonidou

tZj/tHj associated production

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} t \\ W \\ H/Z \\ q' \\ q \\ q' \\ q \\ q' \\ q \\ q' \\ q' \\$	 Gauge-Higgs Top couplings TGC
— tHj —	- <i>ti</i>	tZj	
	$\mathcal{O}_{Qq}^{(3,1)} \;\; \mathcal{O}_{Qq}^{(3,8)} \left(\mathcal{O}_{tG} ight)$		$\begin{array}{ccc} \mathcal{O}_{W} & \varepsilon_{IJK} W^{I}_{\mu\nu} W^{J,\nu\rho} W^{\kappa,\mu}_{\rho} & \mathcal{O}^{(3)}_{\varphi Q} & i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi)(\tilde{Q} \gamma^{\mu} \tau^{I} Q) + \text{h.c.} \\ \mathcal{O}_{\varphi W} & \left(\varphi^{\dagger} \varphi - \frac{v^{2}}{2}\right) W^{\mu\nu}_{I} W^{I}_{\mu\nu} & \mathcal{O}^{(1)}_{\varphi Q} & i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi)(\tilde{Q} \gamma^{\mu} Q) + \text{h.c.} \end{array}$
${\cal O}_{t\phi}$	$\mathcal{O}_{\phi Q}^{(3)}$ \mathcal{O}_{tW} $\mathcal{O}_{\phi tb}$	$\mathcal{O}_{\phi t} \hspace{0.1 cm} \mathcal{O}_{tB} \hspace{0.1 cm} \mathcal{O}_{\phi Q}^{(1)}$	$ \begin{array}{lll} \mathcal{O}_{\varphi WB} & (\varphi^{\dagger}\tau_{I}\varphi) B^{\mu\nu}W^{I}_{\mu\nu} & \mathcal{O}_{\varphi t} & i(\varphi^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{t}\gamma^{\mu}t) + \text{h.c.} \\ \mathcal{O}_{\varphi D} & (\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi) & \mathcal{O}_{\varphi tb} & i(\bar{\varphi}D_{\mu}\varphi)(\bar{t}\gamma^{\mu}b) + \text{h.c.} \\ \end{array} $
- <i>'VH,VBF</i> -			$ \begin{array}{cccc} \mathcal{O}_{\varphi\Box} & (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi) & \mathcal{O}_{\varphi q}^{(1)} & i(\varphi^{\dagger}D_{\mu}\varphi)(\bar{q}_{i}\gamma^{\mu}q_{i}) + \text{h.c.} \\ \mathcal{O}_{i\varphi} & \left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right)Qt\bar{\varphi} + \text{h.c.} & \mathcal{O}_{\varphi q}^{(3)} & i(\varphi^{\dagger}D_{\mu}\tau_{I}\varphi)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i}) + \text{h.c.} \\ \mathcal{O}_{.w} & i(\bar{Q}\sigma^{\mu\nu}\tau_{I}t)\bar{\varphi}W_{}^{I} + \text{h.c.} & \mathcal{O}_{} & i(\varphi^{\dagger}D_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}u_{i}) + \text{h.c.} \\ \end{array} $
${\cal O}_{\phi W}$	\mathcal{O}_{HW}	\mathcal{O}_{HB} \mathcal{O}_{W}	$\mathcal{O}_{\iota B} = i(\bar{Q}\sigma^{\mu\nu}t)\bar{\varphi}B_{\mu\nu} + \text{h.c.} \qquad \mathcal{O}_{Qq}^{(3,1)} = (\bar{q}_i\gamma_\mu\tau_Iq_i)(\bar{Q}\gamma^\mu\tau^IQ) \\ \mathcal{O}_{\iota G} = i(\bar{Q}\sigma^{\mu\nu}T_At)\bar{\varphi}G^A_{\mu\nu} + \text{h.c.} \qquad \mathcal{O}_{Qq}^{(3,8)} = (\bar{q}_i\gamma_\mu\tau_IT_Aq_i)(\bar{Q}\gamma^\mu\tau^IT^AQ) $

Unique interplay

Pure gauge operators (4): $\mathcal{O}_{\varphi W}, \mathcal{O}_{W}, \mathcal{O}_{HW}, \mathcal{O}_{HB},$ Two-fermion top-quark operators (8): $\mathcal{O}_{\varphi Q}^{(3)}, \mathcal{O}_{\varphi Q}^{(1)}, \mathcal{O}_{\varphi t}, \mathcal{O}_{tW}, \mathcal{O}_{tB}, \mathcal{O}_{tG}, \mathcal{O}_{\varphi tb}, \mathcal{O}_{t\varphi}$ Four-fermion top-quark operators (2): $\mathcal{O}_{Qq}^{(3,1)}, \mathcal{O}_{Qq}^{(3,8)}.$

E.Vryonidou
Helicity amplitudes for subprocesses

Amplitudes growing with energy as SM cancellations get spoiled

Differential results

Degrande, Maltoni, Mimasu, EV, Zhang arXiv:1804.07773 Large deviations in the tails, as expected from helicity amplitudes

E.Vryonidou

A first application: A global top fit

Class	Notation	Degree of Freedom	Operator Definition	
	0001	c_{OO}^1	$2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$	
	oqqs	cho	$8C_{qq}^{3(3333)}$	Top quark pair tW tZ
	0Qt1		$C_{qu}^{1(3333)}$	
	0Qt8	දේ.	C ⁸⁽³³³³⁾	ψ_{n} w_{n} w_{n}
QQQQ	0001	c ¹	$C_{-}^{1(3333)}$	
	0058	60 COL	C ⁴⁴ (3333)	$\gtrsim 00000 \langle \rangle \rightarrow \langle \rangle \rangle \downarrow $
	Ott1	-Q0 c1	$C_{nu}^{(3333)}$	
	0tb1		$C^{1(3333)}$	10^{-1} $\frac{1}{t}$ 9^{-1} t
	Otb8	C.4	C.8(3333)	
	OQtOb1	Course	$C^{1(3333)}$	Single top (t-channel) Single top (s-channel)
	OQtQb8	-QrQs Courts	C ⁸⁽³³³³⁾	q q' h
		18	- ququ (1(1331) - (3(1331))	
	081qq		$C_{q\bar{q}} + 3C_{q\bar{q}}$	\rightarrow ψ W μ ψ
	011qq	c_{Qq}	$C_{q\bar{q}}^{(1)} + \frac{1}{6}C_{q\bar{q}}^{(1)} + \frac{1}{2}C_{q\bar{q}}^{(1)}$	
	083qq		$C_{q\bar{q}}^{-} - C_{q\bar{q}}^{-}$	
	013qq	c_{Qq}	$C_{q\bar{q}}^{(1)} + \frac{1}{6}(C_{q\bar{q}}^{(1)} - C_{q\bar{q}}^{(1)})$	$b \qquad f \qquad f' \qquad f' \qquad f'$
	08qt	ciq	Cqu (1433)	
	Oiqt	ciq	-(33)	
QQqq	08ut	c _{tu}	2Cuu (133) 1 (1331)	ttW ttZ ttH
	Oiut	c_{tu}^1	$C_{uu}^{(uu)} + \frac{1}{3}C_{uu}^{(uu)}$	
	08qu	c_{Qu}^{s}		
	01qu	c_{Qu}		
	08dt	c ^s _{td}	Cud	
	Oidt	c _{td}	C _{ud}	$u \uparrow \tilde{t}$
	08qd	c_{Qd}^{s}	Cad	\overline{t}
	01qd	c_{Qd}^1	$C_{qd}^{(coss)}$	\mathcal{W}^+
	OtG	c_{iG}	$Re\{C_{uG}^{(33)}\}$	
	OtW	CtW	${ m Re}\{C_{uW}^{(33)}\}$	
	OРМ	COW	$\operatorname{Re}\{C_{dW}^{(33)}\}$	
	OtZ	qz	$Re\{-s_W C_{uB}^{(33)} + c_W C_{uW}^{(33)}\}$	Dich phonomonology
$QQ+V,G,\varphi$	Off	Cuth	$\operatorname{Re}\{C_{\varphi ud}^{(33)}\}$	
	0fq3	$c_{\varphi Q}^{3}$	$C_{\varphi q}^{3(33)}$	
	OpQM	C _{wQ}	$C_{\varphi q}^{1(33)} - C_{\varphi q}^{3(33)}$	
	Opt	Cupt	$C_{\varphi u}^{(33)}$	
	Otp	$c_{t\varphi}$	$\operatorname{Re}\{C_{u\varphi}^{(33)}\}$	
	-	-		
	<u>.</u>	$4 d \circ f$		
	0		Hartl	and Maltoni Nocera Roio Slade EV and Zhang arXiv 1901 05965
\sim				\Box

E.Vryonidou

CP-conserving

The impact of multiple measurements

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606

E.Vryonidou

The impact of multiple measurements

- Energy dependence in PDF. $r = \frac{f_u f_{\bar{u}}}{f_d f_{\bar{d}}}$
 - Total xsec: $r C_{tu}^8 + C_{td}^8 \approx 2 C_{tu}^8 + C_{td}^8$.
 - Ratio depends on energy. (D)
 E.g. boosted top => larger r.
- tt + weak boson
 - ttZ: if Z emits from incoming quarks, C_{tu} and C_{td} are roughly weighted by g_{uZ} and g_{dZ} couplings squared.

• ttW: roughly
$$C_{Qq}^{1,8}(\sigma_{uu} + \sigma_{dd}) + C_{Qq}^{3,8}\sigma_{ud}$$

Some considerations for a fit

- Validity of the EFT expansion: $E < \Lambda$
 - Ensure results are not dominated by high energy regions
 - Report limits as a function of the max scale probed Contino et al arXiv:1604.06444
- Range of Wilson coefficients:
 - The theory: perturbativity, unitarity, linear or non-linear EFT, UV completion
 - The experimental limits: Think about and use as many processes as possible to extract allowed range
- $1/\Lambda^2$ vs $1/\Lambda^4$ contributions
 - 1/Λ² suppressed due to helicity Azatov et al arXiv:1607.05236
 - 1/A⁴ can be large for loosely constrained operator coefficients/strongly coupled theories

$$C_i^2 \frac{E^4}{\Lambda^4} > C_i \frac{E^2}{\Lambda^2} > 1 > \frac{E^2}{\Lambda^2}$$

E< Λ satisfied but O(1/ Λ^4) large for large operator coefficients

Some practical info

Formally of dimension-8

Impact of quadratic terms in top production

 $O_{Qq}^{1,8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})$ $O_{Qq}^{3,8} = (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i})$

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606

E.Vryonidou

Impact of quadratic terms in top production

 $O_{tq}^{8} = (\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})(\bar{t}\gamma_{\mu}T^{A}t)$ $O_{Qq}^{1,8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})$

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606

E.Vryonidou

Global fit Setup

E.Vryonidou

Global fit Setup

E.Vryonidou

Observables and theory predictions

Top-pair production W-helicities

4 tops, ttbb, toppair associated production

> Single top t-channel, schannel, tW, tZ

Dataset	$n_{\rm dat}$
ATLAS_tt_8TeV_1jets [m_{tf}]	7
CMS_tt_8TeV_ljets [yt]	10
CMS_tt2D_8TeV_dilep [$(m_{t\bar{t}}, y_t)$] 16
CMS_tt_13TeV_1jets2 [$y_{t\bar{t}}$]	8
CMS_tt_13TeV_dilep [y _{tī}]	6
CMS_tt_13TeV_1jets_2016 [yt]	11
ATLAS_WhelF_8TeV	3
CMS_WhelF_8TeV	3
CMS_ttbb_13TeV	1
CMS_tttt_13TeV	1
ATLAS_tth_13TeV	1
CMS_tth_13TeV	1
ATLAS_ttZ_8TeV	1
ATLAS_ttZ_13TeV	1
CMS_ttZ_8TeV	1
CMS_ttZ_13TeV	1
ATLAS_ttW_8TeV	1
ATLAS_ttW_13TeV	1
CMS_ttW_8TeV	1
CMS_ttW_13TeV	1
CMS_t_tch_8TeV_dif	6
$ATLAS_t_tch_8TeV [y_t]$	4
$ATLAS_t_tch_8TeV [y_f]$	4
ATLAS_t_sch_8TeV	1
$CMS_t_tch_13TeV_dif[y_t]$	4
CMS_t_sch_8TeV	1
ATLAS_tW_inc_8TeV	1
CMS_tW_inc_8TeV	1
ATLAS_tW_inc_13TeV	1
CMS_tW_inc_13TeV	1
ATLAS_tZ_inc_13TeV	1
CMS_tZ_inc_13TeV	1
Total	102

One distribution from each dataset, to avoid double counting

Theoretical predictions

Process	SM	SMEFT		
tł	NNLO QCD	NLO QCD		
single-t (t-ch)	NNLO QCD	NLO QCD		
single-t (s-ch)	NLO QCD	NLO QCD		
tW	NLO QCD	NLO QCD		
tZ	NLO QCD	LO QCD + NLO SM K-factors		
$t\bar{t}W(Z)$	NLO QCD	LO QCD + NLO SM K-factors		
tīh	NLO QCD	LO QCD + NLO SM K-factors		
tītī	NLO QCD	LO QCD + NLO SM K-factors		
tībb	NLO QCD	LO QCD + NLO SM K-factors		

Baseline fit includes:

- Best available SM predictions
- NLO EFT predictions
- O(1/\(\Lambda\)⁴) terms

Global top fit results (1)

First limits reported for some operators Improvement for some operators: e.g. O_{tG} , O^{83}_{qq} , O_{bW}

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965

E.Vryonidou

Global top fit results (2)

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606 (SFitter analysis)

E.Vryonidou

Connection to Higgs physics

$$\begin{aligned} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{aligned}$$

See also Degrande et al. arXiv:1205.1065 Grojean et al. arXiv:1312.3317 Azatov et al arXiv:1608.00977

Use with 1) ttH and 2) H, H+j to break degeneracy between operators and extract maximal information on these operators

Maltoni, EV, Zhang: arXiv:1607.05330

SMEFT in Higgs production

SMEFT in Higgs production

E.Vryonidou

Present and future prospects

Maltoni, EV, Zhang arXiv:1607.05330

Adding Higgs data to a global fit

New data

Run I & 2 signal strengths (CMS+ATLAS): gluon fusion VH VBF ttH H decays

New predictions

NLO QCD for all production Full decay width computation Including corrections to V widths

New operators

	Bosonic									
$\mathcal{O}_{\phi G}$	OpG	$\left(\phi^{\dagger}\phi-rac{v^2}{2} ight)G^{\mu u}_AG^A_{\mu u}$	$\mathcal{O}_{\phi B}$	ОрВ	$\left(\phi^{\dagger}\phi - \frac{v^2}{2} ight)B^{\mu u}B_{\mu u}$					
$\mathcal{O}_{\phi W}$	OpW	$\left(\phi^{\dagger}\phi - \frac{v^2}{2} ight)W_{I}^{\mu u}W_{\mu u}^{I}$	$\mathcal{O}_{\phi WB}$	OpWB	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$					
$\mathcal{O}_{\phi d}$	Opd	$\partial_\mu (\phi^\dagger \phi) \partial^\mu (\phi^\dagger \phi)$	$\mathcal{O}_{\phi D}$	OpD	$(\phi^{\dagger}D^{\mu}\phi)^{\dagger}(\phi^{\dagger}D_{\mu}\phi)$					

		2 Fe	rmions		
$\mathcal{O}_{t \varphi}$	Otp	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}t\tilde{\phi} + \text{h.c.}$	\mathcal{O}_{tG}	OtG	$ig_{S}\left(\bar{Q}\tau^{\mu\nu}T_{A}t\right)\tilde{\phi}G^{A}_{\mu\nu}+\text{h.c.}$
\mathcal{O}_{barphi}	Obp	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}b\phi + \text{h.c.}$	$\mathcal{O}_{c\varphi}$	Оср	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right) \bar{Q} c \phi + \text{h.c.}$
$\mathcal{O}_{\tau \varphi}$	Otap	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}\tau\tilde{\phi} + \text{h.c.}$	\mathcal{O}_{tW}	OtW	$i(\bar{Q}\tau^{\mu\nu}\tau_I t)\tilde{\phi}W^I_{\mu\nu}$ + h.c.
\mathcal{O}_{tB}	-	$i(\bar{Q}\tau^{\mu\nu}t)\tilde{\phi}B_{\mu\nu}$ + h.c.	\mathcal{O}_{tZ}	OtZ	$-\sin\theta_W \mathcal{O}_{tB} + \cos\theta_W \mathcal{O}_{tW}$
$\mathcal{O}^{(1)}_{arphi l_1}$	Opl1	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\overline{l}_{1} \gamma^{\mu} l_{1})$	$\mathcal{O}^{(3)}_{arphi l_1}$	03pl1	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \phi) (\overline{l}_{1} \gamma^{\mu} \tau^{I} l_{1})$
$\mathcal{O}^{(1)}_{\varphi l_2}$	Op12	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(ar{l}_{2}\gamma^{\mu}l_{2})$	$\mathcal{O}^{(3)}_{\varphi l_2}$	03p12	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi) (ar{l}_2 \gamma^\mu au^I l_2)$
$\mathcal{O}^{(1)}_{arphi l_3}$	Op13	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{l}_3 \gamma^\mu l_3)$	$\mathcal{O}^{(3)}_{arphi l_3}$	03p13	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi) (ar{l}_3 \gamma^\mu au^I l_3)$
$\mathcal{O}_{arphi e}$	Ope	$i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\bar{e} \gamma^{\mu} e)$	$\mathcal{O}_{arphi\mu}$	Opmu	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi) (\bar{\mu} \gamma^\mu \mu)$
$\mathcal{O}_{arphi au}$	Opta	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{\tau} \gamma^{\mu} \tau)$			
$\mathcal{O}^{(1)}_{arphi q_i}$	-	$\sum\limits_{i=1,2} i (\phi^\dagger \overleftrightarrow{D}_\mu \phi) (ar{q}_i \gamma^\mu q_i)$	$\mathcal{O}^{(3)}_{arphi q_i}$	03pq	$\sum_{i=1,2} i (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \phi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{i})$
$\mathcal{O}^{(1)}_{\varphi Q}$	-	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{Q}\gamma^{\mu}Q)$	$\mathcal{O}^{(3)}_{\varphi Q}$	03pQ3	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \phi) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$
$\mathcal{O}^{(-)}_{\varphi q_i}$	OpqMi	$\mathcal{O}^{(1)}_{\varphi q_i} - \mathcal{O}^{(3)}_{\varphi q_i}$	$\mathcal{O}_{\varphi Q}^{(-)}$	OpQM	$\mathcal{O}^{(1)}_{arphi Q} - \mathcal{O}^{(3)}_{arphi Q}$
$\mathcal{O}_{\varphi u_i}$	Opui	$\sum_{i=1,2} i (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi) (\bar{u}_i \gamma^{\mu} u_i)$	$\mathcal{O}_{arphi d_i}$	Opdi	$\sum_{i=1,2} i (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi) (\bar{d}_{i} \gamma^{\mu} d_{i})$
$\mathcal{O}_{\phi t}$	Opt	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\overline{t} \gamma^{\mu} t)$			
\mathcal{O}_{u}	011	$(l\gamma_{\mu}l)(l\gamma^{\mu}l)$			

24 new d.o.f.s

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang in preparation

E.Vryonidou

Towards a global Higgs & Top fit

Ethier, Maltoni, Mantani, Nocera, Rojo, EV and Zhang in preparation

E.Vryonidou

Impact of various datasets

PRELIMINARY

			Processes										
Class	Coefficient	Mtt	Ytt(Mtt)	Whel	ttZ_tot	ttZ_pTZ	ttW_tot	t_tot	Yt	tttt	ttbb	tZ	tW
	ctp	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$
	ctG	45.0(46.8)	13.3(13.6)	0.0(0.0)	0.3(0.3)	0.3(0.4)	0.1(0.1)	$\times(\times)$	$\times(\times)$	0.1(0.1)	0.2(0.2)	$\times(\times)$	$\times(\times)$
	$_{\rm cbp}$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$
	ccp	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$
2FB	ctap	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$
21 D	ctW	$\times(\times)$	$\times(\times)$	7.5(0.5)	0.0(0.0)	$\times(\times)$	0.0(-0.0)	0.2(0.0)	0.7(0.0)	$\times(\times)$	$\times(\times)$	0.0(0.0)	0.1(0.0)
	ctZ	$\times(\times)$	$\times(\times)$	$\times(\times)$	0.0(0.0)	0.0(0.0)	$ \times (\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	0.0(-0.0)	$\times(\times)$
	c3pQ3	$\times(\times)$	$\times(\times)$	$\times (0.0)$	0.0(0.0)	0.0(-0.0)	0.0(-0.0)	2.9(1.5)	89.0(44.8)	$\times(\times)$	$\times(\times)$	3.8(1.9)	2.1(1.1)
	cpQM	$\times(\times)$	$\times(\times)$	$\times(\times)$	26.2(0.2)	28.1(0.2)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	1.6(0.0)	$\times(\times)$
	cpt	$\times(\times)$	$\times(\times)$	$\times(\times)$	34.7(0.1)	44.7(0.1)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$	0.4(0.0)	$\times(\times)$

Higgs

		Processes							
Class	Coefficient	Hrun1	Hrun2	Hdiff	WW	WZ	LEP_WW		
	ctp	15.3(18.2)	65.8(81.8)	19.0(0.0)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	ctG	6.4(6.0)	27.7(25.9)	6.6(6.6)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	$_{\rm cbp}$	20.6(21.2)	79.4(78.8)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	ccp	21.0(12.4)	79.0(87.6)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
9FB	ctap	38.6(37.0)	61.4(63.0)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
21 D	m ctW	15.7(17.0)	75.8(82.4)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	${ m ctZ}$	17.1(17.2)	82.8(82.8)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	c3pQ3	0.2(7.9)	1.2(41.7)	0.8(1.2)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	cpQM	4.8(17.2)	23.0(78.6)	16.3(3.9)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	cpt	2.5(20.0)	12.2(79.8)	5.5(0.0)	$\times(\times)$	$\times(\times)$	$\times(\times)$		

OtG enters: ttH, H, Hj, HH,...

Ethier, Maltoni, Mantani, Nocera, Rojo, EV and Zhang in preparation See also Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779 for a recent global fit

E.Vryonidou

What's next?

Use SMEFT to look for deviations from SM predictions

- ----

Use as many experimental measurements as possible Cross-sections+differential distributions

maximise sensitivity

E.Vryonidou

Aspects of EFT predictions

- * Higher Orders in $1/\Lambda^4$
 - * squared dim-6 contributions
 - double insertions of dim-6
 - dim-8 contributions
- Higher Orders in QCD and EW
 - * EFT is a QFT, renormalisable order-by-order in $1/\Lambda^2$

$$\mathcal{O}(\alpha_s, \alpha_{ew}) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_{ew}}{\Lambda^2}\right)$$

Why bother with higher orders?

Higher orders in SMEFT bring:

- Accuracy
- Precision
- Improved sensitivity
 - Accurate knowledge of the deviations (distribution shapes, correlations between observables, etc.) can be the key to disentangle them from the SM.
 - Loop-induced new sensitivity: operators entering at oneloop

Accuracy and precision

Different shapes at NLO

Degrande, Maltoni, Mimasu, EV, Zhang arXiv:1804.07773

	13 TeV	σ NLO	К
-	σ_{SM}	$0.507^{+0.030+0.000+0.007}_{-0.048-0.000-0.008}$	1.09
	$\sigma_{t\phi}$	$-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$	1.13
	$\sigma_{\phi G}$	$0.872^{+0.131+0.037+0.013}_{-0.123-0.035-0.016}$	1.39
	σ_{tG}	$0.503^{+0.025+0.001+0.007}_{-0.046-0.003-0.008}$	1.07
F	$\sigma_{t\phi,t\phi}$	$0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$	1.17
	$\sigma_{\phi G,\phi G}$	$1.021^{+0.204+0.096+0.024}_{-0.178-0.085-0.029}$	1.58
	$\sigma_{tG,tG}$	$0.674^{+0.036+0.004+0.016}_{-0.067-0.007-0.019}$	1.04
	$\sigma_{t\phi,\phi G}$	$-0.053^{+0.008+0.003+0.001}_{-0.008-0.004-0.001}$	1.42
	$\sigma_{t\phi,tG}$	$-0.031^{+0.003+0.000+0.000}_{-0.002-0.000-0.000}$	1.10
	$\sigma_{\phi G,tG}$	$0.859^{+0.127+0.021+0.017}_{-0.126-0.020-0.022}$	1.37
		-	

$$\sigma = \sigma_{\rm SM} + \sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \le j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$$

Different K-factors for different operators, different from the SM Maltoni, EV, Zhang arXiv:1607.05330

E.Vryonidou

Accuracy and precision

Impact of NLO corrections on W, Z pole observables:

Dawson and Giardino arXiv:1909.02000 & Giardino@HEFT2020

Even EW corrections lead to ~20% difference

E.Vryonidou

Accuracy and precision

Scale Uncertainties:

Deutschmann, Duhr, Maltoni, EV arXiv:1708.00460

Maltoni, EV, Zhang arXiv:1607.05330

Improved sensitivity

4-heavy operators in top pair production

Complimentary information to ttbb and 4top production

E.Vryonidou

Improved sensitivity

New observables to break degeneracies

 O_{Qq}^{000} $O_{Qq}^{1,8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})$ $O_{tq}^{8} = (\bar{t}\gamma_{\mu}T^{A}t)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})$ Different top chiralities

An asymmetry observable

 $A_E(\theta_j) = \frac{\sigma_{t\bar{t}j}(\theta_j, \Delta E > 0) - \sigma_{t\bar{t}j}(\theta_j, \Delta E < 0)}{\sigma_{t\bar{t}j}(\theta_j, \Delta E > 0) + \sigma_{t\bar{t}j}(\theta_j, \Delta E < 0)}$

Basan, Berta, Masetti, EV, Westhoff arXiv:2001.07225

Loop-induced sensitivity (1)

- Sensitivity through 1-loop EW corrections to single Higgs production.
- A new opportunity to extract information, beyond the typical probe of HH production.

Di Vita et al. arXiv:1704.01953 and HH white paper

Degrassi et al. arXiv:1607.04251, Gorbahn, Haisch 1607.03773, Bizon et al 1610.05771, Maltoni et al 1709.08649

Loop-induced sensitivity (2)

$$O_{t\varphi} = \bar{Q}t\tilde{\varphi} (\varphi^{\dagger}\varphi) + h.c.,$$

$$O_{\varphi Q}^{(3)} = (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{Q}\gamma^{\mu}\tau^{I}Q),$$

$$O_{\varphi tb} = (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}b) + h.c.,$$

$$O_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\,\tilde{\varphi}B_{\mu\nu} + h.c.,$$

$$O_{\varphi t} = (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{t}\gamma^{\mu}t),$$

$$O_{\varphi Q}^{(1)} = (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{Q}\gamma^{\mu}Q),$$

$$O_{tW} = (\bar{Q}\sigma^{\mu\nu}\tau^{I}t)\,\tilde{\varphi}W_{\mu\nu}^{I} + h.c.,$$

Relatively loose constraints from
 top LHC measurements (tZ, ttZ, tj, ...)

Poor knowledge of top couplings leads to uncertainties on Higgs measurements at the LHC

Loop-induced sensitivity (2)

$$O_{t\varphi} = \bar{Q}t\tilde{\varphi} (\varphi^{\dagger}\varphi) + h.c.,$$

$$O_{\varphi Q}^{(3)} = (\varphi^{\dagger}i\overline{D}_{\mu}^{I}\varphi)(\bar{Q}\gamma^{\mu}\tau^{I}Q),$$

$$O_{\varphi tb} = (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}b) + h.c.,$$

$$O_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\,\tilde{\varphi}B_{\mu\nu} + h.c.,$$

$$O_{\varphi t} = (\varphi^{\dagger}i\overline{D}_{\mu}\varphi)(\bar{t}\gamma^{\mu}t),$$

$$O_{\varphi Q}^{(1)} = (\varphi^{\dagger}i\overline{D}_{\mu}\varphi)(\bar{Q}\gamma^{\mu}Q),$$

$$O_{tW} = (\bar{Q}\sigma^{\mu\nu}\tau^{I}t)\,\tilde{\varphi}W_{ev}^{I} + h.c.,$$

Relatively loose constraints from
 top LHC measurements (tZ, ttZ, tj, ...)

measurements to bound top couplings?

More loop-induced sensitivities

Azatov, Grojean, Paul, Salvioni arXiv:1608.00977

Top pair production sensitivity to EW top couplings

E.Vryonidou

Global Higgs-top fit

Higgs data

Run I & 2 signal strengths (CMS+ATLAS):

- gluon fusion
- * VH
- * VBF
- ∗ ttH
- H decays

Differential distributions & STXS

Top data

Run I & 2 results (CMS+ATLAS):

- pair production
- tt+V, tttt, ttbb
- single top
- ∗ tZj
- W helicity fractions
 Cross-sections & Differential

distributions

PRELIMINARY

Ethier, Maltoni, Mantani, Nocera, Rojo, EV and Zhang in preparation

E.Vryonidou

Global Higgs-top fit

		Processes							
Class	Coefficient	Hrun1	Hrun2	Hdiff	WW	WZ	LEP_WW		
	ctp	15.3(18.2)	65.8(81.8)	19.0(0.0)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	ctG	6.4(6.0)	27.7(25.9)	6.6(6.6)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	cbp	20.6(21.2)	79.4(78.8)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	ccp	21.0(12.4)	79.0(87.6)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
9FB	ctap	38.6(37.0)	61.4(63.0)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
21 D	ctW	15.7(17.0)	75.8(82.4)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	m ctZ	17.1(17.2)	82.8(82.8)	$\times(\times)$	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	c3pQ3	0.2(7.9)	1.2(41.7)	0.8(1.2)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	cpQM	4.8(17.2)	23.0(78.6)	16.3(3.9)	$\times(\times)$	$\times(\times)$	$\times(\times)$		
	cpt	2.5(20.0)	12.2(79.8)	5.5(0.0)	$\times(\times)$	$\times(\times)$	$\times(\times)$		

PRELIMINARY

Top Yukawa

ttV couplings

Tree Loop

Ethier, Maltoni, Mantani, Nocera, Rojo, EV and Zhang in preparation

Impact of NLO predictions in global fits

Marginalised constraints

Posterior distributions

Significant impact of NLO for some operators
How to compute these results?

SMEFT@NLO

Automated one-loop computations in the SMEFT

Céline Degrande,^{1,*} Gauthier Durieux,^{2,†} Fabio Maltoni,^{1,3,‡} Ken Mimasu,^{1,§} Eleni Vryonidou,^{4,¶} and Cen Zhang^{5,6,**}

We present the automation of one-loop computations in the standard-model effective field theory at dimension six. Our implementation, dubbed SMEFT@NLO, contains ultraviolet and rational counterterms for bosonic, two- and four-fermion operators. It presently allows for fully differential predictions, possibly matched to parton shower, up to one-loop accuracy in QCD. We illustrate the potential of the implementation with novel loop-induced and next-to-leading order computations relevant for top-quark, electroweak, and Higgs-boson phenomenology at the LHC and future colliders.

Standard Model Effective Theory at One-Loop in QCD

Céline Degrande, Gauthier Durieux, Fabio Maltoni, Ken Mimasu, Eleni Vryonidou & Cen Zhang, 🖙 arXiv:2008.11743

The implementation is based on the Warsaw basis of dimension-six SMEFT operators, after canonical normalization. Electroweak input parameters are taken to be G_F , M_Z , M_W . The CKM matrix is approximated as a unit matrix, and a $U(2)_q \times U(2)_u \times U(3)_d \times (U(1)_l \times U(1)_e)^3$ flavor symmetry is enforced. It forbids all fermion masses and Yukawa couplings except that only of the top quark. The model therefore implements the five-flavor scheme for PDFs.

A new coupling order, NP=2, is assigned to SMEFT interactions. The cutoff scale Lambda takes a default value of 1 TeV⁻² and can be modified along with the Wilson coefficients in the param_card. Operators definitions, normalisations and coefficient names in the UFO model are specified in definitions.pdf \leq . The notations and normalizations of top-quark operator coefficients comply with the LHC TOP WG standards of \Rightarrow 1802.07237. Note however that the flavor symmetry enforced here is slightly more restrictive than the baseline assumption there (see the dim6top page for more information). This model has been validated at tree level against the dim6top implementation (see \Rightarrow 1906.12310 and the \Rightarrow comparison details).

Current implementation

UFO model: SMEFTatNLO_v1.0.tar.gz

• 2020/08/24 - v1.0: Official release including notably four-quark operators at NLO.

Support

Please direct any questions to smeftatnlo-dev[at]cern[dot]ch.

http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

E.Vryonidou

Online, HEFT school, 11/04/21

What can the code do?

Multi-boson production

quark-initiated

$\begin{array}{llllllllllllllllllllllllllllllllllll$	
--	--

loop-induced

>	g	g	>	W+	W–		QED=2	QCD=2	NP=2	[QCD]
>	g	g	>	z	z		QED=2	QCD=2	NP=2	[QCD]
>	g	g	>	W+	W-	\mathbf{Z}	QED=3	QCD=2	NP=2	[QCD]
>	g	g	>	\mathbf{Z}	\mathbf{Z}	Z	QED=3	QCD=2	NP=2	[QCD]

loop-induced

> g g >	Н	QED=1 QCD=2 NP=2 [QCD]
> g g >	нн	QED=2 QCD=2 NP=2 [QCD]
> g g >	ннн	QED=3 QCD=2 NP=2 [QCD]
> g g >	нј	QED=1 QCD=3 NP=2 [QCD]

Top quark production

> e+ e- > t t~	QI	ED=2 QCD=0	NP=2	[QCD]
> p p > t t~	QI	ED=0 QCD=2	NP=2	[QCD]
> p p > t t~ h	QI	ED=1 QCD=2	NP=2	[QCD]
> p p > t t~ Z	QI	ED=1 QCD=2	NP=2	[QCD]
> p p > t t~ W+	QI	ED=1 QCD=2	NP=2	[QCD]
> p p > t W-	\$\$ t~ QI	ED=1 QCD=1	NP=2	[QCD]
>pp>t W-j	\$\$ t~ Q	ED=1 QCD=2	NP=2	[QCD]
> p p > t j	\$\$ W- QI	ED=2 QCD=0	NP=2	[QCD]
> p p > t h j	\$\$ W- QI	ED=3 QCD=0	NP=2	[QCD]
> p p > t Z j	\$\$ W- QI	ED=3 QCD=0	NP=2	[QCD]
>pp>taj	\$\$ W- QI	ED=3 QCD=0	NP=2	[QCD]

What's in the box?

Warsaw basis operators Flavour assumption:

 $U(2)_q \times U(2)_u \times U(3)_d \times (U(1)_l \times U(1)_e)^3$

Includes Higgs, top, gauge boson interactions Conventions matching dim6top (LHC Top WG) CP & Flavour conserving

→ Including 4-fermion operators

And many more on the website...

Online, HEFT school, 11/04/21

Applications at NLO

NEW

Triboson production

First computation of VVV@NLO in the SMEFT c.f. first observation by CMS: arXiv:2006.11191

E.Vryonidou

Online, HEFT school, 11/04/21

Summary

- EFT is a theoretically consistent way to look for new interactions
- SMEFT is a systematically improvable framework
- Tools and automation important to constrain the operators using LHC measurements
- Higher-order corrections needed to match SM precision and experimental accuracy
- Higher-order effects relevant in global fits

Thank you for your attention