JSUB - A Tool for Job Submission

and Management
Yang Yifan, IHEP

JSUB - Job submission utility bundle

o A frontend software to make user’s lives easier

 Ease the procedure of using DIRAC, and potentially other heterogeneous
resources.

 Automatically manage massive jobs.
e Extensible for other experiments.

e \What JSUB can support for JUNO?

e User simulation, reconstruction, and analysis.

* EXxecuting user customized scripts

e Custom workflow combining multi-steps above.
* Task-based monitoring and operations

Functionality design of JSUB

[
1=£; IIII.SheII

Job submission Job management Dataset

nmaruwgenTuent
l splitting ‘ ’ status monitoring
query
reprocessing
‘ submission ‘ | _
retrieving log register

| workflow control ‘)
repository

Backend
File Catalog

Development status

Basic functionalities has been
fully implemented and tested

* parse of JDL, submission, monitoring,
data management and log retrieval

Performance tests done

* Fast job management operations

e Small overhead in terms of memory
usage and job running time

Took part in actual JUNO tasks

e Tens of thousands of jobs executed.

e Took part in production of radioactive
background and positron samples.

Inviting more tryings.

Cumulative Jobs by Site
55 Weeks from Week 51 of 2019 to Week 02 of 2021

2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020 Oct 2020 Nov 2020 Dec 2020 Jan 2021

Max: 46.6, Average: 8.35, Current: 46.6

A Tutorial on JSUB

e A brief going-through
e Activation and configuration
e Defining tasks

e Job management operations

e Some real task examples

Activation or installation

Currently, JSUB has been installed on CVMFS. To use the software, a
pythonic virtual environment needs to be activated with the following
command:

And the environment can be deactivated with:

Also, the source code is available on GitHub (https://github.com/jsubpy).

The python packages can be installed with pip.

https://github.com/jsubpy
http://dcomputing.ihep.ac.cn/frontend/jsub/activate.sh

General configuration

* By default, JSUB loads the configuration file FISHBEE, Or
from anywhere specified by command line options.

* An example configuration file can be found

N Jovmfs/dcomputing.ihep.ac.crfrontend/jsub/pref nstalljsub/jsublsupport/

JSUB Configuration File
This configuration file is supposed to be put at ~/.jsubrc.
The settings here would overload the default ones defined in .jsubrc in JSUB main dir.

#HH The packages to be loaded to JSUB. JSUB would search for extension modules according to the order given here.
package: [jsub_juno, jsub_dirac, jsub_condor]

Location to put task information files; may need big space for log and output files
taskDir:
location: /junofs/users/yangyf/workdir/jsub

Backend setting
backend:
default: dirac

dirac:
Config backend settings here
site:
— CLOUD.IHEP.cn
I — GRID.JINR. ru
— CLUSTER.USTC.cn

Defining tasks

 To define tasks, users need to write task definition files in
yaml.

* The settings covered in TDF consist of four parts: general,
backend, splitter, and workflow

taskName: juno_sim

experiment: juno

softVersion: 'centos7_amd64_gcc830/Pre-Release/J20v1r0-Pre2'
#softVersion:

arch: 'centos7_amd64_gcc830/'

release: 'J20v1r0-Pre2'

backend:
type: dirac

When outputSubDir is defined, the final directory for output file would pe: /<junofs—user—home>/<outputSubDir>/<taskName>
outputSubDir: 'jsub_tests'

Alternatively, user may specify the full path of output LFN folder with putputDir
outputDir:'/junofs/.../jsub_tests/juno_sim'

— CLOUD.JINRONE. ru

— CLOUD.IHEP.cn
bannedSites:

— CLOUD.JINRONE. ru

A splitByEvent splitter generate subjobs with uniform settings.

In splitByEvent mode, filenames of input/output/userOutput are automatic, and the seeds are incremental by 1 by default.
Other settings shall stay the same for all subjobs.

mode: splitByEvent

evtMaxPerJob: 1000

njobs: 50

steps: [detsim]

detsim:
seed: 1 # the starting seed (in splitByEvent mode)

additionalArgs are put after common attributes such as output, userOutput, input, seed, evtmax, and rate.
 'aun —particles e+ ——momentum

Defining tasks - general settings

e Basic informations such as task name, experiment, and
software version.

Defining tasks - backend setting

e site, banned sites, job group, output location...

Defining tasks - splitter setting

o A splitter decides how a JSUB task can be splitted into multiple
subjobs that each can run on a single backend working node, and
how the subjob parameters should be assigned.

osplitByEvent 1s a splitter suitable for simple tasks with uniform
setting other than filenames and random seeds.

Defining tasks - workflow setting

e Workflow settings describe the list of steps and their
parameters

Job management

e Given a TDF, users can create a JSUB task with create

e After successful creation, tasks would be registered into a
database saved in configurated path. Users may look up the
information of these tasks with Is command:

command:

Task ID Name

jinrcloud_1000
jinrcloud_2000
jinrcloud_200
jinrcloud_5000
jinrcloud_50
padovanacloud_1000
padovanac loud_2000
padovanac loud_200

poo~NO U, WNBE

e Tasks need to be submitted to backend for running.

Status (D|F|R|W|0)

Experiment Backend

dirac
dirac
dirac
dirac
dirac
dirac
dirac

juno
juno
juno
juno
juno
juno
juno

0|0|0]|100]|0
4]96|0|0|0
91(9(0|0|0
0|100]0|0|0
96(4(0|0|0
50|50]0]0|0
16/84|0|0|0
83|17|0|0|0

Creation Time (UTC)

2021-01-06 09:55:24
2021-01-06 09:55:25
2021-01-06 09:55:26
2021-01-06 09:55:26
2021-01-06 09:55:27
2021-01-06 09:55:28
2021-01-06 09:55:28
2021-01-06 09:55:29

Info Updated (UTC)

2021-01-19 02:31:57
2021-01-07 01:16:57
2021-01-12 00:29:11
2021-01-07 01:16:59
2021-01-07 01:17:00
2021-01-07 01:17:02
2021-01-07 01:17:03
2021-01-07 01:17:04

Job management

e dirac.ihep.ac.cn can be used for status monitoring of

submitted jobs.

-~

) CAS_Prod - DIRAC
& cC @
Selectors

Status

Owner:

yyang

OwnerGroup:

From:

To:

Reset Time Panel

TaskiD(s)

C
|
]
L
]
[
]
L
]
[
]
Ll
]
O
[
L
]
[
]
Ll
]
Ll
]

ihep.ac.cn

X

TaskName
juno_yury_example
juno_yury_example

juno_yury_example

juno_simrec_jobvar...

juno_simrec_jobvar...

juno_simrec
juno_prod
juno_prod
juno_prod
jsub

jsub

jsub

jsub

jsub

jsub

jsub

jsub

jsub

jsub

jsub

jsub

Items per page:

EEEEEEEENEENEENEEEEEEEEN

Status
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Expired
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished

Finished

Jobs Progress (D|F|R|\
120/120
5/5 5|0|0]0]0

110%

Page

CreationTime[U
119|11]0]0)|0 2020-06-10 08:12:39
2020-06-02 06:21:05

N Information for task 1090
Name
JSUB-ID

JobGroup

TaskName

stics
Status Type
==== Status ====
Failed

Done

==== Minor Status ====
Execution Complete
Watchdog identified this job as stalled

==== Application Status ====
Executing RunScriptStep1

dirac successful

==== Sjte ====
CLOUD.IHEPCLOUD.cn
GRID.LANCASTER.uk

2020-06-10 09:32:20
2020-06-02 07:32:13

9
jsub.9

juno_yury_example

Job Number

INn @

Displaying topics 1 - 25 of 32
Site
GRID.IHEP.cn,CLUSTER...
CLUSTER.SJTU.cn,CLU...

http://dirac.ihep.ac.cn

Job management

e As the final step of successful job execution, the output
data would be transferred to target SE. These files can be

found with dirac file catalog, or in some certain folders for
specific SEs.

e The log files can be retrieved with getlog command:

And the downloaded log files can be found in JSUB task
dir defined in configuration.

Job Management

e Use command helps to check the list of commands and
their usage.

(jsub) yangyf:[~] > jsub —help
Usage: jsub [OPTIONS] COMMAND [ARGS]...

Options:
—jsubrc TEXT Configuration file to run JSUB with.
—help Show this message and exit.

Commands:
create Create a task from a task description file.
getlog Retrieve log files of selected subjobs.
s List all tasks.
package Show active packages.
remove Delete a task.
rename Rename a task.
reschedule Reschedule selected subjobs.
resubmit Equivalent to 'jsub submit -r' command
run Create from a task profile, and submit.
show Show detailed description of a task.
status Show the backend status of a task.
submit Submit a task to backend.
version Show the version of the software.

e Also, check http://[subpy.github.io for user guide.

http://jsubpy.github.io

TDF examples

Simple detsim task

#
A simple example showing the basics about running a JUNO simulation task
#
taskName: juno_sim

experiment: juno

softVersion: 'centos7_amd64_gcc830/Pre-Release/J20v1r0-Pre2'
#softVersion:

arch: 'centos7_amd64_gcc830/"

release: 'J20v1r0-Pre2'

co~NNOUTE WN -

backend:
type: dirac

When outputSubDir is defined, the final directory for output file would be: /<junofs-user-home>/<outputSubDir>/<taskName>
outputSubDir: 'jsub_tests'
Alternatively, user may specify the full path of output LFN folder with outputDir

outputDir:'/junofs/.../jsub_tests/juno_sim'

B site:

— CLOUD.JINRONE. ru
— CLOUD.IHEP.cn

bannedSites:

— CLOUD.JINRONE. ru

splitter:
A splitByEvent splitter generate subjobs with uniform settings.
In splitByEvent mode, filenames of input/output/userOutput are automatic, and the seeds are incremental by 1 by default.
Other settings shall stay the same for all subjobs.
mode: splitByEvent
evtMaxPerJob: 1000
njobs: 50

workf low:
steps: [detsim]

detsim:
seed: 1 # the starting seed (in splitByEvent mode)

additionalArgs are put after common attributes such as output, userOutput, input, seed, evtmax, and rate.
additionalArgs: 'gun —particles e+ —momentums 1.398'

sim/rec multi-step task

##

An example of having multi-steps in the workflow
H
taskName: juno_simrec
experiment: juno

softVersion: 'centos7_amd64_gcc830/Pre—-Release/J20v1ro—Pre2’

coONOUTESE WN =

backend:
type: dirac
outputSubDir: 'jsub_tests’

splitter:
mode: splitByEvent
evtMaxPerJob: 1000
njobs: 50

workf low:
steps: [detsim, elecsim, calib, rec]

detsim:

seed: 1 ## when in splitByEvent mode, the seeds are incremental by default
particles: e+

momentums: 1.398 #MeV
additionalArgs: ''

when gun params are defined: full_args= '——seed X ——output X ——user—output X $(additionalArgs) gun —particles X ...

elecsim:

when detsim and elecsim are both in the workflow, the output of detsim automatically feeds into elecsim
seed: 10
rate: 1

additionalArgs: ''

#calib: # if a step only uses default settings, it's description can be skipped
I additionalArgs: ''

splitByJobvar splitter — a splitter
with better handling of subjob details

backend:
type: dirac
outputSubDir: 'jsub_tests'

splitter:
A splitByJobvars generate job variable lists and combine them into sets. For each variable set, the splitter generates one subjob accordingly.
mode: splitByJobvars
maxSubJobs: 500 ## the resulted number of subjobs won't exceed this number
evtMaxPerJob: 5000
jobvarLists:
The jobvar lists are grouped.
For jobvars in the same group, the length of their common var-set list is decided by the shortest jobvar list.
For jobvar sets in different groups, the combining result is their Cartesian product.
Jobvars without group attribute would make a final common var-set list with the combining result of all jobvar groups.

In this example, there shall be 6%20=120 jobs, each with a unique seed.
nuclear:
type: enumerate
list: ['U-238','Th-232','K-40','Pb-210','C-14','Kr-85']
group: nuclear
subjob:
type: range
first: 4 ## default 1
step: 1 ## default 1
length: 20 ## default 100000
group: same_nuclear
seed:
type: range
first: 1
step: 1

workflow:
steps: [detsim]

detsim:
The values of jobvars can be referenced in workflow setting.
seed: '$(seed)’
output: '$(nuclear).$(subjob).detsim.root'
userOutput: '$(nuclear).$(subjob).user.detsim.root'
additionalArgs: 'gendecay ——nuclear $(nuclear) ——volume pTarget ——material LS'

fullArgs = seed + ... + additionalArgs
#fullArgs: '——evtmax 5000 ——seed $(seed) ——output $(nuclear).$(subjob).detsim.root ——user—output $(nuclear).$(subjob).user.detsim.root gendecay ——nuclear $(nuclear) ——volume pTarget ——material LS'

elecsim task — handling input data

#H
A example with juno elecsim, showcasing how to get input
#H
taskName: juno_elecsim

experiment: juno

softVersion: 's16_amd64_gcc830/Pre-Release/J20v1r0-Pre2’

oOo~NOUTESE WN =

backend:
type: dirac
outputSubDir: 'jsub_tests/'

splitter:
For jobs with input, splitByJobvars splitter is necessary so that the input filenames can be referenced in workflow setting
mode: splitByJobvars
maxSubJobs: 500
evtMaxPerJob: 5000
jobvarLists:
One way to assign input file is to list the filenames in a text file.
input_filename:
type: lines_in_file
file: './1lfnlist.example’
Another way is to filter LFN list in a given folder, using dirac-dms—-find-1fns command
input_filename:
type: find_1fns
path: '/juno/user/.../test’
metaspec: ' "Size>1000" "CreationDate>2010-01-01" ' # metadata index specification
seed:
type: range

workf low:
steps: [elecsim]

elecsim:
seed: '$(seed)' # jobvars can be referenced in workflow setting
input: '$(input_filename)'
rate: 10
output: 'elecsim.$(seed).root'
userOutput: 'elecsim.user.$(seed).root'
additionalArgs: ''

Custom JUNO analysis

##
demo for juno analysis
##
taskName: juno_custom_Alg
experiment: juno
softVersion: 'J20v1r@-Pre2’

backend:
type: dirac
outputSubDir: 'jsub_tests’

OCoo~NOUTEE WN B

splitter:
mode: splitByJobvars
maxSubJobs: 20
evtMaxPerJob: 1000

jobvarLists:
idx:
type: range
length: 10

workf low:
steps: [myAlgl]

myAlg:
type: 'juno_alg'
Users shall provide a job configuration file template for the algorithm and the referenced DLLs.
These files would be put into input sandbox.
The folders of Sniper.LoadD1l() in the config would be auto-redirected.
soFile:
- './JsubDummyAlg/amd64_1inux26/1ibJsubDummyAlg.so"
- './JsubHelloWorld/amd64_1linux26/1ibJsubHelloWorld.so"'
jobConfig: './JsubDummyAlg/share/run.py' # local position
jobConfig: './JsubHelloWorld/share/run.py' # local position

Users may use case-sensitive text replacement to set subjob-dependent parameters.
textReplace:
keyword: replacement
OUTPUT1: 'a/output.$(idx).1.root’
OUTPUT2: 'b/output.$(idx).2.root’
what files to be uploaded as output data, for (dirac backend)
outputUpload:
- 'xroot'

Summary

e JSUB is ready for more trying.

e Feedbacks are welcome!

