
JSUB - A Tool for Job Submission
and Management

Yang Yifan, IHEP

JSUB - Job submission utility bundle

• A frontend software to make user’s lives easier

• Ease the procedure of using DIRAC, and potentially other heterogeneous

resources.

• Automatically manage massive jobs.

• Extensible for other experiments.

• What JSUB can support for JUNO?

• User simulation, reconstruction, and analysis.

• Executing user customized scripts

• Custom workflow combining multi-steps above.

• Task-based monitoring and operations

Functionality design of JSUB

Development status

• Basic functionalities has been
fully implemented and tested

• parse of JDL, submission, monitoring,

data management and log retrieval

• Performance tests done

• Fast job management operations

• Small overhead in terms of memory
usage and job running time

• Took part in actual JUNO tasks

• Tens of thousands of jobs executed.

• Took part in production of radioactive
background and positron samples.

• Inviting more tryings.

A Tutorial on JSUB

• A brief going-through

• Activation and configuration

• Defining tasks

• Job management operations

• Some real task examples

Activation or installation

• Currently, JSUB has been installed on CVMFS. To use the software, a
pythonic virtual environment needs to be activated with the following
command:

• And the environment can be deactivated with:

• Also, the source code is available on GitHub (https://github.com/jsubpy).
The python packages can be installed with pip.

source /cvmfs/dcomputing.ihep.ac.cn/frontend/jsub/activate.sh

source .../activate.sh -e juno

source .../activate.sh -v pre1

deactivate

https://github.com/jsubpy
http://dcomputing.ihep.ac.cn/frontend/jsub/activate.sh

General configuration

• By default, JSUB loads the configuration file ~/.jsubrc, or
from anywhere specified by command line options.

• An example configuration file can be found
in /cvmfs/dcomputing.ihep.ac.cn/frontend/jsub/pre1/install/jsub/jsub/support/

Defining tasks
• To define tasks, users need to write task definition files in

yaml.

• The settings covered in TDF consist of four parts: general,

backend, splitter, and workflow

Defining tasks - general settings

• Basic informations such as task name, experiment, and
software version.

taskName: juno_sim

experiment: juno

softVersion: 'centos7_amd64_gcc830/Pre-Release/J20v1r0-Pre2'

#softVersion:

arch: 'centos7_amd64_gcc830/'

release: 'J20v1r0-Pre2'

Defining tasks - backend setting

• site, banned sites, job group, output location…

backend:

 type: dirac

 ## When outputSubDir is defined, the final directory for output file would be:

 ## /<junofs-user-home>/<outputSubDir>/<taskName>

 outputSubDir: 'jsub_tests'

 ## Alternatively, user may specify the full path of output LFN folder

outputDir:'/junofs/.../jsub_tests/juno_sim'

jobGroup: ‘jsub.yangyf.test0’

site:

- CLOUD.JINRONE.ru

- CLOUD.IHEP.cn

bannedSites:

- CLOUD.JINRONE.ru

Defining tasks - splitter setting
•A splitter decides how a JSUB task can be splitted into multiple
subjobs that each can run on a single backend working node, and
how the subjob parameters should be assigned.

•splitByEvent is a splitter suitable for simple tasks with uniform
setting other than filenames and random seeds.

splitter:

 ## In splitByEvent mode, filenames of input/output/userOutput are automatic,

 ## and the seeds are incremental by 1 by default.

 ## Other settings shall stay the same for all subjobs.

 mode: splitByEvent

 evtMaxPerJob: 1000

 njobs: 50

Defining tasks - workflow setting

• Workflow settings describe the list of steps and their
parameters

workflow:

 steps: [step0]

 step0:

 type: detsim

 seed: 1 # the starting seed (in splitByEvent mode)

 ## additionalArgs are put after common attributes such as

 ## output, userOutput, input, seed, evtmax, and rate.

 additionalArgs: 'gun --particles e+ --momentums 1.398'

Job management

• Given a TDF, users can create a JSUB task with create
command:

• After successful creation, tasks would be registered into a
database saved in configurated path. Users may look up the
information of these tasks with ls command:

• Tasks need to be submitted to backend for running.

jsub create <TDF-filename>

jsub ls

jsub submit <task-ID>

Job management

• dirac.ihep.ac.cn can be used for status monitoring of
submitted jobs.

•

http://dirac.ihep.ac.cn

Job management

• As the final step of successful job execution, the output
data would be transferred to target SE. These files can be
found with dirac file catalog, or in some certain folders for
specific SEs.

• The log files can be retrieved with getlog command:

 And the downloaded log files can be found in JSUB task
dir defined in configuration.

jsub getlog <task-id> [-s STATUS] [-i subjob_ids]

Job Management
• Use command helps to check the list of commands and

their usage.

• Also, check http://jsubpy.github.io for user guide.

http://jsubpy.github.io

TDF examples

Simple detsim task

sim/rec multi-step task

splitByJobvar splitter — a splitter
with better handling of subjob details

elecsim task — handling input data

Custom JUNO analysis

Summary

• JSUB is ready for more trying.

• Feedbacks are welcome!

Thanks!

