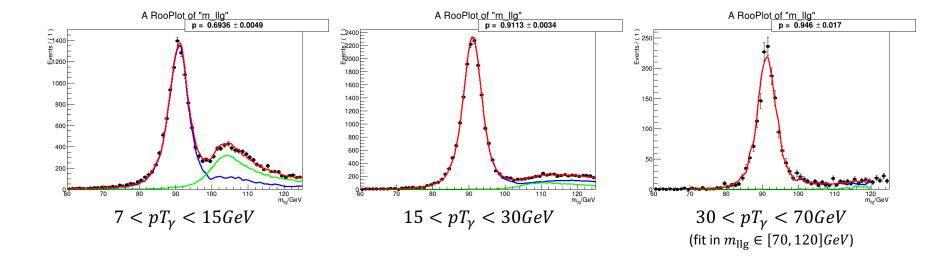
Weekly report

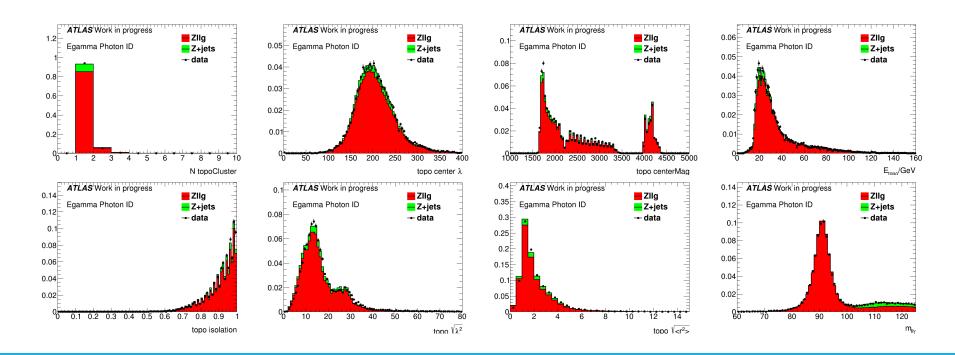
FANGYI GUO

Working status


Gave a report for QT:

- Signal-background comparison: no large discrimination for topo-cluster variabels.
- Data-MC comparison: model data with $Z \rightarrow llg$ and Z + jets event, no large mismodelling observed.
- Required full Run2 data and MC. <u>JIRA</u>
- Feedback from meeting:
 - Check the correlation between new topo-cluster variables and old photon shower variables
 - If can confirm this conclusion, the task can be finished.

Model data with MC.


- Suppose data could be described with Z->llg and Z+jets process.
- Fit $m_{ll\gamma}$ with a histPdf to get the fraction:

 $f(m_{ll\gamma}) = pf_s(m_{ll\gamma}) + (1-p)f_b(m_{ll\gamma})$

data vs. MC

- Shapes are normalized.
- ee+gamma, $15GeV < pT_{\gamma} < 35GeV$.

Correlation check

Shape variables used in photon ID:

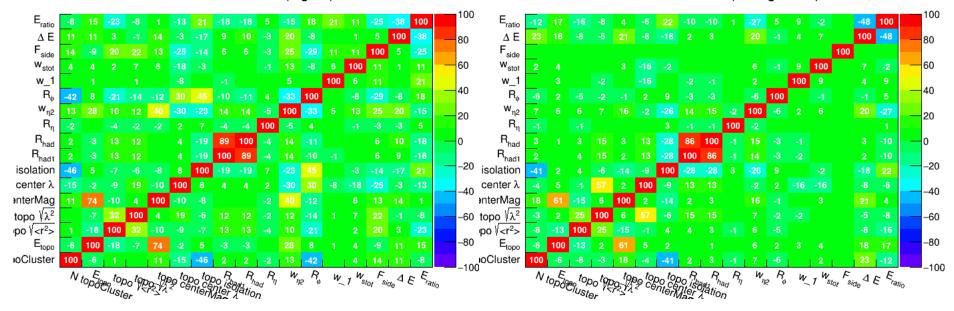
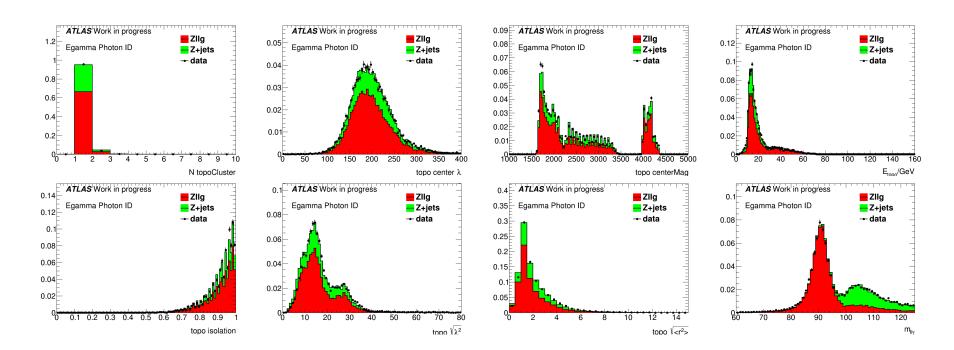

Category	Description	Variable	loose	tight
Acceptance	$ \eta < 1.37 \cup 1.52 < \eta < 2.37$		✓	\checkmark
Hadronic leakage	Ratio of $E_{\rm T}$ in the first layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ and $ \eta > 1.37$)	R _{had1}	~	1
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta > 1.37$)	R _{had}	✓	√
EM Middle layer	Ratio of $3 \times 7 \eta \times \phi$ to 7×7 cell energies	R_{η}	✓	\checkmark
	Lateral width of the shower	$w_{\eta 2}$	✓	\checkmark
	Ratio of $3 \times 3 \eta \times \phi$ to 7×7 cell energies	R_{ϕ}	1	\checkmark
EM Strip layer	Lateral shower width calculated from three strips around the strip with highest energy deposit	w _{s3}		\checkmark
	Total lateral shower width	W_{tots1}		
	Energy outside the core of 3 central strips but within 7 strips divided by energy within 3 central strips	F _{side}		~
	Difference between the energy associated with the second maximum in the strip layer and the energy energy reconstructed in the strip with minimum value found between the first and second maxima	ΔE		✓
	Ratio of energy difference associated with the largest and second largest energy deposits to the sum of these energies	<i>E_{ratio}</i>		\checkmark

Table 2: Discriminative shower shape variables used for *loose* and *tight* photon identification.

Correlation check

Correlation Matrix (signal)

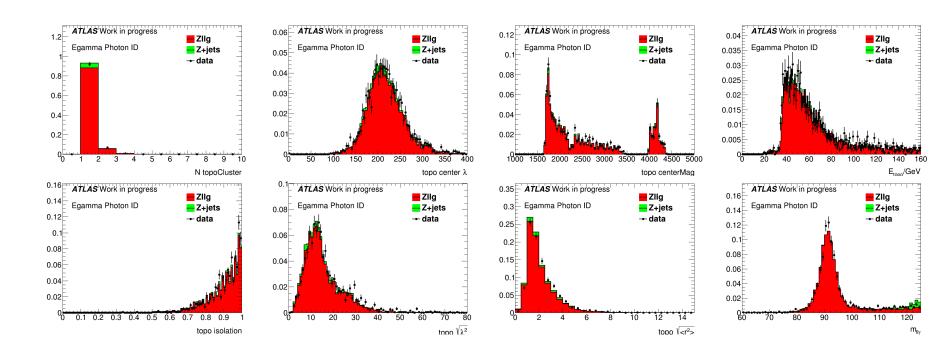
Correlation Matrix (background)



Correlation matrix shows low correlation between topo-cluster variables and old shower shape variables. Need further confirmation.

backup

data vs. MC


- Shapes are normalized.
- ee+gamma, $7GeV < pT_{\gamma} < 15GeV$.

2021/1/25

data vs. MC

- Shapes are normalized.
- ee+gamma, $35GeV < pT_{\gamma} < 70GeV$.

