

P-wave charmed baryons of the SU(3) flavor 6_F

Hui-Min Yang (杨慧敏) Beihang University

Collaborators: Hua-Xing Chen, Qiang Mao, Er-Liang Cui

Contents

- Experimental status
- Decay properties of P-wave charmed baryons Internal structure of heavy baryons Light-cone sum rules Decay widths of charmed baryons
- Summary

The heavy baryon spectra(PDG)2020

□ (a)The spectra of singly-charmed baryons, (b)The spectra of singly-bottom baryons

3

PDG.2020

Belle Experiment for Σ_c

Belle collaboration, Phys. Rev. Lett. 94, 122002 (2005)

The three Σ_c baryons were discovered from the $\Lambda_c^+\pi^-/\Lambda_c^+\pi^0/\Lambda_c^+\pi^+$ mass spectrum at the KEKB asymmetric energy e^+e^- collider.

State	$ riangle$ M, MeV/ c^2	Width(MeV)	yield/10 ³
$\Sigma_{c}(2800)^{0}$	$515.4^{+3.2+2.1}_{-3.1-6.0}$	61^{+18+22}_{-13-13}	$2.24\substack{+0.79+1.03\\-0.55-0.50}$
$\Sigma_{c}(2800)^{+}$	$505.4_{-4.6-2.0}^{+5.8+12.4}$	62^{+37+52}_{-23-38}	$1.54\substack{+1.05+1.40\\-0.57-0.88}$
$\Sigma_{c}(2800)^{++}$	$514.5_{-3.1-4.9}^{+3.4+2.8}$	75^{+18+12}_{-13-11}	$2.81\substack{+0.82+0.71\\-0.60-0.49}$

LHCb collaboration, Phys. Rev. Lett. 124, 222001 (2020)

The three Ξ_c baryons were discovered from the $\Lambda_c^+ K^-$ mass spectrum studied with a data sample of pp collisions.

State	Mass(MeV)	Width(MeV)	Signal yields
$\Xi_c(2923)^0$	$2923.04{\pm}0.25{\pm}0.20{\pm}0.14$	$7.1 {\pm} 0.8 {\pm} 1.8$	5400±400
$\Xi_c(2939)^0$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2 {\pm} 0.8 {\pm} 1.1$	10400 ± 600
$\Xi_c(2965)^0$	2964.88±0.26 ±0.14±0.14	14.1±0.9±1.3	11700±600

LHCb Experiment for Ω_c

LHCb collaboration, Phys. Rev. Lett. 118, 182001 (2017) Belle collaboration, Phys. Rev. D. 97, 051102 (2018)

The five Ω_c baryons were observed by LHCb from $\Xi_c^+ K^-$ mass spectrum with a sample of pp collision.

Belle confirmed the first four states

Resonance	Mass (MeV)	$\Gamma (MeV)$	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm ~80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 ^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970 \pm 60 \pm 20$	20.4
		$< 1.2 \mathrm{MeV}, 95\% \mathrm{CL}$		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm ~50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9 \substack{+0.3 \\ -0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$<2.6{\rm MeV},95\%$ CL		
$\Omega_{c}(3188)^{0}$	$3188\pm5\pm13$	$60\pm\ 15\pm11$	$1670 \pm 450 \pm 360$	
$\Omega_{c}(3066)^{0}_{fd}$			$700 \pm 40 \pm 140$	
$\Omega_{c}(3090)_{fd}^{0}$			$220\pm60\pm90$	
$\Omega_{c}(3119)_{fd}^{0}$			$190\pm70\pm20$	

Internal structure of heavy baryons

Based on the heavy quark effective theory, the leading order Lagrangian does not depend on m_Q . The internal structure of heavy baryons(Q-q₁-q₂) is :

$$J = s_Q + s_{q1} + s_{q2} + l_\rho + l_\lambda$$

= $s_Q + (s_{q1} + s_{q2} + l_\rho + l_\lambda)_{j_l}$

 λ -excitation and ρ -excitation

Thus the state function can be written as :

 $|qqq\rangle_A = |\operatorname{color}\rangle_A \times |\operatorname{space}, \operatorname{spin}, \operatorname{flavor}\rangle_S$

The Pauli principle can be directly applied to the two light quarks:

We define notation of the baryons multiplet : $[F, j_l, s_l, \rho/\lambda]$

P-wave baryons : $l_{\rho} + l_{\lambda} = 1$ \succ color $\longrightarrow \overline{3}_{C}$ antisymmetric > orbital $\longrightarrow l_{\rho} \begin{cases} 0 \text{ symmetric} \\ 1 \text{ antisymmetric} \end{cases}$ > spin $\longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ ant symmetric} \end{cases}$ > SU(3) flavor $\longrightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$

We define notation of the baryons
multiplet :
$$[F, j_l, s_l, \rho/\lambda]$$

P-wave baryons : $l_{\rho} + l_{\lambda} = 1$
 $\flat color \longrightarrow \overline{3}_{C}$ antisymmetric
 $\flat orbital \longrightarrow l_{\rho} \begin{cases} 0 \text{ symmetric} \\ 1 \text{ antisymmetric} \\ 0 \text{ ant symmetric} \end{cases}$
 $\downarrow_{\rho} = 0$
 $\downarrow_{\lambda} = 1$
 $\downarrow_{\rho} = 0$
 $\downarrow_{\lambda} = 0$
 $\downarrow_{l} = 0: \Sigma_{c0}(\frac{1}{2}, 3\frac{-}{2}) \Xi_{c1}(\frac{1}{2}, 3\frac{-}{2}) [\overline{6}_{F}, 0, 1, \lambda]$
 $\downarrow_{l} = 0: \Sigma_{c0}(\frac{1}{2}, 3\frac{-}{2}) \Xi_{c1}(\frac{1}{2}, 3\frac{-}{2}) \Omega_{c1}(\frac{1}{2}, 3\frac{-}{2}) [\overline{6}_{F}, 1, 1, \lambda]$
 $\downarrow_{l} = 2: \Sigma_{c2}(\frac{3}{2}, 5\frac{-}{2}) \Xi_{c2}(\frac{3}{2}, 5\frac{-}{2}) \Omega_{c2}(\frac{3}{2}, 5\frac{-}{2}) [\overline{6}_{F}, 2, 1, \lambda]$
 $\downarrow_{l} = 0: 6_{F} \longrightarrow j_{l} = 1: \Sigma_{c1}(\frac{1}{2}, 3\frac{-}{2}) \Xi_{c1}(\frac{1}{2}, 3\frac{-}{2}) \Omega_{c1}(\frac{1}{2}, 3\frac{-}{2}) [\overline{6}_{F}, 1, 0, \rho]$
 $\downarrow_{l} = 0: 6_{F} \longrightarrow j_{l} = 1: \Sigma_{c1}(\frac{1}{2}, 3\frac{-}{2}) \Xi_{c1}(\frac{1}{2}, 3\frac{-}{2}) \Omega_{c1}(\frac{1}{2}, 3\frac{-}{2}) [\overline{6}_{F}, 1, 0, \rho]$
 $\downarrow_{l} = 0: \Lambda_{c0}(\frac{1}{2}) \Xi_{c0}(\frac{1}{2}) [\overline{3}_{F}, 0, 1, \rho]$
 $\downarrow_{l} = 0: \Lambda_{c0}(\frac{1}{2}) \Xi_{c0}(\frac{1}{2}, 3\frac{-}{2}) [\overline{3}_{F}, 1, 1, \rho]$
 $\downarrow_{l} = 2: \Lambda_{c2}(\frac{3}{2}, 5\frac{-}{2}) [\overline{3}_{C2}(\frac{3}{2}, 5\frac{-}{2})] [\overline{3}_{F}, 2, 1, \rho]$
 $\downarrow_{l} = 2: \Lambda_{c2}(\frac{3}{2}, 5\frac{-}{2}) [\overline{3}_{C2}(\frac{3}{2}, 5\frac{-}{2})] [\overline{3}_{F}, 2, 1, \rho]$

Multiplet	Baryon(J ^P)	
$[6_F, 0, 1, \lambda] \left\{ \Xi \right\}$	$\Sigma_c^{\prime 0}\left(\frac{1}{2}^{-}\right), \Sigma_c^0\left(\frac{1}{2}^{-}\right), \Omega_c^0\left(\frac{1}{2}^{-}\right)$	
$[6_F, 1, 0, \rho] \begin{cases} \Xi \\ \Xi \end{cases}$	$\Sigma_{c}^{\prime 0}\left(\frac{1}{2}^{-}\right), \Sigma_{c}^{0}\left(\frac{1}{2}^{-}\right), \Omega_{c}^{0}\left(\frac{1}{2}^{-}\right)$ $\Sigma_{c}^{\prime 0}\left(\frac{3}{2}^{-}\right), \Sigma_{c}^{0}\left(\frac{3}{2}^{-}\right), \Omega_{c}^{0}\left(\frac{3}{2}^{-}\right)$	
$[6_F, 1, 1, \lambda] \begin{cases} \Xi \\ \Xi \end{cases}$	$\Sigma_{c}^{\prime 0} \left(\frac{1}{2}^{-}\right), \Sigma_{c}^{0} \left(\frac{1}{2}^{-}\right), \Omega_{c}^{0} \left(\frac{1}{2}^{-}\right)$ $\Sigma_{c}^{\prime 0} \left(\frac{3}{2}^{-}\right), \Sigma_{c}^{0} \left(\frac{3}{2}^{-}\right), \Omega_{c}^{0} \left(\frac{3}{2}^{-}\right)$	
$[6_F, 2, 1, \lambda] \begin{cases} 2\\ 2 \end{cases}$	$ E_{c}^{\prime 0}\left(\frac{3}{2}^{-}\right), \Sigma_{c}^{0}\left(\frac{3}{2}^{-}\right), \Omega_{c}^{0}\left(\frac{3}{2}^{-}\right) \\ E_{c}^{\prime 0}\left(\frac{5}{2}^{-}\right), \Sigma_{c}^{0}\left(\frac{5}{2}^{-}\right), \Omega_{c}^{0}\left(\frac{5}{2}^{-}\right) $	

Mass	Difference	Decay width
$\Xi_c^{\prime 0} / \Sigma_c^0 / \Omega_c^0 \left(\frac{1}{2}\right)$: M1(QC)	CDSR), 0	Γ1(LCSR)
$\Xi_c^{\prime 0} / \Sigma_c^0 / \Omega_c^0 \left(\frac{1}{2}\right) : M1(QO)$ $\Xi_c^{\prime 0} / \Sigma_c^0 / \Omega_c^0 \left(\frac{3}{2}\right) : M2(QO)$	$CDSR), \\ \Delta M$	Γ1(LCSR) Γ2(LCSR)
$\frac{\Xi_c^{\prime 0}}{\Sigma_c^{\prime 0}} / \Sigma_c^0 / \Omega_c^0 \left(\frac{1}{2}\right) : M1(QC)$ $\frac{\Xi_c^{\prime 0}}{\Sigma_c^{\prime 0}} / \Sigma_c^0 / \Omega_c^0 \left(\frac{3}{2}\right) : M2(QC)$	CDSR), CDSR), △M	Γ1(LCSR) Γ2(LCSR)
$ \Xi_c^{\prime 0} / \Sigma_c^0 / \Omega_c^0 \left(\frac{3}{2}\right): M1(QC) $ $ \Xi_c^{\prime 0} / \Sigma_c^0 / \Omega_c^0 \left(\frac{5}{2}\right): M2(QC) $	CDSR), CDSR),	Γ1(LCSR) Γ2(LCSR)

11

Mass spectra of p-wave charmed baryons

		(.)	Working region	Λ	Baryon	Mass	Difference	Decay constant
Multiplet	В		(C. V)		(P)			(C V ⁴)
		(GeV)	(GeV)	(GeV)	(J ⁺)	(GeV)	(MeV)	(GeV ⁺)
	Σ	1 74	0.97 < T < 0.39	1.25 ± 0.11	$\Sigma_c(1/2^-)$	2.77 ± 0.14	15 ± 6	$0.067 \pm 0.017 \ (\Sigma_c^-(1/2^-))$
		1.11	0.21 (1 (0.02	1.25 ± 0.11	$\Sigma_{c}(3/2^{-})$	2.79 ± 0.14	15 ± 0	$0.031 \pm 0.008 \ (\Sigma_c^-(3/2^-))$
$[6_{E} \ 1 \ 0 \ o]$	='	1.87	0.26 < T < 0.34	1.36 ± 0.10	$\Xi_{c}^{\prime}(1/2^{-})$	2.88 ± 0.14	13 ± 5	$0.059 \pm 0.014 \ (\Xi_c^{\prime -}(1/2^-))$
$[0_F, 1, 0, p]$		1.01	0.20 (1 (0.04	1.50 ± 0.10	$\Xi_{c}^{\prime}(3/2^{-})$	2.89 ± 0.14	15 ± 5	$0.028 \pm 0.007 \ (\Xi_c^{\prime -}(3/2^-))$
	Ω.	2.00	0.26 < T < 0.35	1.48 ± 0.09	$\Omega_c(1/2^-)$	2.99 ± 0.15	12 ± 5	$0.105 \pm 0.023 \; (\Omega_c^-(1/2^-))$
	36C	2.00	0.20 (1 (0.00	1.10 ± 0.00	$\Omega_c(3/2^-)$	3.00 ± 0.15	12 ± 0	$0.049 \pm 0.011~(\Omega_c^-(3/2^-))$
	Σ_c	1.35	T = 0.27	1.10 ± 0.04	$\Sigma_{c}(1/2^{-})$	2.83 ± 0.05	_	$0.045 \pm 0.008 \ (\Sigma_c^-(1/2^-))$
$[6_F,0,1,\lambda]$	Ξ_c'	1.57	0.27 < T < 0.29	1.22 ± 0.08	$\Xi_{c}^{\prime}(1/2^{-})$	2.90 ± 0.13	_	$0.041 \pm 0.009 \ (\Xi_c^{\prime -}(1/2^-))$
	Ω_c	1.78	0.27 < T < 0.31	1.37 ± 0.09	$\Omega_{c}(1/2^{-})$	3.03 ± 0.18	_	$0.081 \pm 0.020 \ (\Omega_c^-(1/2^-))$
	Σ_c	1 79	T = 0.33	1.03 ± 0.12	$\Sigma_{c}(1/2^{-})$	2.73 ± 0.17	41 ± 16	$0.045 \pm 0.011 \ (\Sigma_c^-(1/2^-))$
		1.12	1 - 0.00		$\Sigma_c(3/2^-)$	2.77 ± 0.17		$0.021 \pm 0.005 \ (\Sigma_c^-(3/2^-))$
$[6_{E} \ 1 \ 1 \ \lambda]$	$[\mathbf{I}]_{c}$	1 72	T = 0.34	1.14 ± 0.09	$\Xi_{c}^{\prime}(1/2^{-})$	2.91 ± 0.12	28 ± 14	$0.041 \pm 0.008 \ (\Xi_c^{\prime -}(1/2^-))$
$[0_F, 1, 1, N]$		1.12	1 = 0.01		$\Xi_{c}^{\prime}(3/2^{-})$	2.95 ± 0.12	00 ± 11	$0.019 \pm 0.004 \ (\Xi_c^{\prime -}(3/2^-))$
	0	1 72	T = 0.35	1.22 ± 0.07	$\Omega_{c}(1/2^{-})$	3.04 ± 0.10	36 ± 13	$0.069 \pm 0.011 \ (\Omega_c^-(1/2^-))$
	c	1.12	I = 0.55	1.22 ± 0.07	$\Omega_{c}(3/2^{-})$	3.07 ± 0.09	00 ± 10	$0.032 \pm 0.005 \; (\Omega_c^-(3/2^-))$
	Σ	1.58	0.27 < T < 0.30	1.14 ± 0.12	$\Sigma_{c}(3/2^{-})$	2.86 ± 0.19	75 ± 31	$0.064 \pm 0.018 \ (\Sigma_c^-(3/2^-))$
		1.00	0.21 (1 (0.00	1.14 ± 0.12	$\Sigma_c(5/2^-)$	2.94 ± 0.18	10 ± 01	$0.038 \pm 0.011 \ (\Sigma_c^-(5/2^-))$
[6., 2.1. \]	='	1 79	0.27 < T < 0.32	1.94 ± 0.19	$\Xi_{c}^{\prime}(3/2^{-})$	2.96 ± 0.20	66 ± 97	$0.057 \pm 0.016 \ (\Xi_c^{\prime -}(3/2^-))$
$[0_F, 2, 1, \mathbf{\lambda}]$	<u> </u>	1.72	0.21 < 1 < 0.32	1.24 ± 0.12	$\Xi_{c}^{\prime}(5/2^{-})$	3.02 ± 0.18	00 ± 21	$0.034 \pm 0.009 \ (\Xi_c^{\prime-}(5/2^-))$
	0	1.85	0.26 < T < 0.22	1.35 ± 0.11	$\Omega_{c}(3/2^{-})$	3.08 ± 0.16	50 ± 94	$0.103 \pm 0.026 \ (\Omega_c^-(3/2^-))$
	360	1.00	0.20 \ 1 \ 0.55	1.50 ± 0.11	$\Omega_{c}(5/2^{-})$	3.14 ± 0.15	57 ± 24	$0.062 \pm 0.016 \; (\Omega_c^-(5/2^-))$

12

Light-cone sum rules

□ In sum rule analyses, we consider three-point correlation functions:

 $\Pi_{\alpha}(q^{2}) = i \int d^{4}x e^{ipx} \langle 0|T\eta(x)\overline{\eta}(0)|\rho \backslash K^{*} \rangle$

where η is the current which can couple to hadronic states.

□ In sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

Light-cone sum rules studies on the charmed baryons

DFor example, we consider the state of $[\Xi'_c(\frac{3}{2}), 6_F, 2, 1, \lambda]$ **D**-wave decaying into $\Lambda_c K$ using the method of the light-cone sum rules. First, the three-point correlation function can be written as:

At the hadronic level, we can rewrite the correlation function by using double dispersion relation:

$$G^{D}_{\Xi_{c}^{\prime 0}[\frac{3}{2}^{-}] \to \Lambda_{c}^{+}K^{-}}(\omega, \omega') = \frac{g_{\Xi_{c}^{\prime 0}[\frac{3}{2}^{-}] \to \Lambda_{c}^{+}K^{-}}f_{\Xi_{c}^{\prime 0}[\frac{3}{2}^{-}]}f_{\Lambda_{c}^{+}}}{(\bar{\Lambda}_{\Xi_{c}^{\prime 0}[\frac{3}{2}^{-}]} - \omega')(\bar{\Lambda}_{\Lambda_{c}^{+}} - \omega)}$$
(2)

Light-cone sum rules studies on the charmed baryons

At the quark-gluon level, we can calculate the correlation function in terms of distribution amplitudes :

$$\begin{aligned} G_{\Xi_{c}^{\prime 0}\left[\frac{3}{2}^{-}\right]\to\Lambda_{c}^{+}K^{-}}\left(\omega,\omega'\right) &= \frac{g_{\Xi_{c}^{\prime 0}\left[\frac{3}{2}^{-}\right]\to\Lambda_{c}^{+}K^{-}f_{\Xi_{c}^{\prime 0}\left[\frac{3}{2}^{-}\right]}f_{\Lambda_{c}^{+}}}{(\bar{\Lambda}_{\Xi_{c}^{\prime 0}\left[\frac{3}{2}^{-}\right]}-\omega')(\bar{\Lambda}_{\Lambda_{c}^{+}}-\omega)} \\ &= \int_{0}^{\infty} dt \int_{0}^{1} du e^{i(1-u)\omega't} e^{iu\omega t} \times 4 \times \left(\frac{f_{K}m_{K}^{2}u}{12(m_{u}+m_{s})\pi^{2}t^{2}}\phi_{3;K}^{\sigma}(u)+\frac{f_{K}u}{12}\langle\bar{q}q\rangle\phi_{2;K}(u)\right. \\ &+ \frac{f_{K}ut^{2}}{192}\langle\bar{q}q\rangle\phi_{4;K}(u)+\frac{f_{K}ut^{2}}{192}\langle g_{s}\bar{q}\sigma Gq\rangle\phi_{2;K}(u)+\frac{f_{K}ut^{4}}{3072}\langle g_{s}\bar{q}\sigma Gq\rangle\phi_{4;K}(u) \Big) \\ &- \int_{0}^{\infty} dt \int_{0}^{1} du \int \mathcal{D}\underline{\alpha}e^{i\omega't(\alpha_{2}+u\alpha_{3})}e^{i\omega t(1-\alpha_{2}-u\alpha_{3})} \times \frac{1}{2} \times \left(\frac{f_{3K}u}{2\pi t^{2}}\Phi_{3;K}(\underline{\alpha})-\frac{f_{3K}}{2\pi^{2}t^{2}}\Phi_{3;K}(\underline{\alpha})\right) \\ &+ \frac{if_{3K}u^{2}\alpha_{3}v\cdot q}{2\pi^{2}t}\Phi_{3;K}(\underline{\alpha})+\frac{if_{3K}u\alpha_{2}v\cdot q}{2\pi^{2}t}\Phi_{3;K}(\underline{\alpha})-\frac{if_{3K}uv\cdot q}{2\pi^{2}t}\Phi_{3;K}(\underline{\alpha})\right), \end{aligned}$$

Light-cone sum rules studies on the charmed baryons

DAfter Wick rotations and double Borel transformation we obtain

$$g_{\Xi_{c}^{0}[\frac{3}{2}^{-}]\to\Lambda_{c}^{+}K^{-}}^{D}f_{\Xi_{c}^{0}[\frac{3}{2}^{-}]}f_{\Lambda_{c}^{+}}e^{-\frac{\bar{\Lambda}_{c}+\frac{1}{T_{2}}}{T_{1}}}e^{-\frac{\bar{\Lambda}_{c}+\frac{1}{T_{2}}}{T_{2}}}$$

$$= 4 \times \left(-\frac{if_{K}m_{s}u_{0}}{4\pi^{2}}T^{3}f_{2}(\frac{\omega_{c}}{T})\phi_{2;K} - \frac{if_{K}m_{K}^{2}u_{0}}{12(m_{u}+m_{s})\pi^{2}}T^{3}f_{2}(\frac{\omega_{c}}{T})\phi_{3;K} + \frac{if_{K}m_{s}u_{0}}{64\pi^{2}}Tf_{0}(\frac{\omega_{c}}{T})\phi_{4;K}\right)$$

$$+ \frac{if_{K}u_{0}}{12}\langle\bar{q}q\rangle Tf_{0}(\frac{\omega_{c}}{T})\phi_{2;K} - \frac{if_{K}m_{s}m_{K}^{2}u_{0}}{288(m_{u}+m_{s})}\langle\bar{q}q\rangle\frac{1}{T}\phi_{3;K}^{\sigma} - \frac{if_{K}u_{0}}{192}\langle\bar{q}q\rangle\frac{1}{T}\phi_{4;K}$$

$$- \frac{if_{K}u_{0}}{192}\langle g_{s}\bar{q}\sigma Gq\rangle\frac{1}{T}\phi_{2;K} + \frac{if_{K}u_{0}}{3072}\langle g_{s}\bar{q}\sigma Gq\rangle\frac{1}{T^{3}}\phi_{4;K}\right)$$

$$- \frac{1}{2} \times \left(-\frac{if_{3K}}{2\pi^{2}}T^{3}f_{2}(\frac{\omega_{c}}{T})\int_{0}^{\frac{1}{2}}d\alpha_{2}\int_{\frac{1}{2}-\alpha_{2}}^{1-\alpha_{2}}d\alpha_{3}(\frac{u_{0}}{\alpha_{3}}\Phi_{3;K}(\underline{\alpha}) - \frac{1}{\alpha_{3}}\Phi_{3;K}(\underline{\alpha}))\right)$$

$$+ \frac{if_{3K}}{2\pi^{2}}T^{3}f_{2}(\frac{\omega_{c}}{T})\int_{0}^{\frac{1}{2}}\int_{\frac{1}{2}-\alpha_{2}}^{1-\alpha_{2}}\frac{1}{\alpha_{3}}\frac{\partial}{\partial\alpha_{3}}(u_{0}\alpha_{3}\Phi_{3;K}(\underline{\alpha}) + \alpha_{2}\Phi_{3;K}(\underline{\alpha}) + \Phi_{3;K}(\underline{\alpha}))\right)$$

$$(4)$$

fun

Light-cone sum rules studies on the bottom baryons

□ Lagrangian:

$$\mathcal{L}^{D}_{X_{c}(3/2^{-}) \to Y_{c}(1/2^{+})P} = g \bar{X}_{c\mu}(3/2^{-}) \gamma_{\nu} \gamma_{5} Y_{c}(1/2^{+}) \partial^{\mu} \partial^{\nu} P,$$

D Partial decay width

$$\Gamma(\Xi_c^{\prime 0} \to \Lambda_c^+ K^-) \tag{5}$$

$$= \frac{|\vec{p}_{2}|}{32\pi^{2}m_{0}^{2}} \times g_{\Xi_{c}^{'}[\frac{3}{2}^{-}] \to \Lambda_{c}K^{-}} \times p_{2,\mu}p_{2,\nu}p_{2,\rho}p_{2,\sigma}$$

$$\times \operatorname{Tr} \Big[\gamma^{\nu}\gamma_{5} \left(\not p_{1} + m_{1} \right) \gamma^{\sigma}\gamma_{5} \Big] \Big(g^{\rho\mu} - \frac{\gamma^{\rho}\gamma^{\mu}}{3} - \frac{p_{0}^{\rho}\gamma^{\mu} - p_{0}^{\mu}\gamma^{\rho}}{3m_{0}} - \frac{2p_{0}^{\rho}p_{0}^{\mu}}{3m_{0}^{2}} \Big) \left(\not p_{0} + m_{0} \right) \Big],$$

$$\prod_{\Xi_{c}^{'}[\frac{3}{2}^{-}] \to \Lambda_{c}[\frac{1}{2}^{+}]K} = 9.83 \stackrel{+17.88}{-7.22} \operatorname{MeV}$$

Probable decay channels

u We have been studied the S-wave and D-wave decays of P-wave Ξ'_c baryons into ground-state charmed baryons by a pseudoscalar meson(π or K). We also studied the S-wave decay of P-wave Ξ'_c baryons into ground-state charmed baryons by a vector meson(ρ or K^*).

• S-wave(->ground-state +pseudoscalar)
(a1)
$$\Gamma\left[\Xi_{c}'[1/2^{-}] \to \Xi_{c}/\Xi_{c}' + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_{c}'^{0}[1/2^{-}] \to \Xi_{c}^{+}/\Xi_{c}'^{+}/+\pi^{-}\right]$$

(a2) $\Gamma\left[\Xi_{c}'[1/2^{-}] \to \Lambda_{c} + \pi\right] = \Gamma\left[\Xi_{c}'^{0}[1/2^{-}] \to \Lambda_{c}^{+} + K^{-}\right],$
(a3) $\Gamma\left[\Xi_{c}'[1/2^{-}] \to \Sigma_{c} + K\right] = 3 \times \Gamma\left[\Xi_{c}'^{0}[1/2^{-}] \to \Sigma_{c}^{+} + K^{-}\right],$
(c4) $\Gamma\left[\Xi_{c}'[3/2^{-}] \to \Xi_{c}^{*} + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_{c}'^{0}[3/2^{-}] \to \Xi_{c}^{*+} + \pi^{-}\right],$
(c5) $\Gamma\left[\Xi_{c}'[3/2^{-}] \to \Sigma_{c}^{*} + K\right] = 3 \times \Gamma\left[\Xi_{c}'^{0}[3/2^{-}] \to \Sigma_{c}^{*+} + K^{-}\right],$

P-wave baryons

ground-state

• D-wave(-> ground-state +pseudoscalar) (a4) $\Gamma\left[\Xi_{c}'[1/2^{-}] \to \Xi_{c}^{*} + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_{c}'^{0}[1/2^{-}] \to \Xi_{c}^{*+} + \pi^{-}\right],$ (a5) $\Gamma\left[\Xi_c'[1/2^-] \to \Sigma_c^* + K\right] = 3 \times \Gamma\left[\Xi_c'^0[1/2^-] \to \Sigma_c^{*+} + K^-\right],$ (c1) $\Gamma\left[\Xi_{c}'[3/2^{-}] \to \Xi_{c}/\Xi_{c}' + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_{c}'^{0}[3/2^{-}] \to \Xi_{c}^{+}/\Xi_{c}'^{+} + \pi^{-}\right],$ $(c2) \quad \mathbf{\Gamma} \Big[\Xi_c'[3/2^-] \to \Lambda_c + K \Big] = \mathbf{\Gamma} \Big[\Xi_c'^0[3/2^-] \to \Lambda_c^+ + K^- \Big] ,$ (c3) $\Gamma\left[\Xi_c'[3/2^-] \to \Sigma_c + K\right] = 3 \times \Gamma\left[\Xi_c'^0[3/2^-] \to \Sigma_c^+ + K^-\right],$ (c4) $\Gamma\left[\Xi_{c}'[3/2^{-}] \to \Xi_{c}^{*} + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_{c}'^{0}[3/2^{-}] \to \Xi_{c}^{*+} + \pi^{-}\right],$ (c5) $\Gamma\left[\Xi_c'[3/2^-] \to \Sigma_c^* + K\right] = 3 \times \Gamma\left[\Xi_c'^0[3/2^-] \to \Sigma_c^{*+} + K^-\right],$ (e1) $\Gamma\left[\Xi_c'[5/2^-] \to \Xi_c/\Xi_c' + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_c'^0[5/2^-] \to \Xi_c^+/\Xi_c'^+ + \pi^-\right],$ (e2) $\Gamma\left[\Xi_c'[5/2^-] \to \Lambda_c + K\right] = \Gamma\left[\Xi_c'^0[5/2^-] \to \Lambda_c^+ + K^-\right],$ (e3) $\Gamma\left[\Xi_c'[5/2^-] \to \Sigma_c + K\right] = 3 \times \Gamma\left[\Xi_c'^0[5/2^-] \to \Sigma_c^+ + K^-\right],$ (e4) $\Gamma\left[\Xi_c'[5/2^-] \to \Xi_c^* + \pi\right] = \frac{3}{2} \times \Gamma\left[\Xi_c'^0[5/2^-] \to \Xi_c^{*+} + \pi^-\right],$ (e5) $\Gamma\left[\Xi_c'[5/2^-] \to \Sigma_c^* + K\right] = 3 \times \Gamma\left[\Xi_c'^0[5/2^-] \to \Sigma_c^{*+} + K^-\right], \ 18$

Probable decay channels

• S-wave(->ground-state+ vector -> ground-state + double pseudoscalar)

$$\begin{array}{ll} (b1) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[1/2^{-}] \to \Xi_{c}/\Xi_{c}' + \rho \to \Xi_{c}/\Xi_{c}' + \pi + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[1/2^{-}] \to \Xi_{c}' + \pi^{0} + \pi^{-}\Big] \,, \\ (b2) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[1/2^{-}] \to \Lambda_{c} + K^{*} \to \Lambda_{c} + K + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[1/2^{-}] \to \Lambda_{c}^{+} + K^{0} + \pi^{-}\Big] \,, \\ (b3) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[1/2^{-}] \to \Sigma_{c} + K^{*} \to \Sigma_{c} + K + \pi\Big] = \frac{9}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[1/2^{-}] \to \Sigma_{c}^{+} + K^{0} + \pi^{-}\Big] \,, \\ (b4) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[1/2^{-}] \to \Xi_{c}^{*} + \rho \to \Xi_{c}^{*} + \pi + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[1/2^{-}] \to \Xi_{c}^{*} + \pi^{0} + \pi^{-}\Big] \,, \\ (b5) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[1/2^{-}] \to \Sigma_{c}^{*} + K^{*} \to \Sigma_{c}^{*} + K + \pi\Big] = \frac{9}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[1/2^{-}] \to \Sigma_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (d1) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[3/2^{-}] \to \Xi_{c}/\Xi_{c}' + \rho \to \Xi_{c} + \pi + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[3/2^{-}] \to \Xi_{c}^{*} / \Xi_{c}' + \pi^{0} + \pi^{-}\Big] \,, \\ (d2) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[3/2^{-}] \to \Lambda_{c} + K^{*} \to \Lambda_{c} + K + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[3/2^{-}] \to \Lambda_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (d3) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[3/2^{-}] \to \Sigma_{c} + K^{*} \to \Sigma_{c}' + K + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[3/2^{-}] \to \Lambda_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (d4) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[3/2^{-}] \to \Sigma_{c} + K^{*} \to \Sigma_{c}' + K + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[3/2^{-}] \to \Sigma_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (d5) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[3/2^{-}] \to \Sigma_{c}^{*} + K^{*} \to \Sigma_{c}^{*} + K + \pi\Big] = \frac{9}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[3/2^{-}] \to \Sigma_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (f1) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[5/2^{-}] \to \Sigma_{c}^{*} + K^{*} \to \Sigma_{c}^{*} + K + \pi\Big] = \frac{9}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[5/2^{-}] \to \Sigma_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (f2) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[5/2^{-}] \to \Sigma_{c}^{*} + K^{*} \to \Sigma_{c}^{*} + K + \pi\Big] = \frac{9}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[5/2^{-}] \to \Sigma_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (f2) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[5/2^{-}] \to \Xi_{c}^{*} + \rho \to \Xi_{c}^{*} + \pi + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[5/2^{-}] \to \Sigma_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (f2) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[5/2^{-}] \to \Xi_{c}^{*} + \rho \to \Xi_{c}^{*} + \pi + \pi\Big] = \frac{3}{2} \times \mathbf{\Gamma}\Big[\Xi_{c}'^{0}[5/2^{-}] \to \Xi_{c}^{*} + K^{0} + \pi^{-}\Big] \,, \\ (f2) \quad \mathbf{\Gamma}\Big[\Xi_{c}'[5/2^{-}] \to \Xi_{c}^{*} + \rho \to \Xi_{c}^{*} + \pi + \pi\Big] =$$

Decay widths of P-wave charmed baryons

\Box S and D-wave decay of P-wave charmed baryons belonging to $[6_F, 2, 1, \lambda]$ doublet.

Baryon	Mass	Difference	Decay channels	S-wave width	D-wave width	Total width							
(j^P)	(GeV)	(MeV)	Decay channels	(MeV)	(MeV)	(MeV)							
			$\Sigma_c(\frac{3}{2}^-) \to \Lambda_c \pi$	_	$56.6^{+97.7}_{-40.3}$								
			$\Sigma_c(\frac{3}{2}^-) \to \Sigma_c \pi$	_	$5.5 \ ^{+11.4}_{-\ 4.6}$								
$\Sigma_c(\frac{3}{2}^-)$	$2.86\substack{+0.22 \\ -0.16}$		$\Sigma_c(\frac{3}{2}^-) \to \Sigma_b^* \pi$	$(6^{+11}_{-5}) \times 10^{-4}$	$0.54^{+1.0}_{-0.53}$	$69.6\substack{+98.8\\-40.8}$							
			$\Sigma_c(\frac{3}{2}^-) \to \Sigma_c \rho \to \Sigma_c \pi \pi$	5.8	$^{+9.9}_{-4.3}$								
		75^{+33}_{-29}	$\Sigma_c(\frac{3}{2}^-) \to \Sigma_c^* \rho \to \Sigma_c^* \pi \pi$	0.	01								
			$\Sigma_c(\frac{5}{2}^-) \to \Lambda_c \pi$	_	$33.4^{+38.7}_{-23.8}$								
$\Sigma^{(5-)}$	$2.94^{+0.21}$		$\Sigma_c(\frac{5}{2}^-) \to \Sigma_c \pi$	_	$2.1^{+4.3}_{-1.7}$	$41.9^{+40.5}$							
$\Delta_c(\overline{2})$	0.14		$\Sigma_c(\frac{5}{2}^-) \to \Sigma_c^* \pi$	-	$5.2^{+10.8}_{-4.4}$	-11.0-24.3							
			$\Sigma_c(\frac{5}{2}^-) \to \Sigma_c^* \rho \to \Sigma_c^* \pi \pi$	1.2	+2.1 -0.9								
			$\Xi_c^{\prime}(\frac{3}{2}^-) \to \Lambda_c K$	_	$9.8^{+17.9}_{-7.2}$								
		.24 .15	$\Xi_c(\frac{3}{2}^-) \to \Xi_c \pi$	_	$17.0^{+29.7}_{-12.0}$	$30.7 \ ^{+35.0}_{-14.2}$							
	$2.96^{+0.24}_{-0.15}$		$\Xi_c^{\prime}(\frac{3}{2}) \to \Sigma_c K$	_	$(3^{+15}_{-\ 3})\times 10^{-3}$								
$\Xi_{c}^{\prime}(\frac{3}{2}^{-})$			$\Xi_c^\prime(\frac{3}{2}^-) \to \Xi_c^\prime \pi$	—	$2.3^{+4.0}_{-1.7}$								
				$\Xi_c^\prime(\frac{3}{2}^-) \to \Xi_c^*\pi$	2×10^{-4}	$0.19^{+0.33}_{-0.14}$							
													$\Xi_c^\prime(\frac{3}{2}^-)\to \Xi_c^\prime\rho\to \Xi_c^\prime\pi\pi$
		66^{+29}_{-25}	$\Xi_c^\prime(\tfrac{3}{2}^-)\to \Xi_c^*\rho\to \Xi_c^*\pi\pi$	$1 \times$	10^{-3}								
			$\Xi_c^{\prime}(\frac{5}{2}^-) \to \Lambda_c K$	-	$6.3^{+11.4}_{-4.6}$								
	$3.02^{+0.23}$		$\Xi_c(\frac{5}{2}^-) \to \Xi_c \pi$	_	$9.6^{+15.8}_{-6.8}$								
$\Xi'(5^{-})$			$\Xi_c^{\prime}(\frac{5}{2}^-) \to \Sigma_c K$	_	$0.02^{+0.09}_{-0.02}$								
-c(2)	0.02-0.14		$\Xi_c^{\prime}(\frac{5}{2}^-) \to \Xi_c^{\prime}\pi$	—	$0.70^{+1.30}_{-0.54}$	$18.1^{+19.7}_{-8.3}$							
			$\Xi_c^{\prime}(\frac{5}{2}^-) \to \Sigma_c^* K$	_	4×10^{-3}								
			$\Xi_c^{\prime}(\frac{5}{2}^-) \to \Xi_c^*\pi$	_	$1.5^{+2.6}_{-1.1}$								
			$\Xi_c^\prime(\tfrac{3}{2}^-)\to \Xi_c^*\rho\to \Xi_c^*\pi\pi$	0.	02								
$O_{(3^{-})}$	$3.08^{\pm0.15}$		$\Omega_c(\frac{3}{2}^-) \to \Xi_c K$	_	$9.9^{+17.4}_{-7.4}$	$10.0^{+17.4}$							
36c(2)	0.00-0.17	59^{+26}	$\Omega_c(\frac{3}{2}^-) \to \Xi_c' K$	_	$0.10\substack{+0.26\\-0.09}$	10.0_ 7.4							
$O_{-1}(5^{-1})$	3 14+0.15	55-21	$\Omega_c(\frac{5}{2}^-) \to \Xi_c K$	-	$5.5^{+9.6}_{-4.1}$	5 5+9.6							
δ4C(2)	0.14-0.15		$\Omega_c(\frac{5}{2}^-) \to \Xi_c' K$	—	$0.03^{+0.07}_{-0.02}$	0.0 - 4.1							

20

Mixed sates

 $\square \text{ We consider two states mixing between the } [\Sigma_c \left(\frac{3}{2}\right) / \Xi'_c \left(\frac{3}{2}\right) / \Omega_c \left(\frac{3}{2}\right), 6_F, 1, 1, \lambda] \text{ and the} \\ [\Sigma_c \left(\frac{3}{2}\right) / \Xi'_c \left(\frac{3}{2}\right) / \Omega_c \left(\frac{3}{2}\right) , 6_F, 2, 1, \lambda], \text{ where } \theta 2 \text{ is the mixing angle:}$

$$\begin{pmatrix} |\Sigma_{c}(\frac{3}{2}^{-})\rangle_{1}/|\Xi_{c}'(\frac{3}{2}^{-})\rangle_{1}/|\Omega_{c}(\frac{3}{2}^{-})\rangle_{1} \\ |\Sigma_{c}(\frac{3}{2}^{-})\rangle_{2}/|\Xi_{c}'(\frac{3}{2}^{-})\rangle_{2}/|\Omega_{c}(\frac{3}{2}^{-})\rangle_{2} \end{pmatrix} = \begin{pmatrix} \cos\theta_{2} & \sin\theta_{2} \\ -\sin\theta_{2} & \cos\theta_{2} \end{pmatrix}$$
(6)

$$\times \begin{pmatrix} |\Sigma_{c}(\frac{3}{2}^{-})/\Xi_{c}'(\frac{3}{2}^{-})/\Omega_{c}(\frac{3}{2}^{-}), 1, 1, \lambda\rangle \\ |\Sigma_{c}(\frac{3}{2}^{-})/\Xi_{c}'(\frac{3}{2}^{-})/\Omega_{c}(\frac{3}{2}^{-}), 2, 1, \lambda\rangle \end{pmatrix}$$

Mixed sates

\square S and D-wave decay of mixed Ξ'_c and Ω_c baryons

Mixed state	Mass	Difference	Main Decay channel	Width	Candidate	Exp
Mixed state	(GeV)	(MeV)	(MeV)	(MeV)	Canuldate	
$[\Xi'(1^{-}), 1, 1, \lambda]$	$2.01^{+0.13}$		$\Gamma_S \left(\Xi_c'(1/2^-) \to \Xi_c' \pi \right) = 11.7^{+15.0}_{-8.0}$	$120^{+16.8}$	≂ (2022) ⁰	• $\Xi_c(2923)^0$: $M = 2923.04 \pm 0.25 \pm 0.20 \pm 0.14$ MeV
$[\underline{\neg}_c(\underline{\overline{2}}), 1, 1, \Lambda]$	$2.91_{-0.12}$		$\Gamma_S\left(\Xi_c'(1/2^-)\to\Xi_c\rho\to\Xi_c\pi\pi\right)=1.7^{+7.6}_{-1.7}$	15.9 - 8.2	$\Xi_c(2923)$	$\Gamma = 7.1 \pm 0.8 \pm 1.8 \text{ MeV},$
			$\Gamma_D\left(\Xi_c'(3/2^-) \to \Lambda_c K\right) = 2.3^{+4.3}_{-1.7}$			$\Xi_c(2939)^0$: $M = 2938.55 \pm 0.21 \pm 0.17 \pm 0.14$ MeV
$\Xi'(3^{-})$	$204^{+0.12}$	27^{+16}_{-27}	$\Gamma_D\left(\Xi_c'(3/2^-) \to \Xi_c \pi\right) = 4.6^{+8.1}_{-3.3}$	11 8+9.8	$\Xi_c(2939)^0$	$\Gamma = 10.2 \pm 0.8 \pm 1.1 \text{ MeV},$
$-c(\frac{1}{2})$	2.54-0.11		$\Gamma_D \left(\Xi_c'(3/2^-) \to \Xi_c' \pi \right) = 2.0^{+2.2}_{-1.2}$	11.0_4.2		$\Xi_c(2965)^0$: $M = 2964.88 \pm 0.26 \pm 0.14 \pm 0.14$ MeV
			$\Gamma_S \left(\Xi_c'(3/2^-) \to \Xi_c^* \pi \right) = 2.1^{+2.6}_{-1.5}$			$\Gamma ~=~ 14.1 \pm 0.9 \pm 1.3 { m MeV} .$
			$\Gamma_D \left(\Xi_c'(3/2^-) \to \Lambda_c K \right) = 6.3^{+11.6}_{-4.7}$			
$\Xi_{c}^{\prime}(\frac{3}{2}^{-})_{2}$	$2.97^{+0.24}_{-0.15}$		$\Gamma_D \left(\Xi_c'(3/2^-) \to \Xi_c \pi \right) = 10.9^{+19.1}_{-7.8}$	$19.4^{+22.5}_{-9.1}$	$\Xi_c(2965)^0$	
		56^{+30}_{-35}	$\Gamma_S \left(\Xi_c'(3/2^-) \to \Xi_c^* \pi \right) = 1.3^{+1.80}_{-0.94}$			• $\Omega_c(3050)^0$: $M = 3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$ MeV,
			$\Gamma_D \left(\Xi'_c(5/2^-) \to \Lambda_c K \right) = 6.3^{+11.4}_{4.6}$			$\Gamma=0.8\pm0.2\pm0.1{ m MeV},$
$[\Xi_c'(\frac{5}{2}), 2, 1, \lambda]$	$3.02^{+0.23}_{-0.14}$		$\Gamma_D \left(\Xi_c'(5/2^-) \to \Xi_c \pi \right) = 9.6^{+15.8}_{-6.8}$	$18.1^{+19.7}_{-8.3}$	-	$\Omega_c(3066)^0$: $M = 3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$ MeV,
			$\Gamma_D\left(\Xi_c'(5/2^-) \to \Xi_c^*\pi\right) = 1.5^{+2.6}_{-1.1}$			$\Gamma = 3.5 \pm 0.4 \pm o.2 { m MeV},$
$[\Omega_c(rac{1}{2}^-), 1, 1, \lambda]$	$3.04^{+0.11}_{-0.09}$	27^{+15}	—	~ 0	$\Omega_c(3050)^0$	$\Omega_c(3090)^0$: $M = 3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$ MeV,
$\Omega_c(\frac{3}{2}^-)_1$	$3.06\substack{+0.10\\-0.09}$	27-23	$\Gamma_D\left(\Omega_c(3/2^-) \to \Xi_c K\right) = 2.0^{+3.5}_{-1.5}$	$2.0^{+3.5}_{-1.5}$	$\Omega_c(3066)^0$	$\Gamma = 8.7 \pm 1.0 \pm 0.8 \text{ MeV},$
$\Omega_c(\frac{3}{2}^-)_2$	$3.09^{+0.15}_{-0.17}$		$\Gamma_D \left(\Omega_c(3/2^-) \to \Xi_c K \right) = 6.3^{+11.2}_{-4.8}$	$6.4^{+11.2}_{-4.8}$	$\Omega_{c}(3090)^{0}$	$M_c(3119)^\circ$: $M = 3119.1 \pm 0.3 \pm 0.9^{+}_{-0.5}$ MeV,
$[\Omega_c(\tfrac{5}{2}^-),2,1,\lambda]$	$3.14_{-0.15}^{+0.15}$	51^{+26}_{-28}	$\Gamma_D\left(\Omega_c(3/2^-) \to \Xi_c K\right) = 5.5^{+9.6}_{-4.1}$	$5.5^{+9.6}_{-4.1}$	$\Omega_c(3119)^0$	$1 = 1.1 \pm 0.8 \pm 0.4$ MeV.

Summary

D Decay properties of P-wave Σ_c baryons of SU(3) flavor 6_F

HOFT state	Mirring	Mirrod state	Mass	Difference	Main Decay channel	Width	Condidata
IIQE1 state	Mixing	Mixed state	(GeV)	(MeV)	(MeV)	(MeV)	Candidate
					$\Gamma_S \left(\Sigma_c(1/2^-) \to \Sigma_c \pi \right) = 380^{+630}_{-270}$		
$[\Sigma (1^{-}), 1, 0, c]$	_	$[\Sigma^{(1-)}] 1 0 c$	2 77+0.16		$\Gamma_D \left(\Sigma_c(1/2^-) \to \Sigma_c^* \pi \right) = 0.82^{+1.4}_{-0.59}$	300^{+630}	_
$[\Box_c(\frac{1}{2}), 1, 0, p]$		$\begin{bmatrix} \square_c(\frac{1}{2}), 1, 0, \rho \end{bmatrix}$	2.17-0.12		$\Gamma_S \left(\Sigma_c(1/2^-) \to \Lambda_c \rho \to \Lambda_c \pi \pi \right) = 0.06$	350-270	
					$\Gamma_S \left(\Sigma_c(1/2^-) \to \Sigma_c \rho \to \Sigma_c \pi \pi \right) = 3.4 \times 10^{-5}$		
				15^{+6}_{-5}	$\Gamma_D \left(\Sigma_c(3/2^-) \to \Sigma_c \pi \right) = 3.1^{+4.6}_{-2.3}$		
					$\Gamma_S \left(\Sigma_c(3/2^-) \to \Sigma_c^* \pi \right) = 220^{+360}_{-150}$		
$[\Sigma_c(\frac{3}{2}^-), 1, 0, \rho]$	_	$[\Sigma_c(\frac{3}{2}^-), 1, 0, \rho]$	$2.79^{+0.16}_{-0.12}$		$\Gamma_D \left(\Sigma_c(3/2^-) \to \Sigma_c^* \pi \right) = 0.21^{+0.34}_{-0.15}$	220^{+360}_{-150}	_
					$\Gamma_S \left(\Sigma_c(3/2^-) \to \Lambda_c \rho \to \Lambda_c \pi \pi \right) = 0.08$		
					$\Gamma_S \left(\Sigma_c(3/2^-) \to \Sigma_c \rho \to \Sigma \pi \pi \right) = 3.5 \times 10^{-5}$		
$[\Sigma_c(\frac{1}{2}^-), 0, 1, \lambda]$		$[\Sigma_c'(\frac{1}{2}^-), 0, 1, \lambda]$	$2.83^{+0.06}_{-0.04}$	_	$\Gamma_S \left(\Sigma_c(1/2^-) \to \Lambda_c \pi \right) = 610^{+860}_{-410}$	610^{+860}_{-410}	_
	$\theta_1 \approx 0^\circ$				$\Gamma_S \left(\Sigma_c(1/2^-) \to \Sigma_c \pi \right) = 37.4^{+59.8}_{-27.8}$		
$[\Sigma_c(\frac{1}{2}^-), 1, 1, \lambda]$	01/20	$\left[\Sigma_c(\frac{1}{2}^-), 1, 1, \lambda\right]$	$2.73^{+0.17}_{-0.18}$		$\Gamma_S \left(\Sigma_c(1/2^-) \to \Lambda_c \rho \to \Lambda_c \pi \pi \right) = 9.2^{+37.0}_{-9.2}$	$47.9^{+70.4}_{-29.3}$	$\Sigma_{c}(2800)^{0}$
					$\Gamma_S \left(\Sigma_c(1/2^-) \to \Sigma_c \rho \to \Sigma_c \pi \pi \right) = 1.2^{+2.1}_{-1.0}$		
				-81^{+65}	$\Gamma_D \left(\Sigma_c(3/2^-) \to \Lambda_c \pi \right) = 11.7^{+20.6}_{-8.6}$		
$[\Sigma_c(\frac{3}{2}^-), 1, 1, \lambda]$		$\Sigma_{c}(\frac{3}{2}^{-})_{1}$	$2.65^{+0.18}_{-0.34}$	01-294	$\Gamma_D \left(\Sigma_c(3/2^-) \to \Sigma_c \pi \right) = 3.1^{+4.2}_{-2.2}$	$22.8^{+23.5}_{-10.0}$	$\Sigma_{c}(2800)^{0}$
	$\theta_2 = 37 \pm 5^{\circ}$				$\Gamma_S \left(\Sigma_c(3/2^-) \to \Sigma_c^* \pi \right) = 6.4^{+10.3}_{-4.7}$		
$\left[\Sigma_{+}\left(\frac{3}{2}\right), 2, 1, \lambda\right]$		$\sum_{n} \left(\frac{3}{2}\right)_{n}$	$2.97^{+0.32}$		$\Gamma_D \left(\Sigma_c(3/2^-) \to \Lambda_c \pi \right) = 21.1^{+36.7}_{-15.1}$	$25.5^{+37.3}$	$\Sigma_{-}(2800)^{0}$
$[\Box c(2), \Xi, I, A]$		20(2)2	2.01-0.17		$\Gamma_S \left(\Sigma_c(3/2^-) \to \Sigma_c^* \pi \right) = 3.5^{+6.1}_{-2.7}$	20.0-15.4	22(2000)
					$\Gamma_D \left(\Sigma_c(5/2^-) \to \Lambda_c \pi \right) = 33.4^{+38.7}_{-23.8}$		
$[\Sigma_{a}(\frac{5}{2}), 2, 1, \lambda]$	_	$[\Sigma_{a}(\frac{3}{2}), 2, 1, \lambda]$	$2.94^{+0.21}$	-37^{+66}_{-239}	$\Gamma_D \left(\Sigma_c(5/2^-) \to \Sigma_c \pi \right) = 2.1^{+4.3}_{-1.7}$	$41.9^{+40.5}$	_
$[-c(2^{-}), 2^{-}, 1^{-}, 1^{-}]$			-0.14		$\Gamma_D \left(\Sigma_c(5/2^-) \to \Sigma_c^* \pi \right) = 5.2^{+10.8}_{-4.4}$	-26.9	
					$\Gamma_S \left(\Sigma_c(5/2^-) \to \Sigma_c^* \rho \Sigma_c^* \pi \pi \right) = 1.2^{+2.1}_{-0.9}$		

Summary

D Decay properties of P-wave Ξ'_{c} baryons of SU(3) flavor 6_{F}

HOET state	Mixing	Mixed state	Mass	Difference	Main Decay channel	Width	Candidate
IIQL1 state	Mixing	Wince state	(GeV)	(MeV)	(MeV)	(MeV)	Candidate
$[\Xi_c'(\frac{1}{2}^-), 1, 0, \rho]$	_	$[\Xi_c'(\frac{1}{2}^-), 1, 0, \rho]$	$2.88^{+0.15}_{-0.13}$		$\Gamma_{S} \left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}' \pi \right) = 110^{+170}_{-800}$ $\Gamma_{D} \left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}^{*} \pi \right) = 0.15^{+0.23}_{-0.11}$ $\Gamma_{S} \left(\Xi_{c}'(1/2^{-}) \to \Xi_{c} \rho \to \Xi_{c} \pi \pi \right) = 2 \times 10^{-4}$ $\Gamma_{S} \left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}' \rho \to \Xi_{c}' \pi \pi \right) = 5 \times 10^{-9}$	$110^{+170}_{-\ 80}$	_
$[\Xi_c^{\prime}(rac{3}{2}^-),1,0, ho]$	_	$[\Xi_c'(\tfrac{3}{2}^-), 1, 0, \rho]$	$2.89^{+0.15}_{-0.13}$	13^{+6}_{-5}	$ \Gamma_{D} \left(\Xi_{c}'(3/2^{-}) \to \Xi_{c}'\pi \right) = 0.63^{+0.99}_{-0.45} \Gamma_{S} \left(\Xi_{c}'(3/2^{-}) \to \Xi_{c}^{*}\pi \right) = 58^{+88}_{-39} \Gamma_{D} \left(\Xi_{c}'(3/2^{-}) \to \Xi_{c}^{*}\pi \right) = 0.03^{+0.05}_{-0.02} \Gamma_{S} \left(\Xi_{c}'(3/2^{-}) \to \Xi_{c}\rho \to \Xi_{c}\pi\pi \right) = 5 \times 10^{-4} \Gamma_{S} \left(\Xi_{c}'(3/2^{-}) \to \Xi_{c}'\rho \to \Xi_{c}'\pi\pi \right) = 2 \times 10^{-9} $	$58.5^{+88.4}_{-39.4}$	_
$[\Xi_c^\prime({\textstyle\frac{1}{2}}^-),0,1,\lambda]$		$[\Xi_c^\prime({\textstyle\frac{1}{2}}^-),0,1,\lambda]$	$2.90^{+0.13}_{-0.12}$	-	$\Gamma_{S} \left(\Xi_{c}^{\prime}(1/2^{-}) \to \Lambda_{c} K \right) = 400^{+610}_{-270}$ $\Gamma_{S} \left(\Xi_{c}^{\prime}(1/2^{-}) \to \Xi_{c} \pi \right) = 360^{+550}_{-250}$	760^{+820}_{-370}	_
$[\Xi_c^\prime({\textstyle\frac{1}{2}}^-),1,1,\lambda]$	$\theta_1 \approx 0^\circ$	$[\Xi_c^\prime({\textstyle\frac12}^-),1,1,\lambda]$	$2.91^{+0.13}_{-0.12}$		$\Gamma_{S}\left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}'\pi\right) = 11.7^{+15.0}_{-8.0}$ $\Gamma_{S}\left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}\rho \to \Xi_{c}\pi\pi\right) = 1.7^{+7.6}_{-1.7}$	$13.9^{+16.8}_{-\ 8.2}$	$\Xi_c(2923)^0$
$[\Xi_c'(\frac{3}{2}^-), 1, 1, \lambda]$	$\theta_2 = 37 \pm 5^{\circ}$	$\Xi_c'(rac{3}{2}^-)_1$	$2.94^{+0.12}_{-0.11}$	27^{+16}_{-27}	$\Gamma_D \left(\Xi_c'(3/2^-) \to \Lambda_c K \right) = 2.3^{+4.3}_{-1.7}$ $\Gamma_D \left(\Xi_c'(3/2^-) \to \Xi_c \pi \right) = 4.6^{+8.1}_{-3.3}$ $\Gamma_D \left(\Xi_c'(3/2^-) \to \Xi_c' \pi \right) = 2.0^{+2.2}_{-1.2}$ $\Gamma_S \left(\Xi_c'(3/2^-) \to \Xi_c^* \pi \right) = 2.1^{+2.6}_{-1.5}$	$11.8^{+9.8}_{-4.2}$	$\Xi_c(2939)^0$
$[\Xi_c'(\frac{3}{2}^-),2,1,\lambda]$		$\Xi_c^\prime(rac{3}{2}^-)_2$	$2.97^{+0.24}_{-0.15}$	56^{+30}_{-35}	$\Gamma_D \left(\Xi_c'(3/2^-) \to \Lambda_c K \right) = 6.3^{+11.6}_{-4.7}$ $\Gamma_D \left(\Xi_c'(3/2^-) \to \Xi_c \pi \right) = 10.9^{+19.1}_{-7.8}$ $\Gamma_S \left(\Xi_c'(3/2^-) \to \Xi_c^* \pi \right) = 1.3^{+1.80}_{-0.94}$	$19.4^{+22.5}_{-9.1}$	$\Xi_c(2965)^0$
$[\Xi_c'(\frac{5}{2}^-),2,1,\lambda]$	_	$[\Xi_c'(\frac{5}{2}^-),2,1,\lambda]$	$3.02^{+0.23}_{-0.14}$		$\Gamma_D \left(\Xi_c'(5/2^-) \to \Lambda_c K \right) = 6.3^{+11.4}_{-4.6} \Gamma_D \left(\Xi_c'(5/2^-) \to \Xi_c \pi \right) = 9.6^{+15.8}_{-6.8} \Gamma_D \left(\Xi_c'(5/2^-) \to \Xi_c^* \pi \right) = 1.5^{+2.6}_{-1.1}$	$18.1^{+19.7}_{-8.3}$	_

• $\mathcal{Z}_c(2923)^0 \rightarrow P$ -wave Ξ'_c baryon $\in [6_F(\Xi_c), 1, 1, \lambda], J^P = 1/2^-$

• $\mathcal{E}_c(2939)^0 \mathcal{E}_c(2965)^0$ \rightarrow P-wave mixed Ξ'_c baryons between $[6_F(\Xi_c), 1, 1, \lambda]$ and $[6_F(\Xi_c), 2, 1, \lambda], \theta = 37 \pm 5^0,$ $J^P = 3/2^-$

• a partner state \rightarrow P-wave Ξ'_c $\in [6_F(\Xi_c), 2, 1, \lambda], J^P = 5/2^-,$ M=M $[\Xi_c(2965)^0] + 56^{+30}_{-35}$ MeV, $\Gamma = 18.1^{+19.7}_{-8.3}$ MeV, main decay channel: $\Xi'_c(5/2^-) \rightarrow \Lambda_c K$ $\Xi'_c(5/2^-) \rightarrow \Xi_c \pi$

D Decay properties of P-wave Ω_c baryons of SU(3) flavor 6_F

HQET state Mixing	Mixing	Mixed state	Mass	Difference	Main Decay channel	Width	Candidate
	Mixing	Mixed State	(GeV)	(MeV)	(MeV)	(MeV)	Candidate
$[\Omega_c(\frac{1}{2}^-), 1, 0, \rho]$	_	$[\Omega_c(\frac{1}{2}^-), 1, 0, \rho]$	$2.99\substack{+0.15 \\ -0.15}$	12^{+5}	_	~ 0	$\Omega_c(3000)^0$
$[\Omega_c(\frac{3}{2}^-), 1, 0, \rho]$	_	$\left[\Omega_{c}(\frac{3}{2}^{-}), 1, 0, \rho\right]$	$3.00\substack{+0.15 \\ -0.15}$	12_5	_	~ 0	$\Omega_c(3000)^0$
$[\Omega_c({\textstyle\frac{1}{2}}^-),0,1,\lambda]$	$\theta_2 \approx 0^\circ$	$\left[\Omega_c(\frac{1}{2}^-),0,1,\lambda\right]$	$3.03\substack{+0.18 \\ -0.19}$	_	$\Gamma_S \left(\Omega_c(1/2^-) \to \Xi_c K \right) = 980^{+1250}_{-670}$	980^{+1250}_{-670}	—
$[\Omega_c(\frac{1}{2}^-), 1, 1, \lambda]$	03/20	$\left[\Omega_c(\frac{1}{2}^-), 1, 1, \lambda\right]$	$3.04\substack{+0.11 \\ -0.09}$	27^{+15}	_	~ 0	$\Omega_c(3050)^0$
$[\Omega_c(\frac{3}{2}^-), 1, 1, \lambda]$	$\theta_4 \approx 37 \pm 5^\circ$	$\Omega_c(rac{3}{2}^-)_1$	$3.06\substack{+0.10 \\ -0.09}$	27-23	$\Gamma_D\left(\Omega_c(3/2^-) \to \Xi_c K\right) = 2.0^{+3.5}_{-1.5}$	$2.0^{+3.5}_{-1.5}$	$\Omega_c(3066)^0$
$[\Omega_c(\frac{3}{2}^-), 2, 1, \lambda]$	04 ~ 01 ± 0	$\Omega_c(rac{3}{2}^-)_2$	$3.09\substack{+0.15 \\ -0.17}$		$\Gamma_D\left(\Omega_c(3/2^-) \to \Xi_c K\right) = 6.3^{+11.2}_{-4.8}$	$6.4^{+11.2}_{-4.8}$	$\Omega_c(3090)^0$
$[\Omega_c(\frac{5}{2}^-), 2, 1, \lambda]$	_	$\left[\Omega_c(\frac{5}{2}^-), 2, 1, \lambda\right]$	$3.14_{-0.15}^{+0.15}$	51^{+26}_{-28}	$\Gamma_D\left(\Omega_c(3/2^-) \to \Xi_c K\right) = 5.5^{+9.6}_{-4.1}$	$5.5^{+9.6}_{-4.1}$	$\Omega_c(3119)^0$

• $\Omega_c(3000)^0 \rightarrow$ P-wave Ω_c baryon $\in [6_F(\Omega_c), 1, 0, \rho], J^P = 1/2^- \text{ or } 3/2^-$

- $\Omega_c(3050)^0 \rightarrow P$ -wave Ω_c baryon $\in [6_F(\Omega_c), 1, 1, \lambda], J^P = 1/2^-$
- $\Omega_c(3066)^0$ $\Omega_c(3090)^0 \rightarrow$ P-wave mixed Ω_c baryons between $[6_F(\Xi_c), 1, 1, \lambda]$ and $[6_F(\Xi_c), 2, 1, \lambda], \theta_2 = 37 \pm 5^0, J^P = 3/2^-$
- $\Omega_c(3119)^0 \rightarrow P$ -wave Ω_c baryon $\in [6_F(\Omega_c), 2, 1, \lambda], J^P = 5/2^-$