

LHCb 上的奇特强子态研究进展

许泽华 北京大学

2021.05.15 第七届XYZ粒子研讨会 @ 青岛

Outline

□ Evidence of a $J/\psi\Lambda$ resonance and observation of excited Ξ^{*-} states in the $\Xi_b \rightarrow J/\psi\Lambda K^-$ (See Jinlin's Talk)

[arXiv:2012.10380, to appear in Science Bulletin]

- Study of the lineshape of the $\chi_{c1}(3872)$ [PRD 102 (2020) 092005] Study of the $\psi_2(3823)$ and $\chi_{c1}(3872)$ states in $B^+ \rightarrow (J/\psi \pi^+ \pi^-) K^+$ decays [JHEP 08 (2020) 123]
- > Observation of structure in the J/ψ -pair mass spectrum

[Science Bulletin 65 (2020) 032]

> Study of $B_s^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^-$ decays

[JHEP 02 (2021) 024]

> Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$

[arXiv:2103.01803]

 $\Box \text{ Amplitude analysis of } B^+ \to D^+ D^- K^+ \text{ decay}$

(Details in Yi's <u>Talk</u>)

[PRL 125 (2020) 242001, PRD 102 (2020) 112003]

Introduction

- New physics evidence in Muon g-2 experiment:
 - Precision measurement of α_{μ}
 - The error from experiment is smaller than the value from theory

- The largest uncertainty comes from strong interaction:
 - Exotic hadron study offers new approach to probe QCD

Questions in last XYZ workshop

LHCb detector

LHCb is a dedicated heavy flavor physics experiment at LHC

- ~20,000/s $b\overline{b}$ generated at LHCb point in Run2
- A single-arm forward region spectrometer covering $2 < \eta < 5$

ECAL:

Many exotic states observed at LHCb

59 new hadron states (conventional & exotic) observed at LHC, most of them discovered at LHCb [Taken from CERNCOURIER]

Diagram of discovery The ATLAS, CMS and LHCb collaborations have discovered 59 new hadronic states so far – the most recent being the four tetraquarks reported in this article. Credit: CERN 5/15/21

Recent $\chi_{c1}(3872)$ studies at LHCb

Motivation

- ➤ The nature of $\chi_{c1}(3872)$: conventional $\chi_{c1}(2^3P_1)$, $D^0\overline{D}^{*0}$ molecular state, tetraquark, hybrid, glueball or mixed ?
- Previous experimental studies:
 - $\sigma(\chi_{c1}(3872))/\sigma(\psi(2S))$ decrease with increasing multiplicity, prefer hadronic molecule explanation.

[LHCb-CONF-2019-005]

• The ratio of $\mathcal{B}(B_s^0 \to \chi_{c1}(3872)\phi)/\mathcal{B}(B^0 \to \chi_{c1}(3872)K^0)$ is consistent with one, while the $\mathcal{B}(B_s^0 \to \chi_{c1}(3872)\phi)/\mathcal{B}(B^+ \to \chi_{c1}(3872)K^+)$ is two times smaller, suggesting it is not a pure charmonium.

[PRL 125 (2020) 152001]

• The discovery of $\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^- \pi^0$ is consistent to the molecule prediction.

[<u>arXiv : 0410284</u>]

•

- Lineshape is the next experimental challenge!
 - Determination of $\delta E = M(D^0) + D(\overline{D}^{*0}) M(\chi_{c1}(3872))$ is important

Prompt $\chi_{c1}(3872)$ and from B

[PRD 102 (2020) 092005]

Inclusive $\chi_{c1}(3872) \rightarrow J/\psi \pi^+ \pi^-$

Exclusive $B^+ \to J/\psi \pi^+ \pi^- K^+$

5/15/21

 20×10^{-10}

Precision mass and width

Comparison between inclusive and exclusive analysis and previous measurements

[JHEP 08 (2020) 123] [PRD 102 (2020) 092005]

✓ Significantly improved precisions on mass and width

✓ LHCb average:

- $M_{\rm BW} = 3871.64 \pm 0.06 \pm 0.01 \,\,{\rm MeV}/c^2$
- $\delta E = M(D^0) + M(\overline{D}^{*0}) M(\chi_{c1}(3872)) = 0.07 \pm 0.12 \text{ MeV}/c^2$
- $\Gamma_{\rm BW} = 1.19 \pm 0.19 \,\,{\rm MeV}/c^2$

First time a width was established for this state.

Observation of structure in the J/ψ -pair mass spectrum

Search for full charmed ccccc tetraquark

- > Motivation:
 - $T_{QQ\bar{Q}\bar{Q}\bar{Q}}$ (Q = c or b) states is isolated from both quarkonia and quarkoniumlike exotic states
 - A $T_{cc\bar{c}\bar{c}}$ can decay into a pair of charmonia

> Prompt J/ψ pair production:

Single parton scattering (SPS)

$> T_{cc\bar{c}\bar{c}}$ state i	is a	special	case	of SPS
5/15/21				

[arXiv: 1803.02522]

J^{PC}	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), J/\psi J/\psi$	$\eta_c(1S)\chi_{c1}(1P), J/\psi h_c(1P)$
0^{-+}	$\eta_c(1S)\chi_{c0}(1P),J/\psi h_c(1P)$	$J/\psi J/\psi$
0	$J/\psi\chi_{c1}(1P)$	$J/\psi\eta_c(1S)$
1++	-	$J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P), \\ \eta_c(1S)\chi_{c0}(1P)$
1+-	$J/\psi\eta_c(1S)$	$\frac{J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P)}{\eta_{c}(1S)h_{c}(1P)}$
1-+	$J/\psi h_c(1P), \eta_c(1S)\chi_{c1}(1P)$. –
1	$\frac{J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P)}{\eta_c(1S)h_c(1P)}$	$J/\psi\eta_c(1S)$

Decays in $2J/\psi$ directly or with feed-down

Double parton scatterings (DPS)

>Dominates high J/ψ pair mass region

Zehua.XU

J/ψ pair mass spectrum

LHCb

- Data

Total fit

- Full Run1+Run2 LHCb data corresponding to 9 fb^{-1} ≻
- J/ψ candidates reconstructed using the $J/\psi \rightarrow \mu^+\mu^-$ decay ≻
- SPS enhanced sample with J/ψ -pair $p_{\rm T} > 5.2 \ {\rm GeV}/c$

- $\gg J/\psi$ mass and pointing-to-PV constraints applied
- $\gg J/\psi$ -pair invariant mass spectrum shows

 \checkmark A broad structure next to threshold ranging from 6.2 to 6.8 GeV/ c^2

- \checkmark A narrower structure at about 6.9 GeV/ c^2
- ✓ Hint for another structure around 7.2 GeV/ c^2
- ✓ No evidence for further structures above 7.2 GeV/ c^2

13

X(6900) observation

➢ Model 1, no-interference fit:

 $M[X(6900)] = 6905 \pm 11(stat) \pm 7(syst) \text{ MeV}/c^{2}$ $\Gamma[X(6900)] = 80 \pm 19(stat) \pm 33(syst) \text{ MeV}/c^{2}$

➢ Model 2, simple model with interference:

 $M[X(6900)] = 6886 \pm 11(\text{stat}) \pm 11(\text{syst}) \text{ MeV}/c^2$ $\Gamma[X(6900)] = 168 \pm 33(\text{stat}) \pm 69(\text{syst}) \text{ MeV}/c^2$

> The significance in two model both > 5σ , *X*(6900) is observed.

Study of $B_s^0 \to J/\psi \pi^+ \pi^- K^+ K^-$ decays

Study of $B_s^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^-$ decays

Motivation:

[JHEP 02 (2021) 024]

- $\succ \chi_{c1}(3872)$ and $J/\psi\phi$ structures can be studied in this decay
- Production rate measurements can shed light on the nature of exotic states

► Decays of $B_s^0 \to J/\psi K^{*0} \overline{K}^{*0}$ and $B_s^0 \to \chi_{c1}(3872)K^+K^-$ observed for the first time.

> Most precise single measurement of B_s^0 mass:

$$m_{
m B^0_s} = 5366.98 \pm 0.07 \pm 0.13 \, {
m MeV}/c^2$$
 .

X(4740) observed in this channel

> A peak around 4740 MeV in $J/\psi\phi$ mass spectrum

Fitting with the Breit-Wigner lineshape:

 $\begin{array}{rcl} m_{{\rm X}(4740)} &=& 4741 \pm 6 \ \pm 6 \ {\rm MeV}/c^2 \,, \\ \Gamma_{{\rm X}(4740)} &=& 53 \pm 15 \pm 11 \, {\rm MeV} \,, \end{array}$

- Significance of $X(4740) > 5\sigma$
- Are X(4700) and X(4740) the same state? Further amplitude studies are required.
 - Two channels peaks roughly at same place

Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$ in $B^+ \to J/\psi \phi K^+$

Motivation-1

- ➤ This channel $B^+ \rightarrow J/\psi \phi K^+$ was studied at LHCb using Run 1 sample.(First amplitude analysis for this channel)
- The width of X(4140) is $83 \pm 21^{+21}_{-14}$ MeV, larger than the value measured from other experiments.

Year	Experiment	$B ightarrow J\!/\psi\phi K$	X(4140) peak		[PRD. 95 (201	7) 012002	
	luminosity	yield	Mass [MeV]	Width [MeV]	Sign.	Fraction $\%$	
2008	CDF 2.7 fb^{-1} [1]	58 ± 10	$4143.0 {\pm} 2.9 {\pm} 1.2$	$11.7^{+8.3}_{-5.0}{\pm}3.7$	3.8σ		
2009	Belle [22]	325 ± 21	4143.0 fixed	11.7 fixed	1.9σ		
2011	$CDF \ 6.0 \ fb^{-1} \ [29]$	115 ± 12	$4143.4 {}^{+2.9}_{-3.0}{\pm}0.6$	$15.3^{+10.4}_{-6.1}\pm2.5$	5.0σ	$14.9 \pm 3.9 \pm 2.4$	
2011	LHCb 0.37 fb ^{-1} [21]	346 ± 20	4143.4 fixed	15.3 fixed	1.4σ	< 7 @ 90%CL	
2013	CMS 5.2 fb $^{-1}$ [25]	2480 ± 160	$4148.0{\pm}2.4{\pm}6.3$	$28 \ {}^{+15}_{-11} \ \pm 19$	5.0σ	$10{\pm}3$ (stat.)	
2013	D0 10.4 fb $^{-1}$ [26]	215 ± 37	$4159.0 {\pm} 4.3 {\pm} 6.6$	$19.9{\pm}12.6{}^{+1.0}_{-8.0}$	3.0σ	$21\pm8\pm4$	
2014	BaBar [24]	189 ± 14	4143.4 fixed	15.3 fixed	1.6σ	< 13.3 @ 90%CL	
2015	D0 10.4 fb ^{-1} [27]	$p\bar{p} \rightarrow J/\psi \phi$	$4152.5 {\pm} 1.7 {}^{+6.2}_{-5.4}$	$16.3 {\pm} 5.6 {\pm} 11.4$	4.7σ (5.)	7σ)	
Average			4147.1 ± 2.4	15.7 ± 6.3			

Three other $J/\psi\phi$ structures, X(4274), X(4500) and X(4700) were observed in Run-1 analysis.

Motivation-2

- → Hint of $J/\psi K^+$ structure in Run 1 analysis.
- ► Z_{cs}^+ in $B^+ \to J/\psi \phi K^+$ decay has similar topology as Z_c^+ in $B^+ \to J/\psi K^- \pi^+$ decay, and P_c^+ in $\Lambda_b^0 \to J/\psi p K^-$
- The observation of X(2900) containing strange quark, and the evidence of P_{cs}^+ implies possible existence of Z_{cs}^+ .

Run 1 and Run 2 sample

Candidates / (2 MeV) 0000 Candidates / (2 MeV) 0000 Candidates / (2 MeV) Selection is optimized **D**ata LHCb — Total fit 9 fb⁻¹ \geq ~ 24k signal (6 times larger than ····· Background the previous publication) overall background fraction $\sim 4\%$ (a factor of 6 smaller) 1000 5250 5300 5350 $m_{J/\psi\phi K^+}$ [MeV] Several X states along $m_{I/\psi\phi}$. Clear structures in Dalitz plot 16 $m_{J/\psi K^+}^2$ [GeV²] $m_{\phi K^+}^2 [\text{GeV}^2]$ LHCb LHCb 20 14 18 9 fb⁻¹ 9 fb⁻¹ 12 16 14 10 Z_{cs} 12 3.5 10 state? 15 3 14 2.5 13 18 18 20 22 20 22 $m_{J/\psi\phi}^2$ [GeV²] $m_{J/\psi\phi}^2$ [GeV²]

Clearly visible: 4 structures in $J/\psi\phi$ and an obvious structure in $J/\psi K$

Zehua.XU

6D amplitude fitting

The fitting model was optimized based on previous analysis using Run 1 sample. More K* states cannot improve the fitting By testing the contributions from other states

 [arXiv:2103.01803]

 [arXiv:2103.01803]

Fitting results

_	Contribution	Significance $[\times \sigma]$	$M_0[{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	FF [%]	
=	$X(2^{-})$					
	X(4150)	4.8 (8.7)	$4146\pm18\pm33$	$135\pm28{}^{+59}_{-30}$	$2.0\pm0.5{}^{+0.8}_{-1.0}$	
_	$X(1^{-})$					
	X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+ \ 18}_{- 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6 \pm 0.5 {}^{+2.9}_{-1.5}$	
_	All $X(0^+)$				$20\pm5^{+14}_{-7}$	
	X(4500)	20 (20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6\pm0.7^{+2.4}_{-0.6}$	
	X(4700)	17(18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+4.9}_{-1.4}$	
_	$\mathrm{NR}_{J/\psi\phi}$	4.8 (5.7)			$28\pm8{}^{+19}_{-11}$	
	All $X(1^+)$				$26\pm3^{+8}_{-10}$	
	X(4140)	13(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162\pm21{}^{+24}_{-49}$	$17\pm3^{+19}_{-6}$	
	X(4274)	18 (18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$	$2.8\pm0.5{}^{+0.8}_{-0.4}$	
	X(4685)	15(15)	$4684 \pm 7 {}^{+ 13}_{- 16}$	$126 \pm 15 {}^{+37}_{-41}$	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$	
_	All $Z_{cs}(1^+)$				$25\pm5^{+11}_{-12}$	
	$Z_{cs}(4000)$	15 (16)	$4003 \pm 6 {}^{+}_{- 14} {}^{4}_{- 14}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$	
	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4^{+10}_{-7}$	

Two Z⁺_{cs} → J/ψK⁺ states were observed, both significance > 5σ
 New X(4630) and X(4685) were observed, both significance > 5σ
 Previous results using Run 1 sample were confirmed

Z_{cs} results

> The J^P of $Z_{cs}(4000)^+$ is determined as 1^+ , the J^P of $Z_{cs}(4220)^+$ is 1^+ or 1^- > The fit projection onto $J/\psi K^+$ in two slices of $J/\psi \phi$

Resonance character of $Z_{cs}(4000)^+$ from Argand plot, obtained from model independent fitting.

5/15/21

Comparison to BESIII

- ▷ BESIII experiment recently reported 5.3σ observation of a very narrow Z_{cs}^- in $D_s D^* + DD_s^*$ mass distributions, when our results were circulated in collaboration.
- ➤ Tests are applied:
 - Fixed $Z_{cs}(4000)^+$ to BESIII's result; twice the log-likelihood is worse by 160 units.
 - Adding on top of the default model almost doesn't improve the fit likelihood
- No evidence that $Z_{cs}(4000)^+$ state is the same as the $Z_{cs}(3985)^-$ seen by BESIII.

X results

The measured mass of X(4140) is $4118 \pm 11^{+19}_{-36}$ MeV, with width $162 \pm 21^{+24}_{-49}$ MeV, not very narrow; the mass is around the threshold of $J/\psi\phi$.

No evidence of a narrow threshold resonance at $J/\psi\phi$ in our data

Comparing the unnormalized Legendre moments of Run 1 model and updated model, new X(4630) and X(4685) are required.

> The J^P of X(4685) is 1⁺, and the $J^P X(4630)$ is not determined.

Zehua.XU

Observation of D^-K^+ structure in $B^+ \rightarrow D^+D^-K^+$

X(2900) observation

10

 $m^2(D^-K^+)$ [GeV²/c⁴]

8

6

LHCb

(b)

12

> B^+ → $D^+D^-K^+$, an ideal channel to search for open-charm tetraquark.

Amplitude analysis performed:

→ More discussions about $B \rightarrow DDh$ in <u>Yi Jiang's talk</u>.

Presented only newest analyses performed by LHCb:

- > Further understanding of $\chi_{c1}(3872)$
- > Observation of first fully-charmed tetraquark $X(6900)(cc\bar{c}\bar{c})$
- > X(4740) ($c\bar{c}s\bar{s}$) is observed in $B_s^0 \to J/\psi \pi^+\pi^-K^+K^-$ decays
- ► Four new $J/\psi K^+$ ($c\bar{c}u\bar{s}$) and $J/\psi\phi$ ($c\bar{c}s\bar{s}$) structures are observed in the decay of $B^+ \rightarrow J/\psi\phi K^+$
 - 1. The J^P of $Z_{cs}(4000)^+$ and X(4685) state is also determined.
 - 2. An exotic zoo channel, $B^+ \rightarrow J/\psi \phi K^+$, two kinds of exotic states observed in one channel.
- First observation of open-charm tetraquark candidate

Prospects

Prospects of more exotic states observed at LHCb

- LHCb is now boosting the data to a new level
 - Expect to 7x more data (14x hadronic events) by 2029 than current, half of these by 2023
 - Could have another 6x increase from Upgrade II

Outline

□ Evidence of a $J/\psi\Lambda$ resonance and observation of excited Ξ^{*-} states in the $\Xi_b \rightarrow J/\psi\Lambda K^-$ (Details in Jinlin's Talk)

[arXiv:2012.10380, to appear in Science Bulletin]

- Study of the lineshape of the $\chi_{c1}(3872)$ [PRD 102 (2020) 092005] Study of the $\psi_2(3823)$ and $\chi_{c1}(3872)$ states in $B^+ \rightarrow (J/\psi \pi^+ \pi^-) K^+$ decays [JHEP 08(2020)123]
- > Observation of structure in the J/ψ -pair mass spectrum

[Science Bulletin 65 (2020) 032]

> Study of $B_s^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^-$ decays

[JHEP 02 (2021) 024]

> Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$

[arXiv:2103.01803]

 $\Box \text{ Amplitude analysis of } B^+ \to D^+ D^- K^+ \text{ decay}$

(Details in Yi's <u>Talk</u>)

[PRL 125 (2020) 242001, PRD 102 (2020) 112003]

Introduction

 Multiquark states are first predicted in 1964 in quark model, the original papers by M.Gell-Mann and G.Zweig.

The Nobel Prize in Physics 1969

- Mesons are 2-quark bounding states, baryons are 3-quark states, does multi-quark state exist?
- First tetraquark candidate observed at BELLE in 2003, first pentaquark candidate at LHCb in 2015.

Pole search

➤The amplitude has two types of singularities

 ✓ Branch points: thresholds of coupled channels; lead to branch cuts of Riemann Surface

 ✓ Poles: hadronic states; real part of pole location is hadron mass; imaginary part of pole location is half width

For $\chi_{c1}(3872)$, only Riemann sheets associated to $D^0 \overline{D}^{*0}$ are important

I:
$$E - E_f - \frac{g}{2} \left(+ \sqrt{-2\mu_1 E} + \sqrt{-2\mu_2 (E - \delta)} \right) + \frac{i}{2} \Gamma(E)$$
 with $\operatorname{Im} E > 0$,
II: $E - E_f - \frac{g}{2} \left(+ \sqrt{-2\mu_1 E} + \sqrt{-2\mu_2 (E - \delta)} \right) + \frac{i}{2} \Gamma(E)$ with $\operatorname{Im} E < 0$,
III: $E - E_f - \frac{g}{2} \left(- \sqrt{-2\mu_1 E} + \sqrt{-2\mu_2 (E - \delta)} \right) + \frac{i}{2} \Gamma(E)$ with $\operatorname{Im} E < 0$,
IV: $E - E_f - \frac{g}{2} \left(- \sqrt{-2\mu_1 E} + \sqrt{-2\mu_2 (E - \delta)} \right) + \frac{i}{2} \Gamma(E)$ with $\operatorname{Im} E > 0$,
Unphysical sheet

➢Pole location on sheet II is preferred for all scenarios!

5/15/21

Flatté model

- > Threshold is within the natural width \rightarrow Breit-Wigner is not the correct lineshape
- Flatté model is used, best fit gives two pole singularities:

✓ Pole study compatible with a bound $D^0\overline{D}^{*0}$ state but a virtual state scenario is still allowed at 2σ level

Mixture of molecule and compact state

➢Pole locations of different kinds of hadronic states

 \checkmark Bound state: on physical sheet below threshold on real axis

- \checkmark Virtual state: on unphysical sheet below threshold on real axis
- \checkmark Resonance: on unphysical sheet in the complex plane
- Presence of inelastic channels shifts pole into complex plane and turns both a bound and virtual state into a resonance
- Setting the couplings to channels other than $D\overline{D}^*$ to zero gives $E_{II} = -24 \text{ keV}$, indicating a quasi-bound state with binding energy of $E_b = 24 \text{ keV}$

- ➢Quasi-bound state of $D^0 \overline{D}^{*0}$ scenario preferred: $E_b < 100$ keV at 90% C.L.
- ▶ Quasi-virtual state assignment allowed at 2σ level

✓ Pole study compatible with a bound $D^0 \overline{D}^{*0}$ state but a virtual state scenario is still allowed at 2σ level $\frac{5}{15}/21$ Zehua.XU

36

Motivation

➤ Two pentaquark states (P_c⁺) observed in Λ⁰_b → J/ψpK⁻ decay in 2015 at LHCb.
 ➤ New narrow P_c(4312)⁺ observed in 2019 at LHCb, P_c(4450)⁺ is resolved to two states.

With *u* quark changed to *s* quark, $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ is an ideal channel to search for hidden-charm pentaquark (P_{cs}) state with strangeness.

Run 1 + Run 2 data sample

▶ ~1750 Ξ_b^- signals, purity ~ 80%

[arXiv:2012.10380]

Significance of a P_{cs} in this channel [arXiv:2012.10380]

 \succ ~3.1σ significance of *P_{cs}* (Syst. uncertainty and look-elsewhere effect considered)

A significant improvement is also found in the $\cos\theta_{P_{cs}}$ distributions when the P_{cs} included in fitting

Fitting results

- > Two Ξ^{*-} states observed for the first time in Ξ_b^- decay
- Mass of $P_{cs}(4459)^0$ 19 MeV below the $\Xi_c^0 \overline{D}^{*0}$ threshold, similar to $P_c(4440)^+$ and $P_c(4457)^+$ pentaquark states.

Angular distribution

[arXiv:2103.01803]

Legendre moments

Unnormalized Legendre moments:

$< P_{\ell}^{U} > = \sum_{i=1}^{N_{\text{events}}} \frac{1}{\epsilon_{i}} P_{\ell}(\cos \theta)$

Legendre polynomial of order l and efficiency for each event i.

The moments distribution is obtained by a $\frac{1}{\epsilon_i} P_l(\cos\theta)$.

Angular moments of $J/\psi\phi$ helicity angle

Legendre moments

[arXiv:2103.01803]

Angular moments of $J/\psi K^+$ helicity angle

Angular moments of ϕK^+ helicity angle

