# X(3872) and X states at $\Re$

Hang Zhou Shandong University

2021.05.15, Qingdao

### Outline



- XYZ program at BESIII
- Production of X(3872) at BESIII
- Decay of X(3872) at BESIII
- Other X states at BESIII
- Future of BESIII
- Summary



# Profile of X(3872)

| 1 | Y AAA    | 1022  |
|---|----------|-------|
|   | THE 1901 | LE SE |
|   |          |       |

| Name:             | $X(3872)$ or $\chi_{c1}(3872)$                                                | <b>C</b>                                    |
|-------------------|-------------------------------------------------------------------------------|---------------------------------------------|
| Mass:             | $3871.69 \pm 0.17 \text{ MeV}$<br>(very very close to $D^0 D^{*0}$ threshold) | , , , , , , , , , , , , , , , , , , ,       |
| Width:            | $1.39 \pm 0.24 \pm 0.10 \text{ MeV}$                                          | D*0                                         |
| J <sup>PC</sup> : | 1++                                                                           | D <sup>0</sup> – D <sup>*0</sup> "molecule" |
| Isospin:          | 0                                                                             | C                                           |
| Composition:      | Yet unclear                                                                   | <b>Y</b>                                    |

diquark - diantiquark

D<sup>0</sup>

# XYZ program at BESIII



- The world largest data samples of  $e^+e^-$  collision in  $\tau$ -charm region
- Over **20 fb<sup>-1</sup>** high luminosity scan data above 4.0 GeV for XYZ study
- Scan data with  $\sim 500 \text{pb}^{-1}/10 \text{ MeV}$ , continuedly data taking

# How to produce X(3872) at BESIII







- ➢ Accompany with a photon in e<sup>+</sup>e<sup>−</sup> collider [e<sup>+</sup>e<sup>−</sup> → γX(3872)]
- > Radiative transition process?  $[e^+e^- \rightarrow \psi/Y(1^{--}) \rightarrow \gamma X(3872)(1^{++})]$

• Conventional charmonium radiative decay  $e.g. \psi(2S) \rightarrow \gamma X_{cJ}$ 





 Production cross section ~ 0.3 pb at 4.2 GeV with π<sup>+</sup>π<sup>-</sup>J/ψ channel
 Br(X(3872) → π<sup>+</sup>π<sup>-</sup>J/ψ) = (4.1 ± 1.3)% from BaBar's measurement PRL 124, 152001
 σ[e<sup>+</sup>e<sup>-</sup> → γX(3872)]~7.3 pb; Daily luminosity at BESIII L = 25 pb<sup>-1</sup>
 BESIII can produce ~ 180 events/day (A mini-X(3872) factory)



# Decay of X(3872) at BESIII



 $X(3872) \rightarrow \pi^+\pi^- J/\psi$ 



- → *X*(3872) →  $\pi^+\pi^- J/\psi$  is still the golden channel (clean and productive) → ISR  $\psi(2S)$  events as reference, remaining background  $\pi^+\pi^-\pi^+\pi^-$  etc.
- > Radiative photon angular distribution  $(1 + \alpha \cos^2 \theta)$  is on progress...

 $X(3872) \rightarrow \omega J/\psi$ 



$$\frac{Br[X(3872) \to \omega J/\psi]}{Br[X(3872) \to \rho J/\psi]} = 1.6^{+0.4}_{-0.3} \pm 0.2$$

$$R_{X(3872)} = \left|\frac{A(\rho J/\psi)}{A(\omega J/\psi)}\right| \sim 0.2 - 0.3$$

$$R_{\psi(2S)} = \frac{g_{\pi^0 J/\psi}}{g_{\eta J/\psi}} \approx 0.03$$
  
PRD 85, 011501(R) (2012)

➢ BESIII observed X(3872) → ωJ/ψ signal with > 5σ for the first time

Big isospin violation effect (×10 amplitude)
 X(3872) is very exotic!!



➢ BESIII observed X(3872) → D<sup>0</sup>D<sup>\*0</sup> signal with 7.4σ significance
 ➢ No obvious signal observed from γD<sup>0</sup>D<sup>0</sup>/γD<sup>+</sup>D<sup>-</sup>





> BESIII observed  $X(3872) \rightarrow \pi^0 \chi_{c1}$  for the first time with > 5 $\sigma$  significance

> Isospin violation process, comparable decay rate with  $\rho J/\psi$  (disfavor  $\chi_{c1}(2P)$  assignment)

# Branching ratios of X(3872) decay



| Mode                          | Ratio                               | UL     |
|-------------------------------|-------------------------------------|--------|
| $\gamma J/\psi$               | $0.79\pm0.28$                       |        |
| $\gamma \psi'$                | $-0.03 \pm 0.22$                    | < 0.42 |
| $\gamma D^0 \overline{D^0}$   | $0.54\pm0.48$                       | < 1.58 |
| $\pi^0 D^0 \overline{D^0}$    | $-0.13 \pm 0.47$                    | < 1.16 |
| $D^{*0}\bar{D^0} + { m c.c.}$ | $11.77 \pm 3.09$                    |        |
| $\gamma D^+ D^-$              | $0.00^{+0.48}_{-0.00}$              | < 0.99 |
| $\omega J/\psi$               | $1.6^{+0.4}_{-0.3} \pm 0.2$ [18]    | •••    |
| $\pi^0 \chi_{c1}$             | $0.88^{+0.33}_{-0.27}\pm 0.10$ [27] | •••    |





 $X(3872) \rightarrow \overline{D^0} D^{*0}$  is dominant •

| Decay mode                                  | Branching fraction                   |
|---------------------------------------------|--------------------------------------|
| $X(3872) \rightarrow \pi^+\pi^- J/\psi$     | $(4.1^{+1.9}_{-1.1})\%$              |
| $X(3872) \to D^{*0}\bar{D}^0 + \text{c.c.}$ | $(52.4^{+25.3}_{-14.3})\%$           |
| $X(3872) \rightarrow \gamma J/\psi$         | $(1.1^{+0.6}_{-0.3})\%$              |
| $X(3872) \rightarrow \gamma \psi(3686)$     | $(2.4^{+1.3}_{-0.8})\%$              |
| $X(3872) \to \pi^0 \chi_{c1}$               | $(3.6^{+2.2}_{-1.6})\%$              |
| $X(3872) \rightarrow \omega J/\psi$         | $(4.4^{+2.3}_{-1.3})\%$              |
| $B^+ \rightarrow X(3872)K^+$                | $(1.9 \pm 0.6) 	imes 10^{-4}$        |
| $B^0 \rightarrow X(3872)K^0$                | $(1.1^{+0.5}_{-0.4}) \times 10^{-4}$ |
| $X(3872) \rightarrow$ unknown               | $(31.9^{+18.1}_{-31.5})\%$           |

Li & Yuan, PRD 100, 094003 (2019)

- Global fit using world data
- Over 30% decay mode of X(3872) is unknow
- Still have room to search

# What's next for X(3872) at BESIII

### Potential topics ongoing:

- > Search for  $X(3872) \rightarrow \pi^+\pi^-\chi_{c1}$ 
  - Observed  $X(3872) \rightarrow \pi^0 \chi_{c1}$  (isospin violation, P-wave charmonium transition)
  - Search for two pions P-wave charmonium transition will give us some clue of X(3872)

### > Search for $X(3872) \rightarrow$ light hadrons?

- Over 30% decay modes of X(3872) is still unknow
- *cc̄* → light hadrons (annihilation); molecule → light hadrons (?) ;...
- Searching for light hadron final state may tell us more information about X(3872)







# Other X states at BESIII



### X states at BESIII

Searching for other X states via radiative transition at BESIII  $(e^+e^- \rightarrow \gamma X)$ 



• No significant X(4140) signal is observed in  $\phi J/\psi$  system with about 3 fb<sup>-1</sup> data at BESIII

17

# X states at BESIII



#### arXiv: 2103.01803 (LHCb)



- Blooming structures on  $\phi J/\psi$  spectrum from LHCb measurement, e.g. X(4140), X(4274), X(4500) etc.
  - > BESIII have taken data up to  $\sqrt{s} = 5.0 \text{ GeV}$ , more data above 4.6 GeV ( $\mathcal{L} \sim 4.5 \text{ fb}^{-1}$ )
  - ▶ More data can be used to exam X states at BESIII, e.g. X(4140)...
  - ➢ More X states can be accessed via radiative transition at BESIII

# **Future of BESIII**

Future Physics Programme of BESIII, Chin. Phys. C 44, 040001 (2020)



#### BESIII Data Sets



### Luminosity performance



- Upgrade to BEPCIII
- $1.5 \times \mathcal{L}_{BEPCII} @ 4.2 \text{ GeV}$

### More data will be collected, more studies will be carried out!

# Summary



- BESIII is one of the competitive experiment on X(3872) study (unique production mechanism, clean environment, mini-X(3872) factory)
- Great progress achieved: solid confirm  $X(3872) \rightarrow \omega J/\psi$ ; observe new decay mode  $X(3872) \rightarrow \pi^0 \chi_{c1}$ ; ...
- BESIII is still keeping eyes on X(3872)
- Data taking is continue, more data for X states study at BESIII

You can expect more from BESIII

Thanks for your listening!

# Backup



# **BESIII experiment**

- **Double ring:** Symmetric collider
- CMS energy: 2.0-5.0 GeV
- Design Luminosity:  $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$





