

- 张奇; 何秉然; 平加伦; arXiv:2006.01042
- 张奇; 胡晓煌; 何秉然; 平加伦; Eur.Phys.J.C 81 (2021) 3, 224

第七届XYZ粒子研讨会 @青岛 2021年5月15日

Outline

- Introduction
- Chiral quark model
- $qqs\bar{Q}Q$ and $qqq\bar{q}Q$ system

Summary

Introduction

Hadron are made by quarks and gluons

The dynamics of quarks and gluons are described by Quantum chromodynamics (QCD)

- QCD have two important features:
 - Color confinement
 - Asymptotic freedom
- In low energy region the perturbative calculation for QCD is impossible, alternatively:
 - Lattice QCD (non-perturbative calculation)
 - ◆ Effective models (chiral perturbation theory, quark model, etc...)

The chiral symmetry

Spontaneously breaking of chiral symmetry:

The effective theory based on chiral symmetry:

- Nonlinear sigma model
- Chiral perturbation theory

The $P_{c(s)}$ states

The $P_{c(s)}$ states Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda^0_h o$ #1 $J/\psi K^- p$ Decays $P_c(4380)^+, P_c(4450)^+$ LHCb Collaboration • Roel Aaij (CERN) et al. (Jul 13, 2015) Published in: Phys.Rev.Lett. 115 (2015) 072001 • e-Print: 1507.03414 [hep-ex] [과 pdf *inks* ∂ DOI ☐ cite 1,173 citations Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_{c}(4450)^{+}$ $P_c(4312)^+$, $P_c(4440)^+$, $P_c(4457)^+$ LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) et al. (Apr 8, 2019) Published in: *Phys.Rev.Lett.* 122 (2019) 22, 222001 • e-Print: 1904.03947 [hep-ex] ြှာ pdf *©* links ite [→ cite 280 citations ∂ DOI Ħ datasets

The $P_{\mathcal{C}(S)}$ states Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \rightarrow J/\psi K^- p$ Decays LHCb Collaboration • Roel Aaij (CERN) et al. (Jul 13, 2015)

Published in: *Phys.Rev.Lett.* 115 (2015) 072001 • e-Print: 1507.03414 [hep-ex]

- 🖟 pdf 🕜 links 🔗 DOI 📑 cite
- Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure ^{#1} of the $P_c(4450)^+$ $P_c(4450)^+$, $P_c(4457)^+$

LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) et al. (Apr 8, 2019)

```
Published in: Phys.Rev.Lett. 122 (2019) 22, 222001 • e-Print: 1904.03947 [hep-ex]
```

🕞 pdf 🤣 links 🤣 DOI 🖃 cite 🗎 datasets

#1

1,173 citations

280 citations

The states beyond 3 quark picture

 $\Lambda_{c}(2595) \\ \Lambda_{b}(5912)$

S	State	IJ^P	(l_1,l_2)	Ι	II	Exp.	ΙΔΜΙ
	Λ_c	$0\frac{1}{2}^{-}$	(1,0)	2667	2665		
			(0,1)	2465	2456		
			coupling	2465	2456	2592	
	Σ_c	$1\frac{1}{2}^{-}$	(1,0)	2671	2669		
			(0,1)	2629	2628		
			coupling	2628	2628		
	Σ_c^*	$1\frac{1}{2}^{-}$	(0,1)	2633	2632		_
	Λ_b	$0\frac{1}{2}^{-}$	(1,0)	6006	6012		
			(0,1)	5783	5785		
			coupling	5783	5785	5912	
	Σ_b	$1\frac{1}{2}^{-}$	(1,0)	6008	6015		
			(0,1)	5954	5963		
			coupling	5954	5963		
	Σ_b^*	$1\frac{1}{2}^{-}$	(0, 1)	5956	5965		

Outline

Introduction

• $qqs\bar{Q}Q$ and $qqq\bar{q}Q$ system

Summary

Chiral quark model

Naïve quark model:

- Quark mass term
- Kinetic term
- Color confinement potential (CON)
- One gluon exchange (OGE)

- Gell-Mann, M., 1964, Phys. Lett. 8, 214.
- Zweig, G., 1964, CERN Reports No. 8182/TH. 401 and No. 8419/TH. 412).
- N. Isgur, G. Karl, Phys.Lett.B 72 (1977) 109.

The Nambu–Goldstone boson exchange:

- Chiral symmetry is spontaneously broken
- Pseudoscalars (π, K, η) are the Nambu–Goldstone (NG) bosons of chiral symmetry breaking
- Scalar meson σ as the chiral partner of NG bosons
 - Makato Oka, Koichi Yazaki, Nuclear Physics A402 (1983) 477-490
 - L.Ya Glozman, Z. Papp, W. Plessas, Physics Letters B 381 (1996) 311-316
 - J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481(2005)

The Hamiltonian

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - T_{cm} + \sum_{j>i=1}^{n} \left(V_{ij}^{CON} + V_{ij}^{OGE} + V_{ij}^{\pi} + V_{ij}^{K} + V_{ij}^{\eta} + V_{ij}^{\sigma} \right)$$

J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481(2005)

$$\begin{split} V_{ij}^{CON} &= \left(\boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c}\right) \left[-a_{c} \left(1-e^{-\mu_{c}r_{ij}}\right) + \Delta\right], \\ V_{ij}^{OGE} &= \frac{1}{4} \alpha_{s} \left(\boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c}\right) \left[\frac{1}{r_{ij}} - \frac{1}{6m_{i}m_{j}} \frac{e^{-\frac{r_{ij}}{r_{0}(\mu_{ij})}}}{r_{ij}r_{0}^{2}(\mu_{ij})} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\right], \\ V_{ij}^{\sigma} &= -\frac{g_{ch}^{2}}{4\pi} \frac{\Lambda_{\sigma}^{2}}{\Lambda_{\sigma}^{2} - m_{\sigma}^{2}} m_{\sigma} \left[Y(m_{\sigma}r_{ij}) - \frac{\Lambda_{\sigma}}{m_{\sigma}}Y(\Lambda_{\sigma}r_{ij})\right], \\ V_{ij}^{\pi} &= \frac{g_{ch}^{2}}{4\pi} \frac{m_{\pi}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{\pi}^{2}}{\Lambda_{\pi}^{2} - m_{\pi}^{2}} m_{\pi} \left[Y(m_{\pi}r_{ij}) - \frac{\Lambda_{\pi}^{3}}{m_{\pi}^{3}}Y(\Lambda_{\pi}r_{ij})\right] \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \sum_{a=1}^{3} \lambda_{i}^{a} \lambda_{j}^{a}, \\ V_{ij}^{K} &= \frac{g_{ch}^{2}}{4\pi} \frac{m_{K}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{K}^{2}}{\Lambda_{K}^{2} - m_{\pi}^{2}} m_{K} \left[Y(m_{K}r_{ij}) - \frac{\Lambda_{\pi}^{3}}{m_{\pi}^{3}}Y(\Lambda_{K}r_{ij})\right] \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \sum_{a=4}^{7} \lambda_{i}^{a} \lambda_{j}^{a}, \\ V_{ij}^{\eta} &= \frac{g_{ch}^{2}}{4\pi} \frac{m_{\eta}^{2}}{12m_{i}m_{j}} \frac{\Lambda_{\eta}^{2}}{\Lambda_{K}^{2} - m_{K}^{2}} m_{\eta} \left[Y(m_{\eta}r_{ij}) - \frac{\Lambda_{\eta}^{3}}{m_{\eta}^{3}}Y(\Lambda_{\eta}r_{ij})\right] \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left(\lambda_{i}^{8} \lambda_{j}^{8} \cos \theta_{p} - \lambda_{i}^{0} \lambda_{j}^{0} \sin \theta_{p}\right). \end{split}$$

The Gaussian expansion method

$$\begin{split} \psi_{lm}(\boldsymbol{r}) &= \sum_{n=1}^{n_{max}} c_n \psi_{nlm}^G(\boldsymbol{r}), \\ \psi_{nlm}^G(\boldsymbol{r}) &= N_{nl} r^l e^{-\nu_n r^2} Y_{lm}(\hat{\boldsymbol{r}}), \\ N_{nl} &= \left(\frac{2^{l+2} (2\nu_n)^{l+\frac{3}{2}}}{\sqrt{\pi} (2l+1)!!}\right)^{\frac{1}{2}}, \\ \nu_n &= \frac{1}{r_n^2}, r_n = r_{min} a^{n-1}, a = \left(\frac{r_{max}}{r_{min}}\right)^{\frac{1}{n_{max}-1}}. \end{split}$$

E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51 223 (2003).

Outline

Introduction

Chiral quark model

<u>qqsQQ</u> and qqqqQQ system

Summary

Wave functions

- Orbital (SO(3)): (ψ_L)
- Spin (SU(2)): (χ_{S}^{σ})
- Flavor (SU(2)): (χ_I^f)
- Color (SU(3)): (χ^c)

$$\Psi_{JM_JIM_I}^{ijk} = \mathcal{A}\left[\left[\psi_L \chi_S^{\sigma i}\right]_{JM_J} \chi_I^{fj} \chi_k^c\right]$$

Wave functions

- Orbital (SO(3)): (ψ_L)
- Spin (SU(2)): (χ_{S}^{σ})
- Flavor (SU(2)): (χ_I^f)
- Color (SU(3)): (χ^c)

$$\Psi_{JM_JIM_I}^{ijk} = \mathcal{A}\left[\left[\psi_L \chi_S^{\sigma i}\right]_{JM_J} \chi_I^{fj} \chi_k^c\right]$$

Orbital wave functions

 $\psi_{LM_L} = [[[\psi_{l_1}(\boldsymbol{r}_{12})\psi_{l_2}(\boldsymbol{r}_{12,3})]_l\psi_{l_3}(\boldsymbol{r}_{45})]_{l'}\psi_{l_4}(\boldsymbol{r}_{123,45})]_{LM_L}$

$$egin{aligned} m{r}_{12} &= m{r}_2 - m{r}_1 \,, \ m{r}_{12,3} &= m{r}_3 - rac{m_1m{r}_1 + m_2m{r}_2}{m_1 + m_2} \,, \ m{r}_{45} &= m{r}_5 - m{r}_4 \,, \ m{r}_{123,45} &= rac{m_4m{r}_4 + m_5m{r}_5}{m_4 + m_5} - rac{m_1m{r}_1 + m_2m{r}_2 + m_3m{r}_3}{m_1 + m_2 + m_3} \end{aligned}$$

Spin wave functions

 $\chi^{\sigma}_{\frac{3}{2},\frac{3}{2}}(3) = \alpha \alpha \alpha,$ $\chi^{\sigma}_{\frac{3}{2},-\frac{3}{2}}(3) = \beta\beta\beta,$ $\chi^{\sigma}_{\frac{3}{2},\frac{1}{2}}(3) = \sqrt{\frac{1}{3}}(\alpha\alpha\beta + \alpha\beta\alpha + \beta\alpha\alpha),$ $\chi^{\sigma}_{\frac{3}{2},-\frac{1}{2}}(3) = \sqrt{\frac{1}{3}}(\alpha\beta\beta + \beta\alpha\beta + \beta\beta\alpha),$ $\chi^{\sigma 1}_{\frac{1}{2},\frac{1}{2}}(3) = \sqrt{\frac{1}{6}}(2\alpha\alpha\beta - \alpha\beta\alpha - \beta\alpha\alpha),$ $\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma^2}(3) = \sqrt{\frac{1}{2}}(\alpha\beta\alpha - \beta\alpha\alpha),$ $\chi^{\sigma 1}_{\frac{1}{2},-\frac{1}{2}}(3) = \sqrt{\frac{1}{6}}(\alpha\beta\beta + \beta\alpha\beta - 2\beta\beta\alpha),$ $\chi^{\sigma 2}_{\frac{1}{2},-\frac{1}{2}}(3) = \sqrt{\frac{1}{2}}(\alpha\beta\beta - \beta\alpha\beta),$ $\chi_{1,1}^{\sigma}(2) = \alpha \alpha,$ $\chi_{1,-1}^{\sigma}(2) = \beta\beta,$ $\chi_{1,0}^{\sigma}(2) = \sqrt{\frac{1}{2}}(\alpha\beta + \beta\alpha),$ $\chi_{0,0}^{\sigma}(2) = \sqrt{\frac{1}{2}}(\alpha\beta - \beta\alpha).$

$$\begin{split} \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}(5) = &\sqrt{\frac{1}{6}} \chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}(3) \chi_{1,1}^{\sigma}(2) - \sqrt{\frac{1}{3}} \chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}(3) \chi_{1,0}^{\sigma}(2) \\ &+ \sqrt{\frac{1}{2}} \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}(3) \chi_{1,-1}^{\sigma}(2), \\ \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}(5) = &\sqrt{\frac{1}{3}} \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}(3) \chi_{1,0}^{\sigma}(2) - \sqrt{\frac{2}{3}} \chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 3}(5) = &\sqrt{\frac{1}{3}} \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}(3) \chi_{1,0}^{\sigma}(2) - \sqrt{\frac{2}{3}} \chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 4}(5) = &\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}(3) \chi_{0,0}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 5}(5) = &\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 2}(3) \chi_{0,0}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 1}(5) = &\sqrt{\frac{3}{5}} \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(3) \chi_{1,0}^{\sigma}(2) - \sqrt{\frac{2}{5}} \chi_{\frac{3}{2},\frac{1}{2}}^{\sigma 2}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(5) = &\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 1}(3) \chi_{0,0}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(5) = &\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 1}(3) \chi_{0,0}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(5) = &\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(5) = &\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(5) =&\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(5) =&\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{5}{2},\frac{5}{2}}^{\sigma 3}(5) =&\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(3) \chi_{1,1}^{\sigma}(2), \\ \chi_{\frac{5}{2},\frac{5}{2}}^{\sigma 1}(5) =&\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma 3}(3) \chi_{1,1}^{\sigma}(2). \end{split}$$

Flavor wave functions $(qqs\bar{Q}Q)$

$$\begin{split} \chi^{f}_{\frac{1}{2},\frac{1}{2}}(3) &= usb, \quad \chi^{f}_{\frac{1}{2},-\frac{1}{2}}(3) = dsb, \\ \chi^{f1}_{1,1}(3) &= uus, \quad \chi^{f2}_{1,1}(3) = uub, \\ \chi^{f1}_{1,0}(3) &= \sqrt{\frac{1}{2}}(ud + du)s, \\ \chi^{f2}_{1,0}(3) &= \sqrt{\frac{1}{2}}(ud + du)b, \\ \chi^{f1}_{1,-1}(3) &= dds, \quad \chi^{f2}_{1,-1}(3) = ddb, \\ \chi^{f1}_{0,0}(3) &= \sqrt{\frac{1}{2}}(ud - du)s, \\ \chi^{f2}_{0,0}(3) &= \sqrt{\frac{1}{2}}(ud - du)b, \\ \chi^{f1}_{0,0}(2) &= \bar{b}b, \quad \chi^{f2}_{0,0}(2) = \bar{b}s, \\ \chi^{f1}_{\frac{1}{2},\frac{1}{2}}(2) &= \bar{b}u, \quad \chi^{f}_{\frac{1}{2},-\frac{1}{2}}(2) = \bar{b}d. \end{split}$$

$$\begin{split} \chi_{0,0}^{f1}(5) &= \chi_{0,0}^{f1}(3)\chi_{0,0}^{f1}(2), \\ \chi_{0,0}^{f2}(5) &= \chi_{0,0}^{f2}(3)\chi_{0,0}^{f2}(2), \\ \chi_{0,0}^{f3}(5) &= \sqrt{\frac{1}{2}}\chi_{\frac{1}{2},\frac{1}{2}}^{f}(3)\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2) \\ &-\sqrt{\frac{1}{2}}\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2), \\ \chi_{1,1}^{f1}(5) &= \chi_{\frac{1}{2},\frac{1}{2}}^{f}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2), \\ \chi_{1,1}^{f2}(5) &= \chi_{1,1}^{f1}(3)\chi_{0,0}^{f1}(2), \\ \chi_{1,1}^{f3}(5) &= \chi_{1,1}^{f2}(3)\chi_{0,0}^{f2}(2). \end{split}$$

Flavor wave functions $(qqq\bar{q}Q)$

$$\begin{split} \chi^f_{0,0}(3) &= \sqrt{\frac{1}{2}}(ud - du)c, \\ \chi^{f1}_{\frac{1}{2},\frac{1}{2}}(3) &= \sqrt{\frac{1}{6}}(2uud - udu - duu), \\ \chi^{f2}_{\frac{1}{2},\frac{1}{2}}(3) &= \sqrt{\frac{1}{2}}(udu - duu), \\ \chi^{f1}_{\frac{1}{2},-\frac{1}{2}}(3) &= \sqrt{\frac{1}{6}}(udd + dud - 2ddu), \\ \chi^{f2}_{\frac{1}{2},-\frac{1}{2}}(3) &= \sqrt{\frac{1}{2}}(udd - dud), \\ \chi^{f1}_{1,1}(3) &= uuc, \\ \chi^f_{1,-1}(3) &= ddc, \\ \chi^f_{1,0}(3) &= \sqrt{\frac{1}{2}}(ud + du)c, \\ \chi^f_{\frac{3}{2},\frac{3}{2}}(3) &= uuu, \\ \chi^f_{\frac{3}{2},\frac{1}{2}}(3) &= \sqrt{\frac{1}{3}}(uud + udu + duu), \\ \\ \chi^f_{\frac{1}{2},-\frac{1}{2}}(2) &= \sqrt{\frac{1}{2}}(\bar{d}d + \bar{u}u), \\ \chi^f_{\frac{1}{2},-\frac{1}{2}}(2) &= -\bar{u}c, \\ \chi^f_{1,1}(2) &= \bar{d}u, \\ \chi^f_{1,-1}(2) &= -\bar{u}d, \\ \chi^f_{1,0}(2) &= \sqrt{\frac{1}{2}}(\bar{d}d - \bar{u}u). \end{split}$$

 $\chi_{0,0}^{f1}(5) = \chi_{0,0}^{f}(3)\chi_{0,0}^{f}(2),$ $\chi_{0,0}^{f2}(5) = \sqrt{\frac{1}{2}} \chi_{\frac{1}{2},\frac{1}{2}}^{f1}(3) \chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2) - \sqrt{\frac{1}{2}} \chi_{\frac{1}{2},-\frac{1}{2}}^{f1}(3) \chi_{\frac{1}{2},\frac{1}{2}}^{f}(2),$ $\chi_{0,0}^{f3}(5) = \sqrt{\frac{1}{2}}\chi_{\frac{1}{2},\frac{1}{2}}^{f2}(3)\chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2) - \sqrt{\frac{1}{2}}\chi_{\frac{1}{2},-\frac{1}{2}}^{f2}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2),$ $\chi_{0,0}^{f4}(5) = \sqrt{\frac{1}{3}}\chi_{1,1}^{f}(3)\chi_{1,-1}^{f}(2) - \sqrt{\frac{1}{3}}\chi_{1,0}^{f}(3)\chi_{1,0}^{f}(2)$ $+\sqrt{\frac{1}{3}\chi^{f}_{1,-1}(3)\chi^{f}_{1,1}(2)},$ $\chi_{1,1}^{f1}(5) = \chi_{0,0}^{f}(3)\chi_{1,1}^{f}(2),$ $\chi_{1,1}^{f2}(5) = \chi_{1,1}^f(3)\chi_{0,0}^f(2),$ $\chi_{1,1}^{f3}(5) = \sqrt{\frac{1}{2}} \chi_{1,1}^{f}(3) \chi_{1,0}^{f}(2) - \sqrt{\frac{1}{2}} \chi_{1,0}^{f}(3) \chi_{1,1}^{f}(2),$ $\chi_{1,1}^{f4}(5) = \chi_{\frac{1}{2},\frac{1}{2}}^{f1}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2),$ $\chi_{1,1}^{f5}(5) = \chi_{\frac{1}{2},\frac{1}{2}}^{f2}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2),$ $\chi_{1,1}^{f6}(5) = \sqrt{\frac{3}{4}} \chi_{\frac{3}{2},\frac{3}{2}}^{f}(3) \chi_{\frac{1}{2},-\frac{1}{2}}^{f}(2) - \sqrt{\frac{1}{4}} \chi_{\frac{3}{2},\frac{1}{2}}^{f}(3) \chi_{\frac{1}{2},\frac{1}{2}}^{f}(2),$ $\chi_{2,2}^{f1}(5) = \chi_{1,1}^{f}(3)\chi_{1,1}^{f}(2),$ $\chi_{2,2}^{f2}(5) = \chi_{\frac{3}{2},\frac{3}{2}}^{f}(3)\chi_{\frac{1}{2},\frac{1}{2}}^{f}(2).$

Color wave functions: $S \oplus H (1 \oplus 8)$

$$\begin{split} \chi_1^c &= \sqrt{\frac{1}{6}} (rgb - grb + brg - rbg + gbr - bgr) \sqrt{\frac{1}{3}} (\bar{r}r + \bar{g}g + \bar{b}b), \\ \chi_2^c &= \sqrt{\frac{1}{8}} \left[\sqrt{\frac{1}{6}} (2rrg - rgr - grr) \bar{r}b + \sqrt{\frac{1}{6}} (rgg + grg - 2ggr) \bar{g}b - \sqrt{\frac{1}{6}} (2rrb - rbr - brr) \bar{r}g \\ &- \sqrt{\frac{1}{6}} (rbb + brb - 2bbr) \bar{b}g + \sqrt{\frac{1}{6}} (2ggb - gbg - bgg) \bar{g}r + \sqrt{\frac{1}{6}} (gbb + bgb - 2bbg) \bar{b}r \\ &+ \sqrt{\frac{1}{24}} (rbg - gbr + brg - bgr) (2\bar{b}b - \bar{r}r - \bar{g}g) \\ &+ \sqrt{\frac{1}{24}} (2rgb - rbg + 2grb - gbr - brg - bgr) (\bar{r}r - \bar{g}g) \right], \\ \chi_3^c &= \sqrt{\frac{1}{8}} \left[\sqrt{\frac{1}{2}} (rgr - grr) \bar{r}b + \sqrt{\frac{1}{2}} (rgg - grg) \bar{g}b - \sqrt{\frac{1}{2}} (rbr - brr) \bar{r}g - \sqrt{\frac{1}{2}} (rbb - brb) \bar{b}g \\ &+ \sqrt{\frac{1}{2}} (gbg - bgg) \bar{g}r + \sqrt{\frac{1}{2}} (gbb - bgb) \bar{b}r + \sqrt{\frac{1}{8}} (rbg + gbr - brg - bgr) (\bar{r}r - \bar{g}g) \\ &+ \sqrt{\frac{1}{72}} (2rgb + rbg - 2grb - gbr - brg + bgr) (2\bar{b}b - \bar{g}g - \bar{r}r) \right]. \end{split}$$

Physical channels for $qqs\bar{b}b$

IJ^P	[i;j;k]	Channel	IJ^P	[i;j;k]	Channel	IJ^P	[i;j;k]	Channel
$0\frac{1}{2}^{-}$	[5; 1; 1, 2, 3]	$\Lambda\eta_b$	$1\frac{1}{2}$	[4; 2; 1, 2, 3]	$\Sigma \eta_b$	$1\frac{3}{2}^{-}$	[3; 2; 1, 2, 3]	$\Sigma\Upsilon$
	[3; 1; 1, 2, 3]	$\Lambda\Upsilon$		[2; 2; 1, 2, 3]	$\Sigma\Upsilon$		[2; 2; 1, 2, 3]	$\Sigma^*\eta_b$
	[5; 2; 1, 2, 3]	$\Lambda_b B_s$		[1; 2; 1, 2, 3]	$\Sigma^*\Upsilon$		[1; 2; 1, 2, 3]	$\Sigma^*\Upsilon$
	[3; 2; 1, 2, 3]	$\Lambda_b B_s^*$		[5; 1; 1, 2, 3]	$\Xi_b B$		[4; 1; 1, 2, 3]	$\Xi_b B^*$
	[5; 3; 1, 2, 3]	$\Xi_b B$		[4; 3; 1, 2, 3]	$\Sigma_b B_s$		[2; 3; 1, 2, 3]	$\Sigma_b^* B_s$
	[3; 3; 1, 2, 3]	$\Xi_b B^*$		[3; 1; 1, 2, 3]	$\Xi_b B^*$		[3; 3; 1, 2, 3]	$\Sigma_b B_s^*$
	[4; 3; 1, 2, 3]	$\Xi_b' B$		[2; 3; 1, 2, 3]	$\Sigma_b B_s^*$		[1; 3; 1, 2, 3]	$\Sigma_b^* B_s^*$
	[2; 3; 1, 2, 3]	$\Xi_b' B^*$		[1; 3; 1, 2, 3]	$\Sigma_b^* B_s^*$		[2; 1; 1, 2, 3]	Ξ_b^*B
	[1; 3; 1, 2, 3]	$\Xi_b^*B^*$		[4; 1; 1, 2, 3]	$\Xi_b' B$		[3; 1; 1, 2, 3]	$\Xi_b' B^*$
$0\frac{3}{2}^{-}$	[4; 1; 1, 2, 3]	$\Lambda\Upsilon$		[2;1;1,2,3]	$\Xi_b' B^*$		[1; 1; 1, 2, 3]	$\Xi_b^* B^*$
	[4; 2; 1, 2, 3]	$\Lambda_b B_s^*$		[1; 1; 1, 2, 3]	$\Xi_b^* B^*$	$1\frac{5}{2}^{-}$	[1; 2; 1, 2, 3]	$\Sigma^*\Upsilon$
	[4; 3; 1, 2, 3]	$\Xi_b B^*$					[1; 3; 1, 2, 3]	$\Sigma_b^* B_s^*$
	[2; 3; 1, 2, 3]	Ξ_b^*B					[1; 1; 1, 2, 3]	$\Xi_b^* B^*$
	[3; 3; 1, 2, 3]	$\Xi_b' B^*$						
	[1; 3; 1, 2, 3]	$\Xi_b^* B^*$						
$0\frac{5}{2}$	[1:3:1.2.3]	$\Xi_{1}^{*}B^{*}$						

Model parameters ($qqs\bar{Q}Q$)

	$m_u = m_d (MeV)$	313
Quark masses	$m_s({ m MeV})$	555
·	$m_c({ m MeV})$	1752
	$m_b({ m MeV})$	5100
	$a_c({\rm MeV})$	430
Confinement	$\mu_c(fm^{-1})$	0.7
	$\Delta ({ m MeV})$	181.1
	$lpha_0$	2.118
OGE	$\Lambda_0(fm^{-1})$	0.113
	$\mu_0({ m MeV})$	36.976
	$\hat{r}_0({ m MeV}{\cdot}{ m fm})$	28.17
	$m_{\pi}(fm^{-1})$	0.7
	$m_K(fm^{-1})$	2.51
	$m_\eta(fm^{-1})$	2.77
Goldstone bosons	$m_{\sigma}(fm^{-1})$	3.42
	$\Lambda_{\pi} = \Lambda_{\sigma}(fm^{-1})$	4.2
	$\Lambda_K = \Lambda_\eta(fm^{-1})$	5.2
	$g_{ch}^2/(4\pi)$	0.54
	$ heta_p(^\circ)$	-15

Meson	Theo.	Exp.	Baryon	Theo.	Exp.
D	1898	1865	Λ	1013	1116
D_s	1992	1968	\sum	1341	1189
D^*	2017	2007	Σ^*	1469	1383
D_s^*	2116	2112	Λ_c	2086	2286
η_c	3000	2983	Σ_c	2493	2454
J/ψ	3097	3097	Σ_c^*	2537	2518
B	5278	5279	$[I]_c$	2574	2468
B^*	5319	5325	Ξ_c'	2665	2577
B_s	5356	5367	$[\mathbf{I}]_{c}^{*}$	2704	2645
B_s^*	5400	5415	Λ_b	5385	5620
B_c	6283	6275	Σ_b	5818	5811
B_c^*	6331		Σ_b^*	5835	5832
η_b	9468	9400	Ξ_b	5867	5792
Υ	9505	9460	Ξ_b'	5978	5935
			Ξ_b^*	5993	5950

Physical channels for $qqq\bar{q}Q$

$0\frac{1}{2}^{-}$	[4;4;1]	$(\Sigma_c \pi)^S$	IJ^P	[i;j;k]	Channel	$1\frac{3}{2}^{-}$	[2;3;1]	$(\Sigma_c^*\pi)^S$	$\frac{1}{2\frac{1}{2}}$	[4; 1; 1]	$(\Sigma_c \pi)^S$
	$\left[4,5;4;2,3\right]$	$(\Sigma_c \pi)^H$	$1\frac{1}{2}^{-}$	[5;1;1]	$(\Lambda_c \pi)^S$		[2; 3; 3]	$(\Sigma_c^*\pi)^H$		[4, 5; 1; 2, 3]	$(\Sigma_c \pi)^H$
	[5;1;1]	$(\Lambda_c \eta)^S$		[4,5;1;2,3]	$(\Lambda_c\pi)^H$		[4;1;1]	$(\Lambda_c \rho)^S$		[2; 1; 1]	$(\Sigma_c \rho)^S$
	$\left[4,5;1;2,3\right]$	$(\Lambda_c\eta)^H$		[4;3;1]	$(\Sigma_c \pi)^S$		$\left[3,4;1;2,3 ight]$	$(\Lambda_c ho)^H$		[2, 3; 1; 2, 3]	$(\Sigma_c \rho)^H$
	[3;1;1]	$(\Lambda_c \omega)^S$		[4,5;3;2,3]	$(\Sigma_c \pi)^H$		[2;2;1]	$(\Sigma_c^*\eta)^S$		[1;1;1]	$(\Sigma_c^* \rho)^S$
	$\left[2,3;1;2,3 ight]$	$(\Lambda_c \omega)^H$		[4; 2; 1]	$(\Sigma_c \eta)^S$		[2;2;3]	$(\Sigma_c^*\eta)^H$		[1; 1; 3]	$(\Sigma_c^* \rho)^H$
	[2;4;1]	$(\Sigma_c ho)^S$		[4, 5; 2; 2, 3]	$(\Sigma_c \eta)^H$		[3;3;1]	$(\Sigma_c \rho)^S$		[1;2;1]	$(\Delta D^*)^S$
	$\left[2,3;4;2,3\right]$	$(\Sigma_c \rho)^H$		[3;1;1]	$(\Lambda_c ho)^S$		$\left[3,4;3;2,3 ight]$	$(\Sigma_c \rho)^H$		[1; 2; 3]	$(\Delta D^*)^H$
	[1;4;1]	$(\Sigma_c^* ho)^S$		$\left[2,3;1;2,3 ight]$	$(\Lambda_c \rho)^H$		[3;2;1]	$(\Sigma_c \omega)^S$	$2\frac{3}{2}^{-}$	[2;1;1]	$(\Sigma_c^*\pi)^S$
	[1;4;3]	$(\Sigma_c^* \rho)^H$		[2;3;1]	$(\Sigma_c ho)^S$		$\left[3,4;2;2,3\right]$	$(\Sigma_c \omega)^H$		[2; 1; 3]	$(\Sigma_c^*\pi)^H$
	[4, 5; 2, 3; 1]	$(ND)^S$		$\left[2,3;3;2,3 ight]$	$(\Sigma_c \rho)^H$		[1;3;1]	$(\Sigma_c^* \rho)^S$		[3; 1; 1]	$(\Sigma_c \rho)^S$
	[4, 5; 2, 3; 2, 3]	$(ND)^H$		[2;2;1]	$(\Sigma_c \omega)^S$		$\left[1;3;3 ight]$	$(\Sigma_c^* \rho)^H$		[3, 4; 1; 2, 3]	$(\Sigma_c \rho)^H$
	$\left[2,3;2,3;1\right]$	$(ND^*)^S$		$\left[2,3;2;2,3\right]$	$(\Sigma_c \omega)^H$		$\left[1;2;1 ight]$	$(\Sigma_c^*\omega)^S$		[1;1;1]	$(\Sigma_c^* \rho)^S$
	[2, 3; 2, 3; 2, 3]	$(ND^*)^H$		[1;3;1]	$(\Sigma_c^* \rho)^S$		[1;2;3]	$(\Sigma_c^*\omega)^H$		[1; 1; 3]	$(\Sigma_c^* \rho)^H$
$0\frac{3}{2}^{-}$	[2;4;1]	$(\Sigma_c^*\pi)^S$		[1;3;3]	$(\Sigma_c^* \rho)^H$		$\left[3,4;4,5;1\right]$	$(ND^*)^S$		[2; 2; 1]	$(\Delta D)^S$
	[2;4;3]	$(\Sigma_c^*\pi)^H$		[1;2;1]	$(\Sigma_c^*\omega)^S$		$\left[3,4;4,5;2,3\right]$	$(ND^*)^H$		[2; 2; 3]	$(\Delta D)^H$
	[4; 1; 1]	$(\Lambda_c \omega)^S$		[1;2;3]	$(\Sigma_c^*\omega)^H$		[2; 6; 1]	$(\Delta D)^S$		[1;2;1]	$(\Delta D^*)^S$
	[3, 4; 1; 2, 3]	$(\Lambda_c \omega)^H$		$\left[4,5;4,5;1\right]$	$(ND)^S$		[2; 6; 3]	$(\Delta D)^H$		[1; 2; 3]	$(\Delta D^*)^H$
	[3;4;1]	$(\Sigma_c ho)^S$		[4, 5; 4, 5; 2, 3]	$(ND)^H$		[1;6;1]	$(\Delta D^*)^S$	$2\frac{5}{2}^{-}$	[1;1;1]	$(\Sigma_c^* \rho)^S$
	$\left[3,4;4;2,3 ight]$	$(\Sigma_c \rho)^H$		$\left[2,3;4,5;1\right]$	$(ND^*)^S$		[1;6;3]	$(\Delta D^*)^H$		[1;1;3]	$(\Sigma_c^* \rho)^H$
	[1;4;1]	$(\Sigma_c^* ho)^S$		[2, 3; 4, 5; 2, 3]	$(ND^*)^H$	$1\frac{5}{2}^{-}$	[1;3;1]	$(\Sigma_c^* \rho)^S$		[1;2;1]	$(\Delta D^*)^S$
	[1;4;3]	$(\Sigma_c^* ho)^H$		[1;6;1]	$(\Delta D^*)^S$		[1;3;3]	$(\Sigma_c^* \rho)^H$		[1; 2; 3]	$(\Delta D^*)^H$
	$\left[3,4;2,3;1\right]$	$(ND^*)^S$		[1;6;3]	$(\Delta D^*)^H$		[1; 2; 1]	$(\Sigma_c^*\omega)^S$			
	[3,4;2,3;2,3]	$(ND^*)^H$					[1; 2; 3]	$(\Sigma_c^*\omega)^H$			
$0\frac{5}{2}^{-}$	[1;4;1]	$(\Sigma_c^* \rho)^S$					[1;6;1]	$(\Delta D^*)^S$			
	[1;4;3]	$(\Sigma_c^* \rho)^H$					[1;6;3]	$(\Delta D^*)^H$			

Model parameters $(qqq\bar{q}Q)$

	$m_q = m_{\bar{q}}(MeV)$	450	430
Quark masses	$m_c(MeV)$	1750	1734
	$m_b(MeV)$	5100	5092
	$a_c(MeV)$	80	74
Confinement	$\mu_c(fm^{-1})$	0.7	0.7
	$\Delta(MeV)$	46	36
	$lpha_s^{qq}$	0.67	0.68
OGE	$lpha_s^{qc}$	0.61	0.63
	$lpha_s^{qb}$	0.59	0.61
	$\hat{r}_0(MeV \cdot fm)$	28.17	28.17
	$m_{\pi}(fm^{-1})$	0.7	0.7
	$m_K(fm^{-1})$	2.51	2.51
	$m_\eta(fm^{-1})$	2.77	2.77
Goldstone bosons	$m_{\sigma}(fm^{-1})$	3.42	3.42
	$\Lambda_{\pi} = \Lambda_{\sigma}(fm^{-1})$	4.2	4.2
	$\Lambda_K = \Lambda_\eta(fm^{-1})$	5.2	5.2
	$g_{ch}^2/(4\pi)$	0.54	0.54
	(\circ)	1 -	1 -

Meson	Ι	II	Exp.
π	156	149	140
ho	795	799	775
η	660	672	548
ω	773	777	783
D	1867	1866	1869
D^*	2031	2034	2007
B	5303	5315	5279
B^*	5350	5362	5325
Baryon	Ι	II	Exp.
N	915	908	939
Δ	1229	1235	1232
Λ_c	2270	2263	2286
Σ_c	2469	2473	2455
Σ_c^*	2495	2499	2518
Λ_b	5586	5589	5620
Σ_b	5808	5821	5811
Σ_b^*	5818	5832	5832

$qqq\bar{q}c$, $I(J^{P}) = 1(J^{-})$, color $S \oplus H$ (1 \oplus 8)

Root-mean-square distances $(qqq\bar{q}Q)$

distance between two clusters

 $\begin{array}{c}
I(J^{P}) \text{ Main channel } r_{qq} \ r_{q\bar{q}} \ r_{qb} \ r_{b\bar{q}} \\
0(\frac{1}{2}^{-}) \ \Sigma_{b}\pi(qqb,\bar{q}q) \ 1.2 \ 1.1 \ 0.9 \ 1.1 \\
0(\frac{3}{2}^{-}) \ \Sigma_{b}^{*}\pi(qqb,\bar{q}q) \ 1.3 \ 1.2 \ 1.0 \ 1.2 \\
0(\frac{5}{2}^{-}) \ \Sigma_{b}^{*}\rho(qqb,\bar{q}q) \ 1.8 \ 1.8 \ 1.3 \ 1.9 \\
1(\frac{5}{2}^{-}) \ \Delta\bar{B}^{*}(qqq,\bar{q}b) \ 1.2 \ 1.6 \ 1.4 \ 0.9
\end{array}$

Root-mean-square distances $(qqq\bar{q}Q)$

molecular states

> compact states

Outline

Introduction

Chiral quark model

• $qqs\overline{Q}Q$ and $qqq\overline{q}Q$ system

Summary:

 A series of possible pentaquarks with heavy flavors are predicted by five-body dynamical calculations.

 Taking hidden color structure into consideration always provides more binding energy than color singlet structure.

 The more heavier quark presents, the easier to form the bound states.

Thank you for your attention!

	rest mass	kinetic	V^C	V^G
$\Sigma_c \pi$	3550.0	4136.9	-233.9	-4667.7
$\Sigma_c + \pi$	3550.0	4081.8	-232.2	-4635.0
Δ_E	0.0	55.1	-1.7	-32.7
	V^{π}	V^K	V^{η}	V^{σ}
$\Sigma_c \pi$	-279.8	0.0	214.4	-107.9
$\Sigma_c + \pi$	-278.0	0.0	212.1	-73.6
Δ_E	-1.8	0.0	2.3	-34.3

	rest mass	kinetic	V^C	V^G
ND^*	3550.0	1021.2	-166.6	-1097.0
$N + D^*$	3550.0	986.5	-167.2	-1096.4
Δ_E	0.0	34.7	0.6	-0.6
	V^{π}	V^K	V^{η}	V^{σ}
ND^*	-332.2	0.0	62.8	-95.1
$N + D^*$	-319.5	0.0	63.6	-71.2
Δ_E	-12.7	0.0	-0.8	-23.9