

Hidden Charm and Hidden Bottom Pentaquark Molecular States

Jun-Tao Zhu Nanjing Normal University

Collaborators : Jun He, Shu-Yi Kong, Lin-Qing Song and Yi Liu

Outline

- Review of relative experiments and theoretical works
- > Theoretical frame
- Results and discussions
 - 1. P_c
 - $2. P_{cs}$
 - 3. P_b
- ➢ Summary

Before 2015

Prediction before LHCb measurements

J.J.Wu, R.Molina, E.Oset and B.S.Zhou, Phys.Rev.Lett.105,232001;
J.J.Wu, T.-S.H. Lee, and B.S.Zou, Phys.Rev.C85,044002
Z.C.Yang, Z.F.Sun, J.He, X.Loiu and S.L.Zhu, Chin.Phys.C36,6
W.L.Wang, F.Huang, Z.Y.Zhang and B.S.Zou, Phys.Rev.D84,015203

2015	qqqc c	
Resonance	Mass (MeV)	Width (MeV)
$P_{c}(4380)^{+}$	$4380 \pm 8 \pm 29$	$205\pm18\pm86$
$P_{c}(4450)^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$

 $> P_c(4450) \& P_c(4380)$ are reported by LHCb.

≻ First discovery of hidden charm pentaquark.

Compact pentaquark

- R. F. Lebed, Phys. Lett. B 749, 454-457 (2015)
- L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 749, 289-291 (2015)
-

Molecular states

- R. Chen, X. Liu, X. Q. Li and S. L. Zhu, Phys. Rev. Lett. 115, no. 13, 132002 (2015)
- H. X. Chen, W. Chen, X. Liu, T. G. Steele and S. L. Zhu, Phys. Rev. Lett. 115, no. 17, 172001 (2015)
- M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115 no.12, 122001 (2015)
- L. Roca, J. Nieves and E. Oset, Phys. Rev. D 92, no. 9, 094003 (2015)
- T. J. Burns, Eur. Phys. J. A 51 no.11, 152(2015)
- J. He, Phys. Lett. B 753, 547 (2016)
- H. Huang and J. Ping, Phys. Rev. D 99, no.1, 014010 (2019)
- •

Anomalous triangle singularity

• X. H. Liu, Q. Wang and Q. Zhao, Phys. Lett. B 757, 231-236 (2016)

2019

State	M [MeV $]$	$\Gamma [MeV]$	(95% CL)	\mathcal{R} [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7 ^{+ ~ 3.7}_{- ~ 4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-}~^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

 $> P_c(4450) \longrightarrow P_c(4457) \otimes P_c(4440).$ $> \text{New state } P_c(4312) \text{ is reported.}$

> The results favor molecular state interpretation.

QCD sum rule

• H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D 100, no.5, 051501 (2019)

••••

.

.

.

.

Quark model

• H. Huang, J. He and J. Ping, [arXiv:1904.00221 [hep-ph]].

Effective lagrangain approach

- C. J. Xiao, Y. Huang, Y. B. Dong, L. S. Geng and D. Y. Chen, Phys. Rev. D 100 no.1, 014022 (2019)
- Q. Wu and D. Y. Chen, Phys. Rev. D 100, no.11, 114002 (2019)

Heavy-Quark Spin Symmetry

M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S'anchez S'anchez, L. S. Geng, A. Hosaka and M. Pavon Valderrama, Phys. Rev. Lett. 122, no.24, 242001 (2019)

One boson exchange Model

- J. He Eur. Phys. J.C 79, no.5, 393 (2019)
- J. He and D. Y. Chen, Eur. Phys. J. C 79 no.11, 887 (2019)

Hidden bottom

- J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, Phys. Rev. D 95, no.3, 034002 (2017)
- Y. H. Lin, C. W. Shen and B. S. Zou, Nucl.Phys. A 980, 21-31 (2018)
- X. Y. Wang, J. He and X. Chen, Phys. Rev. D 101, no.3, 034032 (2020)
- H. Huang and J. Ping, Phys. Rev. D 99, no.1, 014010 (2019)
- G. Yang, J. Ping and J. Segovia, Phys. Rev. D 99, no.1, 014035 (2019)
- B. Wang, L. Meng and S. L. Zhu, JHEP 11, 108 (2019)
- J. T. Zhu, S. Y. Kong, Y. Liu and J. He, Eur. Phys.J. C 80, no.11, 1016 (2020)

$$\Xi_b^- \to J/\psi K^- \Lambda$$

 Implications workshop 2020
 10.29

 LHCb:
 arXiv:2101.12441v1 [hep-ph] 29 Jan 2021

■ Mass: $4458.8 \pm 2.9^{+4.7}_{-1.1}$ MeV, Width: $17.3 \pm 6.5^{+8.0}_{-5.7}$ MeV

$$3.1\sigma - 4.1\sigma$$

• About 19MeV under the $\Xi_c \overline{D}^*$ threshold

Review of theoretical works

➢ Before 2015 :	• J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105, 232001 (2010)
➤ After 2015 :	 V. V. Anisovich, M. A. Matveev, J. Nyiri, A. V. Sarantsev and A. N. Semenova, Int. J. Mod. Phys. A 30, no.32, 1550190 (2015) Z. G. Wang, Eur. Phys. J. C 76, no.3, 142 (2016) A. Feijoo, V. K. Magas, Eur. Phys. J. C 76, no.8, 446 (2016) J. X. Lu, E. Wang, J. J. Xie Phys. Rev. D 93, 094009 (2016) H. X. Chen, L. S. Geng, W. H. Liang, E. Oset, E. Wang and J. J. Xie, Phys. Rev. C 93, no.6, 065203 (2016) R. Chen, J. He and X. Liu, Chin. Phys. C 41, no.10, 103105 (2017)
> 2019-2020 :	 C. W. Xiao, J. Nieves and E. Oset, Phys. Lett. B 799, 135051 (2019) Q. Zhang, B. R. He and J. L. Ping, [arXiv:2006.01042 [hep-ph]]. B. Wang, L. Meng and S. L. Zhu, Phys. Rev. D 101, no.3, 034018 (2020)
> After 2020.10 :	 H. X. Chen, W. Chen, X. Liu and X. H. Liu, [arXiv:2011.01079 [hep-ph]]. F. Z. Peng, M. J. Yan, M. S´anchez and M. P. Valderrama, [arXiv:2011.01915 [hep-ph]]

- Z. G. Wang, [arXiv:2011.05102 [hep-ph]].
- R. Chen, [arXiv:2011.07214 [hep-ph]].

Relative research of our group

- 1. J. He, " $\overline{D}\Sigma_c^*$ and $\overline{D}^*\Sigma_c$ interactions and the LHCb hidden-charmed pentaquarks," Phys. Lett. B 753, 547 (2016)
- 2. J. He "Study of Pc(4457), Pc(4440), and Pc(4312) in a quasipotential Bethe-Salpeter equation approach," Eur. Phys. J.C 79, no.5, 393 (2019)
- 3. J. He and D. Y. Chen, "Molecular states from $\Sigma_c^{(*)} \overline{D}^{(*)} \Lambda_c \overline{D}^{(*)}$ interaction," Eur. Phys. J. C 79 no.11, 887 (2019)
 - 1. R. Chen, J. He and X. Liu, Possible strange hidden-charm pentaquarks from $\Sigma_c^{(*)} \overline{D}_s^{(*)}$ and $\Xi_c^{(\prime,*)} \overline{D}^{(*)}$ interactions, Chin. Phys. C 41, no.10, 103105 (2017)
 - 2. Jun-Tao Zhu, Lin-Qing Song, Jun He, Pcs(4459) and other possible molecular states from $\Xi_c^{(*)}\overline{D}^{(*)}$ and $\Xi_c^{\prime}\overline{D}^{(*)}$ interactions. Phys. Rev. D 103 (2021) 7, 074007

 $\boldsymbol{P_b}$

 P_{cs}

 P_c

- 1. J. T. Zhu, S. Y. Kong, Y. Liu and J. He, "Hidden-bottom molecular states from
- $\Sigma_{b}^{(*)}B^{(*)} \Lambda_{b}B^{(*)}$ interaction," Eur. Phys. J. C 80, no.11, 1016 (2020)
 - 2. X.Y. Wang, J. He, X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and $\pi^- p$ scatterings. Phys. Rev. D 101(3), 034032 (2020).

Quasipotential Bethe-Salpeter Equation

Quasipotential approximation

$$i\mathcal{M}(k',k) = i\mathcal{V}(k',k) + \int \frac{dk''}{(2\pi)^3} i\mathcal{V}(k',k'')G_0(k'')i\mathcal{M}(k'',k),$$

Partial wave decomposition

$$i\mathcal{M}(k',k) = i\mathcal{V}(k',k) + \int \frac{dk''}{(2\pi)^3} i\mathcal{V}(k',k'')G_0(k'')i\mathcal{M}(k'',k),$$
The 3-dimensional equation
Partial wave decomposition
The 1-dimensional equation
$$\mathcal{V}_{\lambda'\lambda}(k',k) = \sum_{J\lambda_R} \frac{2J+1}{4\pi} D_{\lambda_R,\lambda'}^{J*}(\phi', \theta', -\phi')\mathcal{V}_{\lambda'\lambda,\lambda_R}^{J}(k',k)D_{\lambda_R,\lambda}^{J}(\phi, \theta, -\phi)$$

$$\rightarrow \mathcal{V}_{\lambda'\lambda,\lambda_R}^{J}(k',k) = \frac{2J+1}{4\pi} \int d\Omega' d\Omega D_{\lambda_R,\lambda'}^{J*}(\phi', \theta', -\phi')\mathcal{V}_{\lambda'\lambda}(k',k)D_{\lambda_R,\lambda}^{J}(\phi, \theta, -\phi)$$

$$\rightarrow \mathcal{V}_{\lambda'\lambda}^{J}(k',k) = 2\pi \int d\cos\theta_{k,k'} d_{\lambda,\lambda'}^{J}(\theta_{k',k})\mathcal{V}_{\lambda'\lambda}(k',k)$$

$$i\mathcal{M}_{\lambda',\lambda}(k',k) = i\mathcal{V}_{\lambda'\lambda}(k',k) + \int \frac{k''^2 dk''}{(2\pi)^3} i\mathcal{V}_{\lambda'\lambda''}(k',k'')G_0(k'')i\mathcal{M}_{\lambda''\lambda}(k'',k)$$

$$k_1' - k_1 = \sum_{i=1}^{ld} k_1' - k_1 + k_1 + k_1 + k_1 + k_2 + k$$

Heavy quark limit and chiral symmetry Chen et al. PRD47(1993)1030; Yan et al.PRD46(1992)1148; Wise, PRD45(1992)2188; Casalbuoni et al. Phys. Rept. 281(1997)145

Lagarangains

$$\mathcal{L}_{HH\mathbb{P}} = ig_1 \langle \bar{H}_a^{\bar{Q}} \gamma_\mu \mathcal{R}_{ba}^\mu \gamma_5 H_b^{\bar{Q}} \rangle,$$

Meson

$$\mathcal{L}_{HH\mathbb{V}} = -i\beta \langle \bar{H}_a^{\bar{Q}} v_\mu (\mathcal{V}_{ab}^\mu - \rho_{ab}^\mu) H_b^{\bar{Q}} \rangle + i\lambda \langle \bar{H}_b^{\bar{Q}} \sigma_{\mu\nu} F^{\mu\nu}(\rho) \bar{H}_a^{\bar{Q}} \rangle,$$

$$\mathcal{L}_{HH\sigma} = g_s \langle \bar{H}_a^{\bar{Q}} \sigma \bar{H}_a^{\bar{Q}} \rangle,$$

$$\mathcal{L}_{S} = -\frac{3}{2}g_{1}(v_{\kappa})\epsilon^{\mu\nu\lambda\kappa}\mathrm{tr}[\bar{S}_{\mu}\mathcal{A}_{\nu}S_{\lambda}] + i\beta_{S}\,\mathrm{tr}[\bar{S}_{\mu}v_{\alpha}(\mathcal{V}^{\alpha}-\rho^{\alpha})S^{\mu}] + \lambda_{S}\,\mathrm{tr}[\bar{S}_{\mu}F^{\mu\nu}S_{\nu}] + \ell_{S}\,\mathrm{tr}[\bar{S}_{\mu}\sigma S^{\mu}],$$

Baryon

$$\frac{\mathcal{L}_{B_{3}} = i\beta_{B}\mathrm{tr}[\bar{B}_{\bar{3}}v_{\mu}(\mathcal{V}^{\mu}-\rho^{\mu})B_{\bar{3}}] + \ell_{B}\mathrm{tr}[\bar{B}_{\bar{3}}\sigma B_{\bar{3}}],$$

$$\mathcal{L}_{int} = ig_{4}\mathrm{tr}[\bar{S}^{\mu}\mathcal{A}_{\mu}B_{\bar{3}}] + i\lambda_{I}\epsilon^{\mu\nu\lambda\kappa}v_{\mu}\mathrm{tr}[\bar{S}_{\nu}F_{\lambda\kappa}B_{\bar{3}}] + h.c.,$$

Isospin factor

For example

	π	η	ρ	ω	σ
$\bar{D}^{(*)} \Sigma_c^{(*)} \to \bar{D}^{(*)} \Sigma_c^{(*)}$	$-1[\frac{1}{2}]$	$\frac{1}{6}[\frac{1}{6}]$	$-1[\frac{1}{2}]$	$\frac{1}{2}[\frac{1}{2}]$	1
$\bar{D}^{(*)}\Lambda_c\to \bar{D}^{(*)}\Lambda_c$	0	0	0	1	2
$\bar{D}^{(*)}\Lambda_c \to \bar{D}^{(*)}\Sigma_c^{(*)}$	$\frac{\sqrt{6}}{2}$	0	$\frac{\sqrt{6}}{2}$	0	0

Parameters

TABLE I: The coupling constants adopted in the calculation, which are cited from the literature [18, 57–59]. The λ and $\lambda_{S,I}$ are in the units of GeV⁻¹. Others are in the units of 1.

β	g	g_V	λ	g_s			
0.9	0.59	5.9	0.56	0.76			
β_{S}	ℓ_{S}	g_1	λ_S	β_B	ℓ_B	g_4	λ_I
-1.74	6.2	-0.94	-3.31	$-\beta_S/2$	$-\ell_S/2$	$3g_1/(2\sqrt{2})$	$-\lambda_s/\sqrt{8}$

One-boson-exchange model (OBE)

Potential

$$\begin{aligned}
\mathcal{W}_{\mathbb{P},\sigma} &= f_{I}\Gamma_{1}\Gamma_{2}P_{\mathbb{P},\sigma}f(q^{2}), \qquad \mathcal{W}_{\mathbb{V}} = f_{I}\Gamma_{1\mu}\Gamma_{2\nu}P_{\mathbb{V}}^{\mu\nu}f(q^{2}), \\
\end{aligned}$$
Propagators

$$\begin{aligned}
P_{\mathbb{P},\sigma} &= \frac{i}{q^{2} - m_{\mathbb{P},\sigma}^{2}}, \qquad P_{\mathbb{V}}^{\mu\nu} = i\frac{-g^{\mu\nu} + q^{\mu}q^{\nu}/m_{\mathbb{V}}^{2}}{q^{2} - m_{\mathbb{V}}^{2}}, \\
f_{0}(q^{2}) &= 1, \\
f_{1}(q^{2}) &= \frac{\Lambda_{e}^{2} - m_{e}^{2}}{\Lambda_{e}^{2} - q^{2}}, \qquad k_{1}^{\prime} - \frac{k_{1}^{\prime}}{k_{2}^{\prime}} - \frac{k_{1}^{\prime}}{k_{2}^{\prime}} \\
f_{2}(q^{2}) &= \frac{\Lambda_{e}^{4}}{(m_{e}^{2} - q^{2})^{2} + \Lambda^{4}}, \qquad G_{0}(p^{\prime\prime}) \rightarrow G_{0}(p^{\prime\prime}) \left[e^{-(p_{1}^{\prime\prime} - m_{1}^{2})^{2}/\Lambda_{r}^{4}}\right]^{2} \\
f_{3}(q^{2}) &= e^{-(m_{e}^{2} - q^{2})^{2}/\Lambda_{e}^{2}}, \qquad \Lambda_{e} &= \Lambda_{r} = m_{e} + \alpha \ 0.22 \ GeV
\end{aligned}$$

Transformation to matrix euqation

Transformed as a matrix equation by Gauss discretization

$$i\mathcal{M}_{ik} = i\mathcal{V}_{ik} + \sum_{j=0}^{N} i\mathcal{V}_{ij}G_j i\mathcal{M}_{jk} \Rightarrow M = V + VGM$$

$$G_{j} = \begin{cases} -\frac{i\bar{q}}{32\pi^{2}W} + \sum_{j} \left[\frac{w(q_{j})}{(2\pi)^{3}} \frac{\bar{q}^{2}}{2W(q_{j}^{2} - \bar{q}^{2})} \right] & \text{for } j = 0, \text{ if } Re(W) > m_{1} + m_{2}, \\ \frac{w(q_{j})}{(2\pi)^{3}} \frac{q_{j}^{2}}{2E(q_{j})[(W - E(q_{j}))^{2} - \omega^{2}(q_{j})]} & \text{for } j \neq 0 \end{cases}$$

with
$$\bar{q} = \frac{1}{2W} \sqrt{[W^2 - (m_1 + m_2)^2][W^2 - (m_1 - m_2)^2]}.$$

Search for the pole

$$M = (1 - VG)^{-1}V \implies |1 - VG| = 0$$

Results and discussions

 $\boldsymbol{P_{c}}$

Eur. Phys. J. C 79 no.11, 887 (2019)

$$I(J^{P}) = \frac{1}{2} \begin{pmatrix} 1^{-}, 3^{-}, 5^{-} \\ 2, 3^{-}, 2 \end{pmatrix} \quad \frac{3}{2} \begin{pmatrix} 1^{-}, 3^{-}, 5^{-} \\ 2, 5^{-} \overline{D}^{*}(4462.2) & I(J^{P}) = \frac{1}{2} \begin{pmatrix} 1^{-}, 3^{-} \\ 2, 7^{-} 2 \end{pmatrix} \quad \frac{3}{2} \begin{pmatrix} 1^{-}, 3^{-} \\ 2, 7^{-} 2 \end{pmatrix} \\ \mathcal{L} \quad \Sigma_{c} \overline{D} (4385.3) & I(J^{P}) = \frac{1}{2} \begin{pmatrix} 3^{-} \\ 2^{-} \end{pmatrix} \quad \frac{3}{2} \begin{pmatrix} 3^{-} \\ 2^{-} \end{pmatrix} \\ \mathcal{L} \quad \Sigma_{c} \overline{D} (4320.8) & I(J^{P}) = \frac{1}{2} \begin{pmatrix} 1^{-} \\ 2^{-} \end{pmatrix} \quad \frac{3}{2} \begin{pmatrix} 1^{-} \\ 2^{-} \end{pmatrix} \\ \mathcal{L} \quad \Lambda_{c} \overline{D}^{*} (4295.1) & I(J^{P}) = \frac{1}{2} \begin{pmatrix} 1^{-} \\ 2^{-} \end{pmatrix} \\ \mathcal{L} \quad \Lambda_{c} \overline{D} (4153.7) & I(J^{P}) = \frac{1}{2} \begin{pmatrix} 1^{-} \\ 2^{-} \end{pmatrix} \\ \mathcal{L} \quad \Lambda_{c} \overline{D} (4153.7) & I(J^{P}) = \frac{1}{2} \begin{pmatrix} 1^{-} \\ 2^{-} \end{pmatrix} \\ \mathcal{L} \quad \mathcal{L} \quad$$

Table 2 The flavor factors for certain meson exchanges of certain interaction. The values in bracket are for the case of I = 3/2 if the values are different from these of I = 1/2.

	π	η	ρ	ω	σ
$\bar{D}^{(*)} \Sigma_c^{(*)} \to \bar{D}^{(*)} \Sigma_c^{(*)}$	$-1[\frac{1}{2}]$	$\frac{1}{6}[\frac{1}{6}]$	$-1[\frac{1}{2}]$	$\frac{1}{2}[\frac{1}{2}]$	1
$\bar{D}^{(*)}\Lambda_c \to \bar{D}^{(*)}\Lambda_c$	0	0	0	1	2
$\bar{D}^{(*)}\Lambda_c \to \bar{D}^{(*)}\Sigma_c^{(*)}$	$\frac{\sqrt{6}}{2}$	0	$\frac{\sqrt{6}}{2}$	0	0

Threshold & Quantum Number

 $\varSigma_c^{(*)}\bar{D}^{(*)}-\Lambda_c\bar{D}^{(*)}$

Exchanged meson

Pc **Single-channel calculation**

Discussion

- \succ The curves reflect the binding energy with variation of parameter α .
- Five different curves correspond to five different form factors.
- We choose the $f_3(q^2) = e^{-(m_e^2 q^2)^2/\Lambda_e^2}$ (black curve).
- \succ The $\Sigma_{c}^{(*)}\overline{D}^{(*)}$ system with I=1/2 produce six molecular states in single-channel calculation.
- $\succ \Sigma_{\rm c}^* \overline{\rm D}^* \frac{1}{2} (\frac{5}{2})$ and four interactions with $I = \frac{3}{2}$ are attractive while too large α is required.
- $\succ \Lambda_{c}\overline{D}^{*}$ and $\Lambda_{c}\overline{D}$ can not be bound.

第七届XYZ粒子研讨会

21

Pc Coupled-channel calculation

Discussion

- > The color box reflect the value of lg(|1 VG|).
- The black point represent to the experimental values of Pc states .
- > At $\alpha = 2.5$, six molecular states can be produced from $\Sigma_{c}^{(*)}\overline{D}^{(*)} - \Lambda_{c}\overline{D}^{*}$ interaction.
- > The $\Sigma_{c}\overline{D}\left(\frac{1}{2}\right)$, $\Sigma_{c}\overline{D}^{*}\left(\frac{1}{2},\frac{3}{2}\right)$ correspond to three narrow Pc states observed at LHCb.

Pc

Discussion

- > $\Lambda_c \overline{D}^*$ is the main decay channel of the lower five states.
- > $\Sigma_c \overline{D}^*$, $\Sigma_c^* \overline{D}$, and $\Lambda_c \overline{D}$ have considerable

contributions to the $\sum_{c}^{*}\overline{D}^{*} \frac{3}{2}$ state.

> The $\Sigma_c \overline{D}$ channel is found important to

 $\Sigma_c^* \overline{D}^* \frac{1}{2}^-$ state.

	α_r	CC	$\Sigma_c \bar{D}^*$		$\Sigma_c^* \overline{D}$		$\Sigma_c \overline{D}$		$\Lambda_c \bar{D}^*$		$\Lambda_c \bar{D}$		sur	m	
		pole	pole	Br	pole	Br	pole	Br	pole	Br	pole	Br	$\sum Im_i$	$\frac{\text{Im}_{CC}}{\sum \text{Im}_i}$	
						$\Sigma_c^* \bar{D}^*$	1/2-)								
	1.5	1.2 + 1.0i	1.8 + 0.1i	17	2.1 + 0.1i	17	1.2 + 0.3i	50	1.7 + 0.1i	17	1.9 + 0.0i	0	0.6	167	
	2.0	3.0 + 1.6i	3.7 + 0.2i	18	3.9 + 0.2i	18	2.9+0.5i	45	4.6 + 0.2i	18	3.7 + 0.0i	0	1.1	145	
	2.5	5.5 + 2.3i	6.1 + 0.3i	19	6.6 + 0.3i	19	5.3+0.7i	44	6.4+0.3i	19	6.4 + 0.0i	0	1.6	144	
	3.0	7.4 + 3.1i	8.8 + 0.4i	18	9.0+0.4i	18	7.1 + 1.0i	45	8.4+0.4i	10	9.2 + 0.0i	0	2.2	141	
						$\Sigma_c^* \bar{D}^* (2$	3/2-)								
	2.0	0.0 + 4.2i	0.3 + 0.7i	28	0.5 + 0.7i	28	1.2 + 0.0i	0	0.0 + 0.9i	36	1.1 + 0.2i	8	2.5	168	
	2.5	0.0 + 5.8i	1.0 + 1.2i	32	1.1 + 0.8i	22	2.3 + 0.0i	0	0.0 + 1.5i	41	2.3 + 0.2i	5	3.7	158	
nnel of the	3.0	0.0 + 6.8i	1.7 + 1.7i	37	1.6 + 1.0i	22	3.4 + 0.0i	0	0.0 + 1.7i	37	3.4 + 0.2i	4	4.6	148	
	3.5	0.0 + 7.5i	2.2 + 2.1i	41	2.0 + 1.1i	22	4.2 + 0.1i	2	0.0 + 1.5i	29	4.4 + 0.3i	6	5.1	147	
						$\Sigma_c \bar{D}^*($	1/2-)								
	1.0	3.5 + 1.9i			3.0 + 0.0i	0	2.9 + 0.3i	20	3.3 + 1.2 <i>i</i>	80	3.0 + 0.0i	0	1.5	127	
• 1 1 1	2.0	8.2 + 4.8i			8.7 + 0.2i	5	8.0 + 0.5i	12	9.1 + 3.3i	80	8.7 + 0.1i	2	4.1	117	
isiderable	3.0	13.8 + 8.8i			15.2 + 0.9i	11	14.1 + 0.8i	9	15.5 + 6.3i	74	16.2 + 0.5i	6	8.5	104	
	4.0	17.7 + 14.7i			23.2 + 2.1i	15	19.0+1.5i	11	21.5 + 9.4i	66	22.1 + 1.2i	9	14.2	104	
te						$\Sigma_c \bar{D}^*$	3/2-)								
	1.0	2.7 + 1.0i			1.8 + 0.3i	19	1.6 + 0.0i	0	1.4 + 1.0i	63	1.6 + 0.3i	19	1.6	63	
	1.5	3.5 + 2.3i			2.1 + 0.4i	13	2.0 + 0.0i	0	0.9 + 2.4i	75	1.7 + 0.4i	13	3.2	72	
ortant to	2.0	3.4 + 3.6i			2.1 + 0.4i	9	2.1 + 0.1i	2	0.0 + 3.5i	78	1.6 + 0.5i	11	4.5	80	
	2.5	2.8 + 4.2i			2.1 + 0.4i	12	2.0+0.1i	3	0.0 + 2.4i	71	1.4 + 0.5i	15	3.4	81	
	3.0	2.6 + 4.5i			2.0+0.4i	13	2.0+0.1i	3	0.0 + 2.0i	65	1.4 + 0.6i	19	3.1	69	
		-	-			$\Sigma_c^* \bar{D}(3$	3/2-)								
	2.5	0.0 + 19i					0.4 + 0i	0	0.0 + 16i	100	0.4 + 0i	0	16	119	
	3.0	0.0 + 24i					0.6 + 0i	0	0.0 + 19i	100	0.6 + 0i	0	19	126	
	3.5	0.0 + 28i					0.9 + 0i	0	0.0 + 22i	100	0.9 + 0i	0	22	127	
	4.0	0.0 + 30i					1.0 + 0i	0	0.0 + 25i	100	1.0 + 0i	0	25	120	
						$\Sigma_c \bar{D}(1$	/2-)								
	1.0	3.7 + 2.0i							3.4 + 2.1i	88	2.1 + 0.3i	13	2.4	83	
	1.5	8.1 + 2.9i							6.1 + 3.0i	88	3.3 + 0.4i	12	3.4	85	
	2.0	11.4 + 4.0i							9.4 + 4.0i	89	4.6 + 0.5i	11	4.5	89	
	2.5	17.8 + 4.6i							13.6 + 4.9i	87	5.9 + 0.7i	13	5.6	82	
第七届XYZ粒子研讨会	3.0	23.6 + 4.8i							18.4 + 5.1i	86	7.1 + 0.8i	14	5.9	81	2

Results and discussions

 P_{cs}

Pcs

Threshold & Quantum Number

$$\boldsymbol{\Xi}_{c}^{(\prime,*)} \overline{\boldsymbol{D}}^{(*)} - \boldsymbol{\Xi}_{c} \overline{\boldsymbol{D}}^{(*)}$$

$$\begin{aligned} 1. \quad & \mathcal{Z}_{c}^{*}\overline{D}^{*}(4654.6) & I(J^{P}) = 0\left(\frac{1}{2}^{-},\frac{3}{2}^{-},\frac{5}{2}^{-}\right) & 1\left(\frac{1}{2}^{-},\frac{3}{2}^{-},\frac{5}{2}^{-}\right) \\ 2. \quad & \mathcal{Z}_{c}^{'}\overline{D}^{*}(4587.4) & I(J^{P}) = 0\left(\frac{1}{2}^{-},\frac{3}{2}^{-}\right) & 1\left(\frac{1}{2}^{-},\frac{3}{2}^{-}\right) \\ 3. \quad & \mathcal{Z}_{c}^{*}\overline{D}(4513.2) & I(J^{P}) = 0\left(\frac{3}{2}^{-}\right) & 1\left(\frac{3}{2}^{-},\frac{3}{2}^{-}\right) \\ 4. \quad & \mathcal{Z}_{c}\overline{D}^{*}(4478.0) & I(J^{P}) = 0\left(\frac{1}{2}^{-},\frac{3}{2}^{-}\right) & 1\left(\frac{1}{2}^{-},\frac{3}{2}^{-}\right) \\ 5. \quad & \mathcal{Z}_{c}^{'}\overline{D}(4446.0) & I(J^{P}) = 0\left(\frac{1}{2}^{-}\right) & 1\left(\frac{1}{2}^{-}\right) \\ 6. \quad & \mathcal{Z}_{c}\overline{D}(4336.6) & I(J^{P}) = 0\left(\frac{1}{2}^{-}\right) & 1\left(\frac{1}{2}^{-}\right) \\ \end{array}$$

TABLE II: The flavor factors f_I for certain meson exchanges of certain interaction. The values in bracket are for the case of I = 1 if the values are different from these of I = 0

Exchanged meson

	π	η	ho	ω	σ
$\bar{D}^{(*)}\Xi_c^{(',*)} \to \bar{D}^{(*)}\Xi_c^{(',*)}$	$-\frac{3}{4}[\frac{1}{4}]$	$-\frac{1}{12}$	$-\frac{3}{4}\left[\frac{1}{4}\right]$	$\frac{1}{4}$	1
$\bar{D}^{(*)}\Xi_c \rightarrow \bar{D}^{(*)}\Xi_c$	0	0	$-\frac{3}{2}\left[\frac{1}{2}\right]$	$\frac{1}{2}$	2
$\bar{D}^{(*)}\Xi_c \to \bar{D}^{(*)}\Xi_c^{(\prime,*)}$	$-\frac{3}{2\sqrt{2}}\left[\frac{1}{2\sqrt{2}}\right]$	$\frac{-1}{2\sqrt{2}}$	$-\frac{3}{2\sqrt{2}}\left[\frac{1}{2\sqrt{2}}\right]$	$\frac{\overline{1}}{2\sqrt{2}}$	0

Pcs Single-channel results

FIG. 1: The binding energies of the bound states from six singlechannel interactions with the variation of parameter α . All states carry scalar isospin I = 0. The thresholds of the six channels are 4654.6, 4587.4, 4513.2, 4478.0, 4446.0, 4336.6 MeV for $\Xi_c^* \bar{D}^*$, $\Xi_c' \bar{D}^*$, $\Xi_c^* \bar{D}$, $\Xi_c \bar{D}^*$, $\Xi_c' \bar{D}$, and $\Xi_c \bar{D}$, respectively. The blue line and the band are the experimental mass and uncertainties of the $P_{cs}(4459)$.

- > $\Xi_c \overline{D}^*(\frac{1}{2}^-)$ and $\Xi_c \overline{D}^*(\frac{3}{2}^-)$ bound states are very close
- > Pcs(4459) can be reproduced at $\alpha = 3.5 4.5$
- Coupled-channel effect should be added

Pcs Coupled-channel calculation

> Pcs(4459) is the candidate of the $\Xi_c \overline{D}^* 0(\frac{3}{2})$ state

		•	-	
α	$\Xi_c^* \bar{D}^* rac{1}{2}$	$\Xi_c^* \bar{D}^* \frac{3}{2}$	$\Xi_c' \bar{D}^* rac{1}{2}$	$\Xi_c' \bar{D}^* \frac{3}{2}$
2.0	1.5 + 0.4i	0.2 + 0.4i	5.2 + 1.9i	1.3 + 2.1i
2.5	3.7 + 1.4i	2.0 + 4.4i	6.9 + 4.6i	1.9 + 5.0i
3.0	7.4 + 3.3i	N	8.2 + 6.8i	2.6 + 6.9i
3.5	11.4 + 6.6 <i>i</i>	N	4.9 + 8.7i	5.6 + 7.3i
α		$\Xi_c^* \bar{D}_2^{3\over 2}$	$\Xi_c \bar{D}^* \frac{1}{2}$	$\Xi_c \bar{D}^* \frac{3}{2}$
2.0		0.1 + 2.1i	2.2 + 0.9i	4.6 + 0.7i
2.5		2.8 + 4.3i	4.5 + 2.2i	10.5 + 1.1i
3.0		6.3 + 7.0i	7.9+4.0 i	19.7+1.6i
3.5		18.4 + 9.3i	13.3 + 6.4i	33.3 + 0.7i
α	$\Xi_c' \bar{D} \frac{1}{2}$		$\Xi_c ar{D} rac{1}{2}$	
2.0	4.9 + 0.0i		0.2	
2.5	10.8 + 0.0i		3.9	
3.0	19.4 + 0.0i		8.5	
3.5	30.9 + 0.0i		14.0	

The small mass gap about 10 MeV requires high precision measurement to distinguish these two states in experiment. **Compare with Pc**

Pcs **Two-channel calculation**

	α	$\Xi_c' \bar{D}^*$	$\Xi_c^* \bar{D}$	$\Xi_c \bar{D}^*$	$\Xi_c' \bar{D}$	$\Xi_c ar{D}$	α	$\Xi_c' \bar{D}^*$	$\Xi_c^* \bar{D}$	$\Xi_c \bar{D}^*$	$\Xi_c' \bar{D}$
			$\Xi_c^* \bar{D}^* (1/2^-)$	$M_{th} = 4654$.6MeV				$\Xi_{c}^{*}\bar{D}(3/2^{-})$	$M_{th} = 4513.$	2MeV
-	2.0	1.7 + 0.1i	1.8 + 0.1i	1.8 + 0.0i	1.7 + 0.2i	1.8 + 0.0i	2.0			0.1 + 1.9i	0.1 + 0.0i
	2.5	4.8 + 0.2i	4.9 + 0.2i	4.6 + 0.1i	4.2 + 0.5i	4.5 + 0.0i	2.5			0.7 + 3.7i	0.5 + 0.0i
	3.0	9.0 + 0.4i	9.2 + 0.5i	8.3 + 0.2i	7.4 + 1.4i	7.6 + 0.1i	3.0			3.9 + 5.2i	1.7 + 0.0i
_	3.5	14.0+0.6i	14.5+0.8i	12.9 + 0.3i	11.3+2.8i	11.3+0.2i	3.5			11.2 + 6.1i	3.3 + 0.0i
			$\Xi_c^* \bar{D}^* (3/2^-)$	$M_{th} = 4654$.6MeV				$\Xi_c \bar{D}^*(1/2^-)$	$M_{th} = 4478$.0MeV
-	2.0	0.2 + 0.1i	0.4 + 0.0i	0.1 + 0.2i	0.4 + 0.0i	0.4 + 0.0i	2.0				2.1 + 0.7i
	2.5	1.2 + 0.7i	1.5 + 0.3i	0.1 + 0.3i	2.0+0.1i	1.9 + 0.0i	2.5				4.1 + 1.6i
	3.0	2.7 + 1.4i	2.7 + 0.8i	0.1 + 2.5i	4.2 + 0.1i	4.1 + 0.0i	3.0				6.3 + 2.7i
_	3.5	4.3 + 2.3i	3.7 + 1.7i	0.1 + 3.1i	6.9 + 0.1i	6.7 + 0.0i	3.5				8.6 + 3.8i
_			$\Xi_c'\bar{D}^*(1/2^-)$	$M_{th} = 4587$.4MeV				$\Xi_c \bar{D}^*(3/2^-)$	$M_{th} = 4478$.0MeV
-	2.0		5.8 + 0.1i	4.7 + 1.5i	5.7 + 0.1i	5.7 + 0.0i	2.0				3.9 + 0.6 <i>i</i>
	2.5		10.9+0.4i	8.1 + 3.8i	10.4 + 0.2i	10.1 + 0.2i	2.5				8.2 + 0.9i
	3.0		17.3+0.9i	12.1 + 6.9i	15.6+0.6i	14.9 + 0.7i	3.0				13.7 + 1.1 <i>i</i>
	3.5		24.7+2.0i	16.3 + 12.2i	20.8+1.3i	19.8 + 1.6i	3.5				20.5 + 1.2i
-			$\Xi_c'\bar{D}^*(3/2^-)$	$M_{th} = 4587$.4MeV				$\Xi_c' \overline{D}(1/2)$	$M_{th} = 4446.$	0MeV
-	2.0		1.6 + 0.0i	0.7 + 2.1i	1.8 + 0.0i	1.3 + 0.3i	2.0				
	2.5		3.2 + 0.1i	1.3 + 5.9i	3.6 + 0.0i	1.8 + 1.4i	2.5				
	3.0		4.9 + 0.4i		5.4 + 0.1i		3.0				
-	3.5		6.2 + 0.6i		7.1 + 0.1i		3.5				

 $\Xi_c \bar{D}$

0.1 + 0.0i

0.5 + 0.0i

1.7 + 0.0i

3.2 + 0.0i

3.1 + 0.0i

6.2 + 0.0i

9.9 + 0.0i

3.1 + 0.0i

6.2 + 0.0i

9.9 + 0.0i

3.0 + 0.0i

6.3 + 0.0i

10.2 + 0.0i

--14.5 + 0.0i

6.3 + 2.7i

3.9 + 0.6i

--20.5+1.2i 14.0 + 0.0i

--13.7+1.1i

8.6 + 3.8i 14.0 + 0.0i

Results and discussions

 $\boldsymbol{P_b}$

Threshold & Quantum Number

 $B^{(*)} \Sigma_b^{(*)} - B^{(*)} \Lambda_b$

1.	$\Sigma_{b}^{*}B^{*}(11155)$	$I(J^{P}) = \frac{1}{2} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-} \right) \frac{3}{2} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-} \right)$
2.	$\Sigma_b B^*(11135)$	$I(J^{P}) = \frac{1}{2} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-} \right) \qquad \frac{3}{2} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-} \right)$
3.	$\Sigma_b^* B$ (11110)	$I(J^P) = \frac{1}{2} \begin{pmatrix} 3^- \\ -2 \end{pmatrix} \qquad \frac{3}{2} \begin{pmatrix} -3^- \\ -2 \end{pmatrix}$
4.	$\Sigma_b B \ (11090)$	$I(J^P) = \frac{1}{2} \begin{pmatrix} 1^- \\ 2 \end{pmatrix} \qquad \frac{3}{2} \begin{pmatrix} 1^- \\ 2 \end{pmatrix}$
5.	$\Lambda_b B^* (10944)$	$I(J^P) = \frac{1}{2} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-} \right)$
6.	Λ _b B (10899)	$I(J^P) = \frac{1}{2} \left(\frac{1}{2}\right)$

Table 2 The flavor factors f_I for certain meson exchanges of certain interaction. The values in bracket are for the case of I = 3/2 if the values are different from these of I = 1/2

Exchanged meson		π	η	ρ	ω	σ
	$B^{(*)}\Sigma_b^{(*)} \to B^{(*)}\Sigma_b^{(*)}$	$-1[\frac{1}{2}]$	$\frac{1}{6}[\frac{1}{6}]$	$-1[\frac{1}{2}]$	$\frac{1}{2}[\frac{1}{2}]$	1
	$B^{(*)}\Lambda_b \to B^{(*)}\Lambda_b$	0	0	0	1	2
	$B^{(*)}\Lambda_b \to B^{(*)}\Sigma_b^{(*)}$	$\frac{\sqrt{6}}{2}$	0	$\frac{\sqrt{6}}{2}$	0	0

*P*_b Single-channel calculation

- All seven states with I=1/2 are bound near the threshold
- The tendencies for poles of the same channel are similar

- > Two lower states can not be bound even at $\alpha = 9.0$
- > The rest five states might be bound, but large α is required

*P*_b Coupled-channel calculation

> The $\Sigma_b^* B(\frac{1}{2}, \frac{3}{2})$ states are also recommended to be searched for in experiments. $\hat{T} \leftarrow \pi XYZ \approx 3$

Compare with P_c and P_{cs}

 \succ The significant states may be easy to be found.

Two-channel calculation

	-								
	α_r	CC	$\Sigma_b B^*$	$\Sigma_b^* B$	$\Sigma_b B$	$\Lambda_b B^*$	$\Lambda_b B$		
$\Sigma_b^* B^* (1/2^-)$ $M_{th} = 11155 \text{MeV}$	0.6	0.6 + 0.02i	0.6 + 0.01i	0.6 + 0.01i	0.6 + 0.01i	0.6 + 0.00i	0.6 + 0.00i		
	1.0	2.4 + 0.09i	2.5 + 0.03i	2.5 + 0.03i	2.5 + 0.04i	2.5 + 0.02i	2.5 + 0.00i		
	1.5	5.8 + 0.28i	6.1 + 0.07i	6.0 + 0.10i	6.0 + 0.16i	6.0 + 0.16i	6.1 + 0.00i		
	2.0	9.6 + 0.40i	10.3 + 0.24i	10.4 + 0.25i	9.9 + 0.31i	10.3 + 0.63i	10.5 + 0.00i		
$\Sigma_b^* B^* (3/2^-)$ $M_{th} = 11155 \text{MeV}$	0.6	0.5 + 0.03i	0.5 + 0.02i	0.5 + 0.01i	0.5 + 0.00i	0.5 + 0.00i	0.5 + 0.00i		
	1.0	2.2 + 0.10i	2.3 + 0.04i	2.3 + 0.03i	2.3 + 0.02i	2.3 + 0.01i	2.3 + 0.00i		
	1.5	5.3 + 0.36i	5.5 + 0.07i	5.7 + 0.03i	5.6 + 0.08i	5.6 + 0.12i	5.6 + 0.03i		
	2.0	8.6 + 1.38i	9.3 + 0.19i	9.8 + 0.09i	9.8 + 0.16i	9.4 + 0.48i	9.7 + 0.17i		
$\Sigma_b^* B^* (5/2^-)$ $M_{th} = 11155 \mathrm{MeV}$	0.6	0.4 + 0.04i	0.4 + 0.01i	0.4 + 0.01i	0.4 + 0.01i	0.4 + 0.00i	0.4 + 0.00i		
	1.0	2.1 + 0.15i	2.4 + 0.01i	2.1 + 0.05i	2.0 + 0.01i	2.1 + 0.01i	2.1 + 0.00i		
	1.5	4.9 + 0.52i	5.3 + 0.01i	5.1 + 0.02i	5.0 + 0.27i	4.9 + 0.25i	5.0 + 0.07i		
	2.0	8.6 + 1.38i	9.3 + 0.19i	9.8 + 0.09i	9.8 + 0.16i	9.4 + 0.48i	9.7 + 0.17i		

 $\succ \Lambda_b B^{(*)}$ will be the main decay channel of seven states.

➤ The width of seven states are very small, about 1MeV or smaller.

Two coupled channel calculation

	α_r	CC	$\Sigma_b B^*$	$\Sigma_b^* B$	$\Sigma_b B$	$\Lambda_b B^*$	$\Lambda_b B$
$\Sigma_b B^* (1/2^-)$ $M_{th} = 11135 \text{MeV}$	0.5	1.4 + 0.01i		1.2 + 0.00i	1.2 + 0.00i	1.2 + 0.00i	1.2 + 0.00i
	1.0	5.7 + 0.05i		5.0 + 0.01i	5.0 + 0.02i	5.0 + 0.01i	5.0 + 0.00i
	1.5	11.4 + 0.26i		10.0 + 0.05i	10.1 + 0.05i	10.0 + 0.07i	10.1 + 0.03i
	2.0	17.6 + 0.70i		15.7 + 0.25i	16.1 + 0.09i	15.7 + 0.22i	15.9 + 0.03i
$\Sigma_b B^* (3/2^-)$ $M_{th} = 11135 \text{MeV}$	0.5	1.4 + 0.02i		1.2 + 0.00i	1.2 + 0.00i	1.2 + 0.00i	1.2 + 0.00i
	1.0	5.7 + 0.17i		5.1 + 0.01i	5.1 + 0.14i	5.1 + 0.02i	5.1 + 0.00i
	1.5	11.2 + 0.28i		10.1 + 0.02i	10.3 + 0.22i	10.0 + 0.20i	10.1 + 0.05i
	2.0	17.2 + 0.45i		15.7 + 0.03i	16.2 + 0.33i	15.0 + 0.81i	15.5 + 0.31i
$\Sigma_b^* B(3/2^-)$ $M_{th} = 11110 \mathrm{MeV}$	1.0	2.4 + 0.08i			2.4 + 0.00i	2.4 + 0.07i	2.4 + 0.00i
	1.5	5.5 + 0.57i			5.7 + 0.00i	5.4 + 0.49i	5.7 + 0.00i
	2.0	8.4 + 2.05i			9.6 + 0.00i	8.8 + 1.56i	9.6 + 0.00i
$\Sigma_b B(1/2^-)$ $M_{th} = 11090 \mathrm{MeV}$	0.5	1.6 + 0.00i				1.4 + 0.00i	1.4 + 0.00i
	1.0	6.0 + 0.04i				5.3 + 0.04i	5.3 + 0.00i
	1.5	11.8 + 0.33i				10.2 + 0.25i	10.4 + 0.00i
	2.0	17.9 + 1.60i				15.4 + 1.17i	16.1 + 0.00i

Summary

- The three LHCb P_c states can be explained as $\Sigma_c \overline{D}\left(\frac{1}{2}\right)$, $\Sigma_c \overline{D}^*\left(\frac{1}{2},\frac{3}{2}\right)$ states well.
- $\Lambda_c \overline{\mathbf{D}}^*$ is an important decay channel of P_c states.
- $P_{cs}(4459)$ can be assigned as $\Xi_c \overline{D}^*(\frac{3}{2})$ state, but two pole-structure can not be excluded.

 P_{cs}

 P_{c}

• The $\Xi_c \overline{D} \left(\frac{1}{2}\right)$, $\Xi'_c \overline{D} \left(\frac{1}{2}\right)$, $\Xi'_c \overline{D} \left(\frac{3}{2}\right)$ and $\Xi'_c \overline{D}^* \left(\frac{1}{2}, \frac{3}{2}\right)$ are also suggested, and the $\Xi_c^* \overline{D}^* \left(\frac{1}{2}, \frac{3}{2}\right)$ seem

too weak to be found.

- Five hidden bottom states $\Sigma_b^* B^* \left(\frac{5}{2}\right), \Sigma_b B^* \left(\frac{1}{2}, \frac{3}{2}\right), \Sigma_b^* B \left(\frac{3}{2}\right)$ and $\Sigma_b B \left(\frac{1}{2}\right)$ are suggested.
- $\Lambda_b B^*$ is also an important decay channel for hidden bottom states.
 - Such states can be searched for at COMPASS, J-PARC, especially the Electron Ion Collider (EicC) in China.

THANK YOU

