

XYZ results from Belle experiment

Belle experiment and data samples

XYZ studies at Belle:

- The study of γγ → γψ(2S) at Belle [arXiv: 2105.06605 (2021)]
- $X(3872) \rightarrow \pi^+\pi^- J/\psi$ in single-tag two-photon reactions [PRL 126, 122001 (2021)]
- Search for R⁺⁺ state [PRD 100, 012002 (2019)]

Two photon process

Contributions from two-photon process studies to XYZ particles: X(3915) in $\gamma\gamma \rightarrow \omega J/\psi$, Z(3930) in $\gamma\gamma \rightarrow D\overline{D}$, X(4350) in $\gamma\gamma \rightarrow \phi J/\psi$...

• $J^{PC} = 0^{-+}, 0^{++}, 2^{++}, 2^{-+}, \dots$

$\boldsymbol{Z(3930)\to D\overline{D}}$

- Both $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$ can be produced in two-photon collisions and decay to $\gamma\psi(2S)$ via an E1 transition.
- The partial widths are expected to be $\Gamma(\chi_{c0}(2P) \rightarrow \gamma \psi(2S)) \approx 135 \text{ keV}$ and $\Gamma(\chi_{c2}(2P) \rightarrow \gamma \psi(2S)) \approx 207 \text{ keV}$ according to the Godfrey-Isgur relativized potential model [PRD 72, 054026 (2005)], and the masses of the two states are expected to be about 3916 MeV/c² and 3979 MeV/c², respectively.

$\gamma \psi(2S)$ in Y(2S) radiative decays

PRD 84, 071107(R) (2011)

The signal yield is 5.5 ± 2.7 with a significance of 1.8σ .

 $\gamma\gamma \rightarrow \gamma\psi(2S)$

- Decay chain $\gamma\gamma \rightarrow \gamma\psi(2S)$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $J/\psi \rightarrow e^{+}e^{-} \text{ or } \mu^{+}\mu^{-}$
- Data sample:
 980 fb⁻¹ e⁺e⁻ collisions data samples
- MC simulations

The Treps event generator [arxiv:1310.0157] is used to simulate the two-photon collisions $\gamma \gamma \rightarrow \gamma \psi(2S)$.

The process $e^+e^- \rightarrow \psi(2S)$ via ISR has been studied well in Belle, and is simulated by the Phokhara generator [EPJC 24, 71 (2002)] with a QED precision better than 0.5%.

arXiv: 2105.06605 (2021) Prepared for submission to JHEP

J/ψ and $\psi(2S)$ signals

J/ ψ signal mass window is defined as $|M_{\ell^+\ell^-} - m_{J/\psi}| < 4\sigma$ Ψ (2S) signal mass window is defined as $|M_{\pi^+\pi^- J/\psi} - m_{\psi(2S)}| < 3\sigma$ The green shaded histogram is from J/ ψ mass sidebands.

yy characteristics and ISR suppress

- In the final states of two-photon collisions usually travel away from the interaction point along the accelerator beamline; $P_t^*(\gamma \psi(2S))$ is small.
- $P_t^*(\psi(2S))$ could be large if it originates from $\chi_{c0}(2P)$ or $\chi_{c2}(2P)$.

 $M_{rec}^{2}(\gamma\psi(2S)) > 10 (GeV/c^{2})^{2} \text{ considering}$ (1) For $e^{+}e^{-} \rightarrow \psi(2S)$ ISR evevnts, $M_{rec}^{2}(\gamma\psi(2S))$ tends to be zero; (2) For two-photon events, $M_{rec}^{2}(\gamma\psi(2S))$ tends to be a large value considering a pair of $e^{+}e^{-}$ traveling back-to-back along the beams.

$M(\gamma\psi(2S))$ distribution

The $e^+e^- \rightarrow \psi(2S)$ ISR backgrounds are dominant.

The differnece between the Phokhara estimated ISR backgrounds (blue curve) and real data (dots with error bars) for the region $3.7 < M(\gamma \psi(2S)) < 3.9 \text{ GeV/c}^2$ is 4%.

-10

The fit to $M(\gamma \psi(2S))$

$\Gamma_{\gamma\gamma}\mathcal{B}(X\to\gamma\psi(2S))$

$$\begin{split} BW &\propto 12\pi\Gamma_{\gamma\gamma}\mathcal{B}_{X}/((s-M^{2})^{2}+M^{2}\Gamma^{2}) \\ &\Gamma_{\gamma\gamma}\mathcal{B}_{X} = \frac{n_{fit}^{sig}}{L_{tot}\cdot\mathcal{B}^{prod}\cdot\varepsilon\cdot F(\sqrt{s},J)} \\ &F(\sqrt{s},J) = 4\pi^{2}(2J+1)L_{\gamma\gamma}(\sqrt{s})/s \end{split}$$

Resonant parameters	J = 0	J = 2	
$\Gamma_{\gamma\gamma}\mathcal{B}(R_1 \to \gamma \psi(2S))$	(8.2 ± 2.3 ± 0.9) eV	(1.6 ± 0.5 ± 0.2) eV	
$\Gamma_{\gamma\gamma}\mathcal{B}(R_2 \to \gamma \psi(2S))$	(5.3 ± 2.7 ± 2.5) eV	$(1.1 \pm 0.5 \pm 0.5) eV$	
M _{X(3915)}	3918.4 MeV/c ² (fixed)		
Γ _{X(3915)}	20 MeV (fixed)		
$\Gamma_{\gamma\gamma}\mathcal{B}(\mathbb{R}_{X(3915)} \rightarrow \gamma \psi(2S))$	(10.9 ± 3.1 ± 1.2) eV	(2.2 ± 0.6 ± 0.2) eV	
M _{Z(3930)}		3922.2 MeV/c ² (fixed)	
Γ _{Z(3930)}		35 MeV (fixed)	
$\Gamma_{\gamma\gamma}\mathcal{B}(\mathbb{R}_{\mathbb{Z}(3930)} \rightarrow \gamma \psi(2S))$	-	(2.4 ± 0.7 ± 0.4) eV	

Discussion on two structures

- The mass of R₂ is close to the $m_{\chi_{c2}(2P)} = 3979 \text{ MeV/c}^2$ from a theoretical calculation [PRD 72, 054026 (2005)]. If the two structures seen here are $\chi_{c0}(2P)$ and $\chi_{c2}(2P)$, the hyperine splitting is about $\Delta M_{2-0}(2P) \approx 93 \text{ MeV/c}^2$, comparable to that of the 1P states, $\Delta M_{2-0}(1P) \approx 141 \text{ MeV/c}^2$.
- Considering X(3872) is a possibly $\chi_{c1}(2P)$ state, the mass of X(3872) is lower than the J = 0 mass.
- Assuming $\mathcal{B}(Z(3930) \rightarrow \gamma \psi(2S))/\mathcal{B}(Z(3930) \rightarrow D\overline{D}) = 0.011 \pm 0.004$, a rough estimation shows the partial width $\Gamma(Z(3930) \rightarrow \gamma \psi(2S)) = 200 \sim 300$ keV, which is close to the 207 keV value from Godfrey-Isgur relativized potential model [PRD 72, 054026 (2005)].

X(3872) productions

 $B \to X(3872)K, \Lambda_b^0 \to X(3872)pK^-; e^+e^-$ radiative decay; pp and $p\bar{p}$ collisions

Evidence for X(3872) $\rightarrow \pi^+\pi^- J/\psi$ produced in single-tag two-photon interactions

[PRL 126, 122001 (2021)]

- One of the final-state electrons, referred to as a tagging electron, is observed, and the other scatters at an extremely forward (backward) angle and is not detected [Nucl. Phys. B 523, 423 (1998)]. Such events are called single-tag events.
- The measurement of X(3872) in two-photon reactions help to understand its internal structure.

$$X(3872): J^{PC} = 1^{++} \qquad \gamma \gamma \rightarrow X(3872) \longrightarrow \text{Not allowed}$$

But, $\gamma^* \gamma \rightarrow X(3872) \longrightarrow \text{Allowed}$
 $e^- \text{tag}$
 $e^- \text{tag}$
 $e^- \chi^* Q^2 \qquad J/\psi \qquad e^+ \text{or } \mu^+ \mu^-$
 $e^+ \qquad Data sample: 825 \text{ fb}^{-1} \text{ in } e^+ e^- \text{ collisions near 10.6 GeV}$

 $-Q^2$ is the invariant mass-squared of the virtual photon.

Background: $e^+e^- \rightarrow e^+e^-\psi(2S)$

The J/ $\psi\pi^+\pi^-$ events can also originate from t-channel photon exchange with the emission of a virtual photon, which we call internal bremsstrahlung (IB) [PRD 81, 117501 (2010)]. Both processes produce C-odd J/ $\psi\pi^+\pi^-$, like $\psi(2S)$, Y(4260), ... -16-

The whole spectrum of M($J/\psi\pi^+\pi^-$)

We fit a linear function **Background Estimation:** $\max(0, a[M(J/\psi\pi^+\pi^-) - 3.872 \text{ GeV}/c^2] + b)$ [PRL 126, 122001 (2021)] Step-function model X(3872) signal region 5 (+1) events 0.22 ± 0.20 (/ 10 MeV) **ψ(2S)**

0

 $M(\pi^+\pi^-J/\psi)$

 $M(X(3872)) = (3.8723 \pm 0.0012) \text{ GeV/c}^2$

- With 0.11 ± 0.10 background events, the number of signal events is $N_{sig} =$ $2.9^{+2.2}_{-2.0}$ (stat.) ± 0.1 (syst.) with a significance of 3.2σ (Feldman-Cousins method applied [Phys. Rev. D 57, 3873 (1998)]).
- With 0.032 < $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ < 0.061 at 90% C.L., $\tilde{\Gamma}_{\gamma\gamma}$ = 20 500 eV. This is consistent with values predicted for $c\overline{c}$ model [NPB 523, 423 (1998), PRD 83, 114015 (2011)].

Search for $R^{++} \rightarrow D^+ D_s^{*+}$

[PRD 102, 112001 (2020)]

- The R⁺⁺ can be interpreted as a D⁺D^{*}_{s0}(2317)⁺ moleculelike state with exotic properties: doubly charged and doubly charmed in Refs. [PRD 99, 076017 (2019), PRD 100, 034029 (2019), PRD 101, 014022 (2020)].
- The alternative processes are via triangle diagrams into $R^{++} \rightarrow D^+ D_s^{*+}$ and $R^{++} \rightarrow D_s^+ D^{*+}$.
- The mass of R^{++} is predicted to be in the range of 4.13 to 4.17 GeV/c²; the width is (2.30-2.49) MeV.

• A state decaying to $D^+D_s^{*+}$ is also a good candidate for a doublycharged tetraquark according to Ref. [PRL 119, 202002 (2017)].

State	JP	$m(Q_iQ_jq_kq_l)$	Decay Channel	Q [MeV]
$\{cc\}[\overline{ud}]$	1+	3978	D+D*0 (3876)	102
$\{cc\}[\overline{q}_k\overline{s}]$	1+	4156	D+D _s *+ (3977)	179
$\{cc\}[\overline{q}_k\overline{q}_l]$	0+,1+,2+	4146,4167,4210	D+D°,D+D*0(3734,3876)	412,292,476
$[bc][\overline{ud}]$	0+	7229	B ⁻ D ⁺ /B ⁰ D ⁰ (7146)	83
$[bc][\overline{q}_k\overline{s}]$	0+	7406	B _S D (7236)	170
$[bc][\overline{q}_k\overline{q}_l]$	1+	7439	B*D/BD* (7190/7290)	249
${bc}[\overline{ud}]$	1+	7272	B*D/BD* (7190/7290)	82
$\{bc\}[\overline{q}_k\overline{s}]$	1+	7445	${\rm DB_{S}}^{*}$ (7282)	163
$\{bc\}[\overline{q}_k\overline{q}_l]$	0+,1+,2+	7461,7472,7493	BD/B*D (7146/7190)	317,282,349

Selections and datasets

$$R^{++} \rightarrow D^+ D_s^{*+}$$

• $D^+ \rightarrow K^- \pi^+ \pi^- \mathcal{K}_s^0 (\rightarrow \pi^+ \pi^-) \pi^-$

• $D_s^{*-} \rightarrow D_s^- \gamma$

Data samples:

• $D_s^- \to \phi \pi^- \overline{K}^{*0} K^+$

Y(1S, 2S) → R⁺⁺+anything
e⁺e⁻ → R⁺⁺+anything at √s = 10.52, 10.58, and 10.867 GeV; ISR correction is considered assuming a 1/s dependence.

Selections have been optimized by maximizing the Punzi parameter $S/(\frac{3}{2} + \sqrt{B})$.

\sqrt{s} (GeV)	Luminosity (fb ⁻¹)	Events	
9.46 [Y(1S)]	5.74±0.09	(102±3) million	
10.023 [Y(2S)]	24.91±0.35	(158±4) million	
10.52	89.5±1.3	-	Tot
10.58 [Y(4S)]	711±10	-	954
10.867 [Y(5S)]	121.4±1.7	-	

Fotal luminosity: 952 fb⁻¹

$M(D^+D_s^{*+})$ distributions

- The cyan shaded histograms are from normalized $M(D^+)$ and $M(D_s^{*+})$ sideband events.
- The fitted results with the R^{++} mass fixed at 4.14 GeV/ c^2 and width fixed at 2 MeV.
- No *R*⁺⁺ signals are observed.

90% C.L. upper limits

90% C. L. Upper limits [M(R⁺⁺) varying from 4.13 to 4.17 GeV/c², Γ(R⁺⁺) varying from 0 to 5 MeV]

 $\mathcal{B}(\Upsilon(1S) \rightarrow \mathbb{R}^{++} + \text{anything})\mathcal{B}(\mathbb{R}^{++} \rightarrow \mathbb{D}^+\mathbb{D}^{*+}_s) < (1.18 - 5.65) \times 10^{-4}$

 $\mathcal{B}(\Upsilon(2S) \rightarrow \mathbb{R}^{++} + \text{anything})\mathcal{B}(\mathbb{R}^{++} \rightarrow \mathbb{D}^+\mathbb{D}^{*+}_{S}) < (1.63 - 9.27) \times 10^{-4}$

 $\sigma(e^+e^- \rightarrow R^{++} + anything)\mathcal{B}(R^{++} \rightarrow D^+D_s^{*+}) < (202.8 - 950.6) \text{ fb at } \sqrt{s} = 10.52 \text{ GeV}$

 $\sigma(e^+e^- \rightarrow \mathrm{R^{++}} + \mathrm{anything}) \mathcal{B}(\mathrm{R^{++}} \rightarrow \mathrm{D^+D_s^{*+}}) < (218.9 - 1054.0) \text{ fb at } \sqrt{s} = 10.58 \text{ GeV}$

 $\sigma(e^+e^- \rightarrow R^{++} + anything)\mathcal{B}(R^{++} \rightarrow D^+D_s^{*+}) < (346.6 - 1841.7)$ fb at $\sqrt{s} = 10.867$ GeV

Summary

- Although Belle has stopped data taking for ~10 years ago, we are still producing exciting results.
- The two-photon process $\gamma \gamma \rightarrow \gamma \psi(2S)$ is studied from 3.7 GeV/c² to 4.2 GeV /c² for the first time with the full Belle data sample, and two structures are found in the invariant mass distribution of $\gamma \psi(2S)$.
- We reported the evidence of X(3872) in single-tag two-photon reactions, and the first search for a doubly-charged DDK bound state R⁺⁺.
- We always expect the results from much larger Belle II data samples. Belle II will reach 50 ab⁻¹ by 2027, which will provide greater sensitivities and precise measurements for XYZ states.

Thanks for your attentions!

