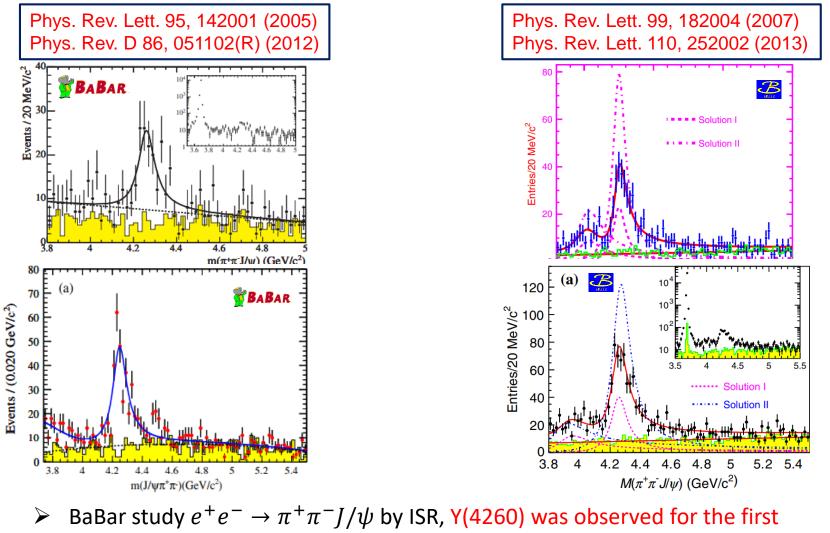
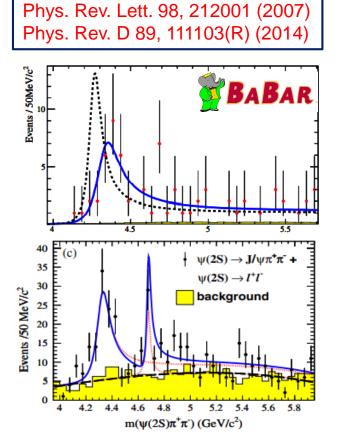

# The charmonium-like Y states at BESIII

Xuhong Li University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics 2021, 15-18 May


#### Introduction

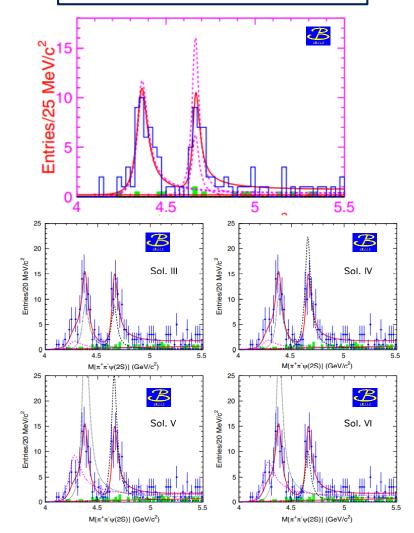


- Since the discovery of  $J/\psi$ , a series of excited charmonium states ( $\psi(2S)$ ,  $\psi(3770)$ , ...)
- Many charmonium-like states are observed beyond the prediction of quark model
- A series of Y states (Y(4220), Y(4390), Y(4660)...) are found

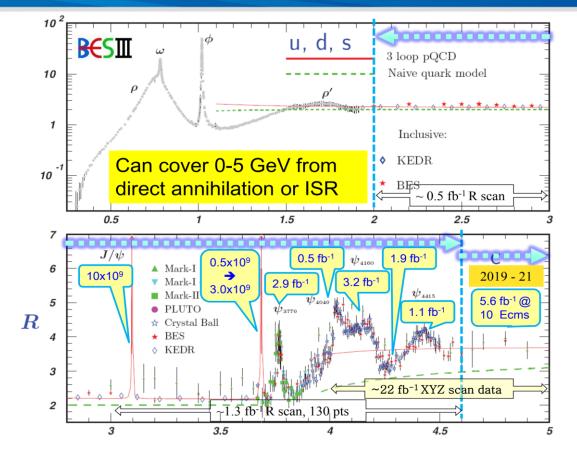



### Some history of Y-states



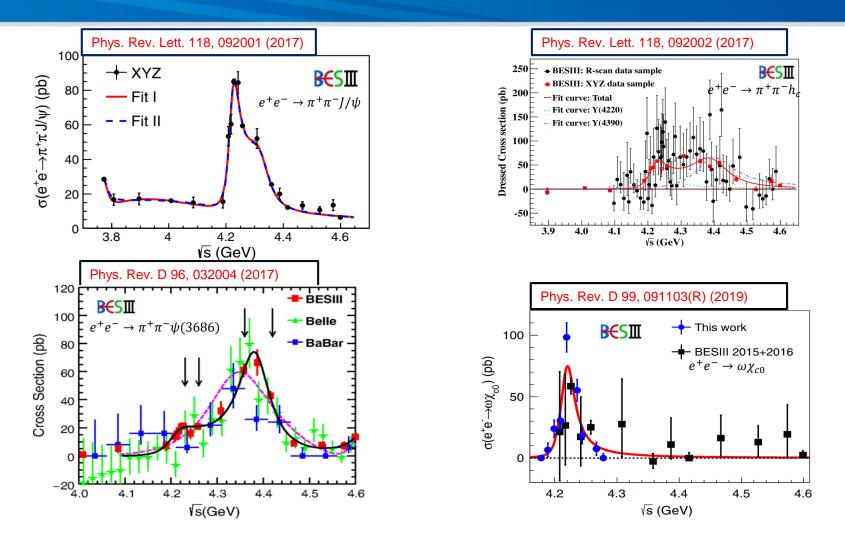

Belle confirmed the Y(4260) in the same process

## Some history of Y-states




► BaBar and Belle study  $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ by ISR, Y(4360) and Y(4660) were observed

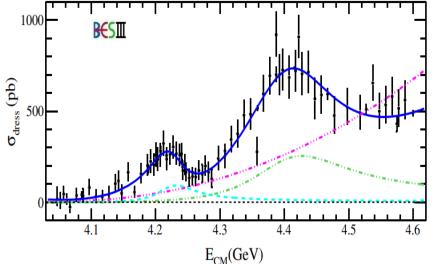
#### Phys. Rev. Lett. 98, 212001 (2007) Phys. Rev. D 91, 112007 (2015)




#### BESIII data sets for XYZ study



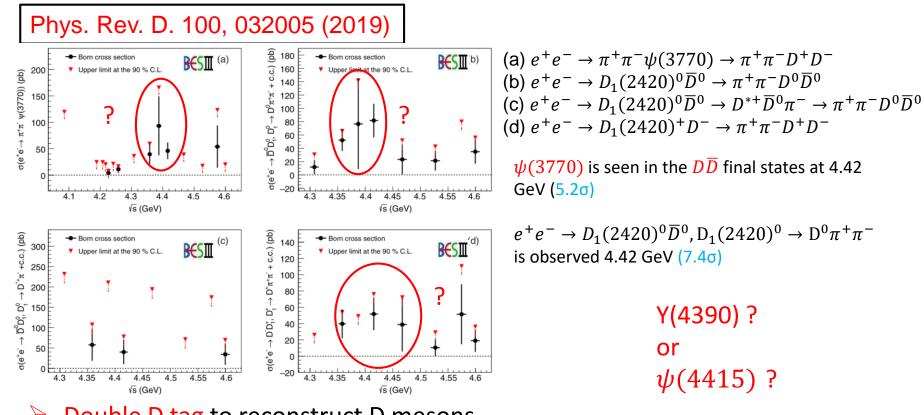
- Over 20 fb<sup>-1</sup> data samples above 3.8 GeV
- > BESIII can directly generate Y states ( $J^P = 1^{--}$ ) by  $e^+e^-$  annihilation
- Search for more possible Y states and more decay modes


#### Y(4220) and Y(4390)



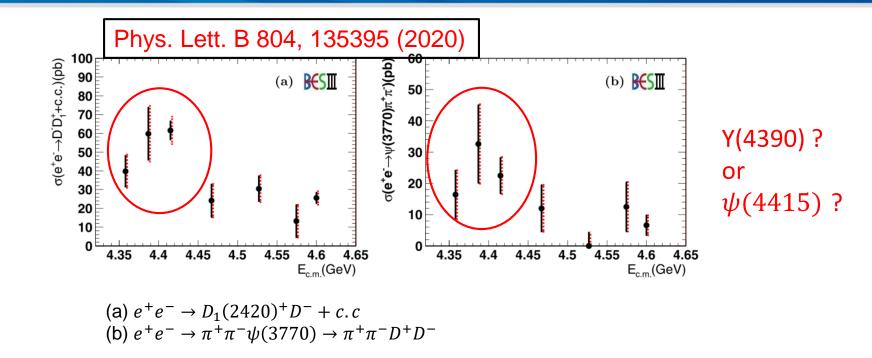
The Y(4260) observed by Belle and BaBar consists of Y(4220) and Y(4320)
The Y(4360) observed by Belle and BaBar consists of Y(4220) and Y(4390)

#### Process $e^+e^- \rightarrow \pi^+D^0D^{*-} + c.c$






| Parameter                | Solution I                    | Solution II   | Solution III   | Solution IV    |  |
|--------------------------|-------------------------------|---------------|----------------|----------------|--|
| $c ({\rm MeV}^{-3/2})$   | $(6.2 \pm 0.5) 	imes 10^{-4}$ |               |                |                |  |
| $M_1  ({\rm MeV}/c^2)$   | $4228.6 \pm 4.1$              |               |                |                |  |
| $\Gamma_1$ (MeV)         | $77.0\pm 6.8$                 |               |                |                |  |
| $M_2 ({\rm MeV}/c^2)$    | $4404.7 \pm 7.4$              |               |                |                |  |
| $\Gamma_2$ (MeV)         | $191.9 \pm 13.0$              |               |                |                |  |
| $\Gamma_1^{\rm el}$ (eV) | $77.4 \pm 10.1$               | $8.6\pm1.6$   | $99.5\pm14.6$  | $11.1\pm2.3$   |  |
| $\Gamma_2^{\rm el}$ (eV) | $100.4\pm13.3$                | $64.2\pm8.0$  | $664.2\pm80.0$ | $423.0\pm47.0$ |  |
| $\phi_1$ (rad)           | $-2.0 \pm 0.1$                | $3.0 \pm 0.2$ | $-0.9 \pm 0.1$ | $-2.2 \pm 0.1$ |  |
| $\phi_2$ (rad)           | $2.1 \pm 0.2$                 | $2.5\pm0.2$   | $-2.3 \pm 0.1$ | $-1.9 \pm 0.1$ |  |


- D<sup>0</sup> is reconstructed by channel D<sup>0</sup> → K<sup>-</sup>π<sup>+</sup>, D<sup>\*-</sup> is reconstructed by recoiling  $π^+D^0$
- Two resonant structures are in good agreement with Y(4220) and Y(4390)
  - $M = (4228.6 \pm 4.1 \pm 6.3) \text{MeV}/c^2, \Gamma = (77.0 \pm 6.8 \pm 6.3) \text{MeV}$
- The first observation of Y(4220) associated with an open-charm final state
- The parameters of second enhancement are strongly dependent on the model assumptions, and need further analysis to understand

#### Process $e^+e^- \rightarrow \pi^+\pi^- D^+ D^- \& \pi^+\pi^- D^0 \overline{D}{}^0$

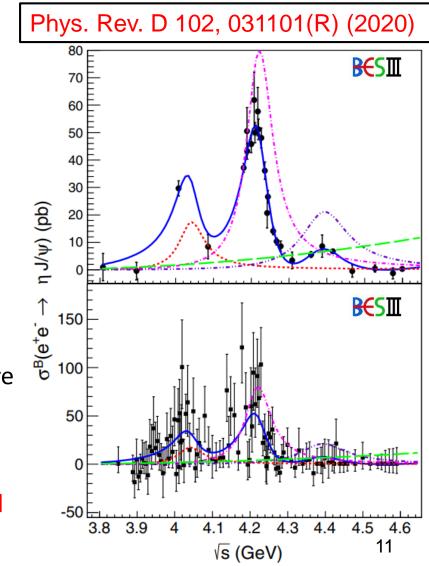



- Double D tag to reconstruct D mesons
- Cross section line shape are shown
- > The Y(4390) or the  $\psi(4415)$  resonance or any other resonance cannot be distinguished

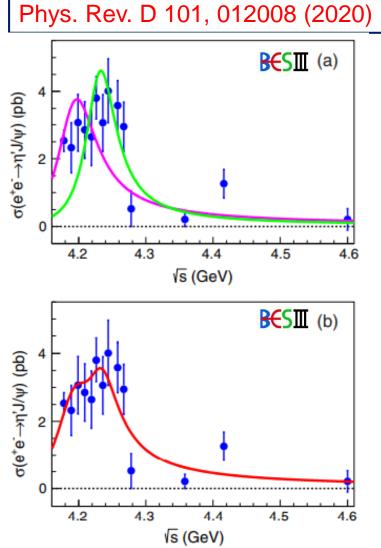
#### Process $e^+e^- \rightarrow \pi^+\pi^-D^+D^-$



- ►  $D^+$  is reconstructed by channel  $D^+ \to K^- \pi^+ \pi^+$ ,  $D^-$  is reconstructed by recoiling mass
- $\blacktriangleright$  Clear signals of the  $D_1(2420)$  and  $\psi(3770)$
- Some indications of enhanced cross sections for between 4.36 and 4 . 42 GeV


#### Process $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$




- The average ratio consistent with the isospin symmetry
- Fit with two resonant structures, mass and width of Y(4320) are fixed to results of  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- > Y(4220) is confirmed in both  $\pi^0 \pi^0 J/\psi$  and  $\pi^0 Z_c^0(3900)$  line shape
- > The relationship of Y(4220) and  $Z_c^0(3900)$  is established

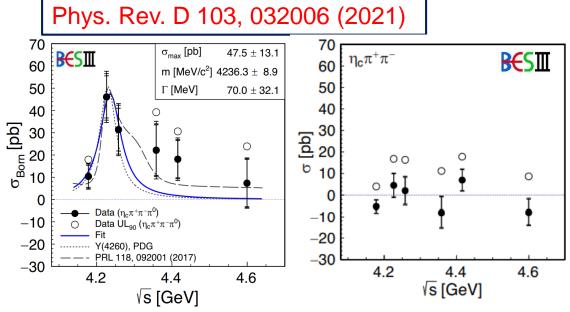
|                                         | -           |                 | -           |
|-----------------------------------------|-------------|-----------------|-------------|
| Parameters                              | Solution 1  | Solution 2      | Solution 3  |
| $M_1(\text{MeV}/c^2)$                   |             | 4039(fixed)     |             |
| $\Gamma_1(MeV)$                         |             | 80(fixed)       |             |
| $\Gamma_1^{e^+e^-} \mathcal{B}r_1$ (eV) | $1.5\pm0.3$ | $1.4 \pm 0.3$   | $7.0\pm0.6$ |
| $\phi_1$ (rad)                          | $3.3\pm0.3$ | $3.1\pm0.3$     | $4.5\pm0.2$ |
| $M_2({\rm MeV}/c^2)$                    |             | $4218.6\pm3.8$  |             |
| $\Gamma_2(MeV)$                         |             | $82.0\pm5.7$    |             |
| $\Gamma_2^{e^+e^-}\mathcal{B}r_2$ (eV)  | $8.0\pm1.7$ | $4.8\pm1.0$     | $7.0\pm1.5$ |
| $\phi_2$ (rad)                          | $4.2\pm0.4$ | $3.6\pm0.3$     | $2.9\pm0.3$ |
| $M_3({\rm MeV}/c^2)$                    |             | $4382.0\pm13.3$ |             |
| $\Gamma_3(MeV)$                         |             | $135.8\pm60.8$  |             |
| $\Gamma_3^{e^+e^-}\mathcal{B}r_3$ (eV)  | $3.4\pm2.2$ | $1.5\pm1.0$     | $1.7\pm1.1$ |
| $\phi_3$ (rad)                          | $2.8\pm0.4$ | $3.3\pm0.4$     | $3.0\pm0.4$ |

- $\succ$  The new study of  $e^+e^- → η J/ψ$
- Simultaneous fit is performed to the XYZ data and scan data
- The Y(4220) and Y(4390) are observed for the first time in the  $\eta J/\psi$  final states



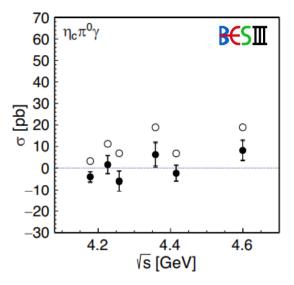
#### Process $e^+e^- \rightarrow \eta' J/\psi$




| Parameter                                                                                  | Solution I     | Solution II   |
|--------------------------------------------------------------------------------------------|----------------|---------------|
| $\overline{\Gamma_{ee}^{\psi(4160)}}\mathcal{B}(\psi(4160) \to \eta' J/\psi) \text{ (eV)}$ | $0.17\pm0.04$  | $1.07\pm0.09$ |
| $\Gamma_{ee}^{\psi(4260)} \mathcal{B}(\psi(4260) \to \eta' J/\psi) \text{ (eV)}$           | $0.06\pm0.03$  | $1.38\pm0.11$ |
| $\phi$ (rad)                                                                               | $-0.03\pm0.44$ | $2.54\pm0.04$ |

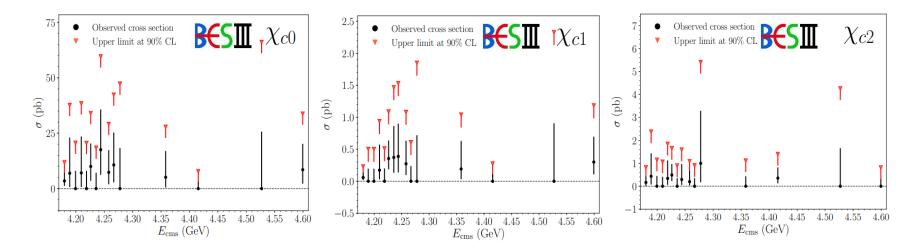
> The reconstruction of  $\eta'$ :

 $\eta' \rightarrow \gamma \pi^+ \pi^- / \eta \pi^+ \pi^-, \eta \rightarrow \gamma \gamma$ 


- The cross section line shape shows an enhancement around 4.2 GeV
- Can't describe by a single  $\psi(4160)$  or  $\psi(4260)$  (Fixed mass and width)
- A coherent sum of  $\psi(4160)$  or Y(4260) provides a reasonable description of data
- The significance of  $\psi(4160)$  and Y(4260) are 6.3 $\sigma$  and 4.0 $\sigma$ , respectively

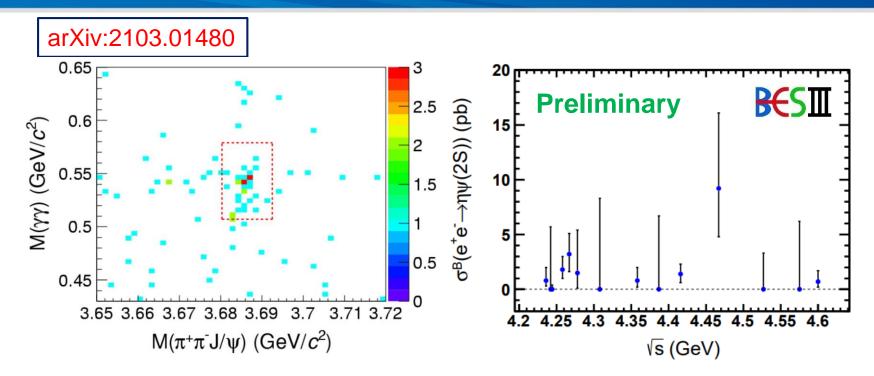
#### Process $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ , $\eta_c \pi^+\pi^-$ and $\eta_c \pi^0 \gamma$




 $M = (4236.3 \pm 8.9) \text{MeV}/c^2 \ \Gamma = (70.0 \pm 32.1) \text{MeV}$ 

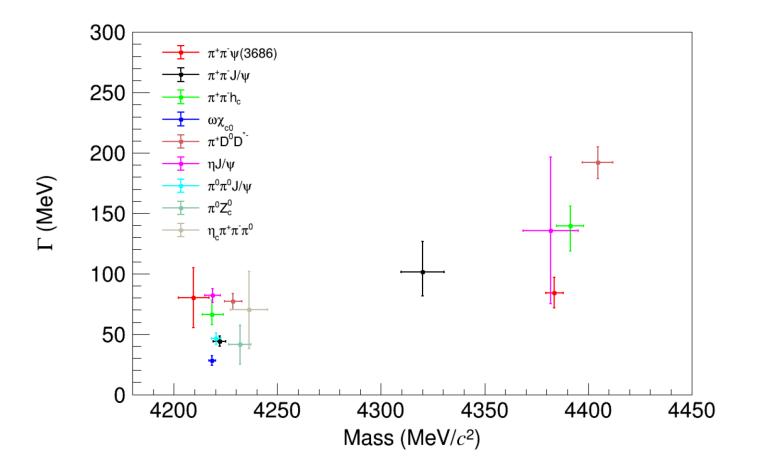
- ➤ The process  $e^+e^- \rightarrow \eta_c \pi^+ \pi^- \pi^0$  is observed for the first time (5.1σ @ 4.23 GeV)
- ➤ The cross sections of  $e^+e^- \rightarrow \eta_c \pi^+\pi^-$  and  $e^+e^- \rightarrow \eta_c \pi^0 \gamma$  are found to be consistent with zero
- The Born cross section is consistent with the production via the intermediate Y(4260)




| Decay                                 | $\mathcal{B}_i[\%]$ [39]          | Mode No. i |
|---------------------------------------|-----------------------------------|------------|
| $3(\pi^{+}\pi^{-})$                   | $1.8 \pm 0.4$                     | 01         |
| $2(\pi^{+}\pi^{-}\pi^{0})$            | $17.4 \pm 3.3$                    | 02         |
| $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$        | $4.7\pm1.0$                       | 03         |
| $2(\pi^{+}\pi^{-})$                   | $0.97\pm0.12$                     | 04         |
| $K^0_S K^+ \pi^-$                     | $2.43\pm0.17$                     | 05         |
| $K^+K^-\pi^+\pi^-$                    | $0.69\pm0.11$                     | 06         |
| $K^+K^-\pi^0$                         | $1.21\pm0.83$                     | 07         |
| $K^{0}_{S}K^{+}\pi^{-}\pi^{+}\pi^{-}$ | $2.75\pm0.74$                     | 08         |
| $2(\pi^{+}\pi^{-})\eta$               | $4.4 \pm 1.3$                     | 09         |
| $\pi^+\pi^-\eta$                      | $1.7\pm0.5$                       | 10         |
| $K^+K^-\eta$                          | $1.35\pm0.16$                     | 11         |
| $K^{+}K^{-}K^{+}K^{-}$                | $0.146\pm0.030$                   | 12         |
| $K^{+}K^{-}2(\pi^{+}\pi^{-})$         | $0.75\pm0.24$                     | 13         |
| $p\bar{p}$                            | $0.150\pm0.016$                   | 14         |
| $p \bar{p} \pi^+ \pi^-$               | $0.53\pm0.18$                     | 15         |
| $p\bar{p}\pi^0$                       | $0.36\pm0.13$                     | 16         |
| Summed up                             | $\sum_{i} B_{i} = 41.34 \pm 3.93$ |            |






- ► The measured cross sections and corresponding upper limits of  $e^+e^- \rightarrow \pi^+\pi^-\chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi$  are given
- No significant signal has been observed, despite the hint of an slight enhancement at center-of-mass energies between 4.18 GeV and 4.26 GeV

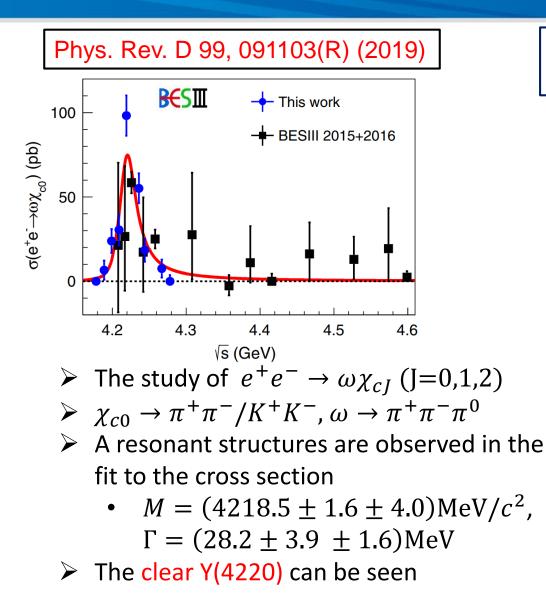
#### Process $e^+e^- \rightarrow \eta \, \psi(2S)$



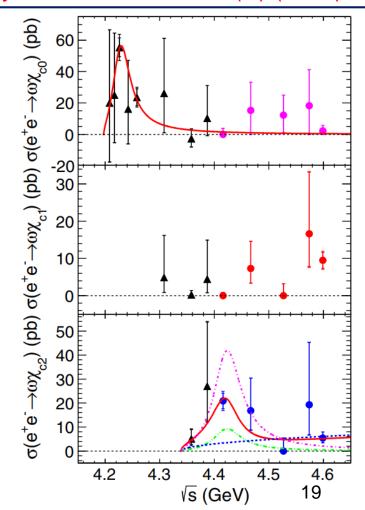
- The e<sup>+</sup>e<sup>-</sup> → η ψ(2S) process is observed for the first time(5σ for 14 data points)
- Impossible to extract the Y state due to limitation of statistics
- Further experimental studies with higher statistics are needed to draw a clear conclusion on the structure

#### Summary

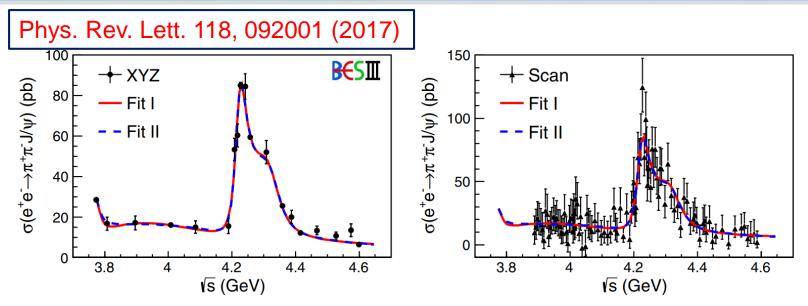



16

#### Summary


- With the data collected by BESIII, lots of progress in study Y states are made:
  - Y(4220) and Y(4320) in  $e^+e^- \to \pi^{+/0}\pi^{-/0}J/\psi$
  - Y(4220) and Y(4390) in  $e^+e^- \to \pi^+\pi^-h_c$
  - Y(4220) and Y(4390) in  $e^+e^- \to \pi^+\pi^-\psi(2S)$
  - Y(4220) in  $e^+e^- \rightarrow \omega \chi_{c0}$
  - Y(4220) in  $e^+e^- \to \pi^+ D^0 D^{*-}$
  - Y(4390) in  $e^+e^- \rightarrow \eta J/\psi$
  - New reactions are studied to search Y states:  $e^+e^- \rightarrow \pi^+\pi^-D^+D^-, \pi^+\pi^-D^0D^0, \eta' J/\psi, \eta_c\pi^+\pi^-\pi^0, \pi^+\pi^-\chi_{cJ}, \eta \psi(2S),$
- More results for Y states study are coming soon

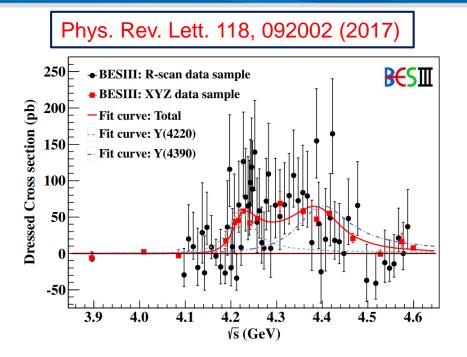
## BACKUP


### Process $e^+e^- \rightarrow \omega \chi_{cJ}$



#### Phys. Rev. Lett. 114, 092003 (2015) Phys. Rev. D 93, 011102(R) (2016)




#### Process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$



- Simultaneous fit to XYZ data(left) and R-scan data (right)
- Two resonant structures are observed in the fit to the cross section
  - $M = (4222.0 \pm 3.1 \pm 1.4) \text{MeV}/c^2$ ,  $\Gamma = (44.1 \pm 4.3 \pm 2.0) \text{MeV}$
  - $M = (4320.0 \pm 10.4 \pm 7.0) \text{MeV}/c^2, \Gamma = (101.4^{+25.3}_{-19.7} \pm 10.2) \text{MeV}$
- $\succ$  The significance of the second resonance is 7.6 $\sigma$
- The Y(4220) agrees with the Y(4260)
- The Y(4320) agrees with the Y(4360)

Y(4260) -> Y(4220) + Y(4360) ?

#### Process $e^+e^- \rightarrow \pi^+\pi^-h_c$



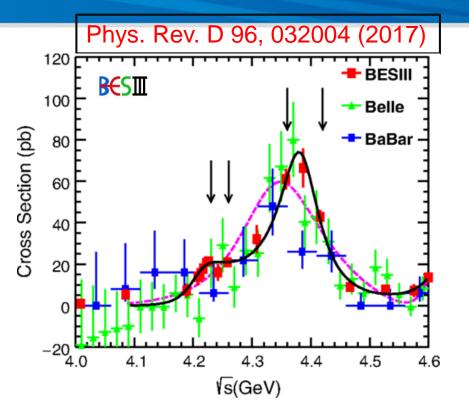
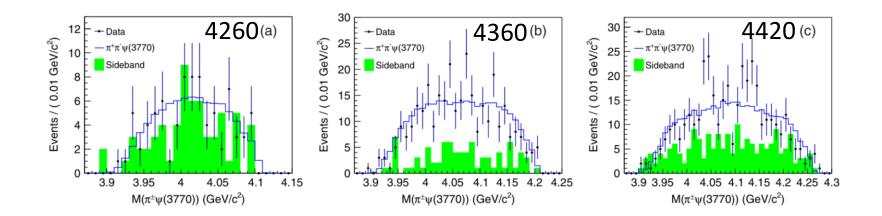

| Phys. Rev. | Lett. | 111, 3 | 242001 | (2013) |
|------------|-------|--------|--------|--------|
|------------|-------|--------|--------|--------|

TABLE I.  $e^+e^- \rightarrow \pi^+\pi^-h_c$  cross sections (or upper limits at the 90% confidence level). The third errors are from the uncertainty in  $\mathcal{B}(h_c \rightarrow \gamma \eta_c)$  [11].

| $\sqrt{s}$ (GeV) | $\mathcal{L}$ (pb <sup>-1</sup> ) | $n_{h_c}^{\rm obs}$ | $\sigma(e^+e^- \rightarrow \pi^+\pi^- h_c) \text{ (pb)}$ |
|------------------|-----------------------------------|---------------------|----------------------------------------------------------|
| 3.900            | 52.8                              | <2.3                | <8.3                                                     |
| 4.009            | 482.0                             | <13                 | <5.0                                                     |
| 4.090            | 51.0                              | <6.0                | <13                                                      |
| 4.190            | 43.0                              | $8.8 \pm 4.9$       | $17.7 \pm 9.8 \pm 1.6 \pm 2.8$                           |
| 4.210            | 54.7                              | $21.7\pm5.9$        | $34.8 \pm 9.5 \pm 3.2 \pm 5.5$                           |
| 4.220            | 54.6                              | $26.6\pm6.8$        | $41.9 \pm 10.7 \pm 3.8 \pm 6.6$                          |
| 4.230            | 1090.0                            | $646 \pm 33$        | $50.2 \pm 2.7 \pm 4.6 \pm 7.9$                           |
| 4.245            | 56.0                              | $22.6 \pm 7.1$      | $32.7 \pm 10.3 \pm 3.0 \pm 5.1$                          |
| 4.260            | 826.8                             | $416 \pm 28$        | $41.0 \pm 2.8 \pm 3.7 \pm 6.4$                           |
| 4.310            | 44.9                              | $34.6 \pm 7.2$      | $61.9 \pm 12.9 \pm 5.6 \pm 9.7$                          |
| 4.360            | 544.5                             | $357 \pm 25$        | $52.3 \pm 3.7 \pm 4.8 \pm 8.2$                           |
| 4.390            | 55.1                              | $30.0\pm7.8$        | $41.8 \pm 10.8 \pm 3.8 \pm 6.6$                          |
| 4.420            | 44.7                              | 29.1 ± 7.3          | $49.4 \pm 12.4 \pm 4.5 \pm 7.6$                          |

- $\succ$  h<sub>c</sub> is reconstructed by h<sub>c</sub> → γη<sub>c</sub>, η<sub>c</sub> is reconstructed by 16 exclusive hadronic final states
- → The cross sections are found to be of the same order of magnitude as those of  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- Two resonant structures are observed in the fit to the cross section
  - $M = (4218.4^{+5.5}_{-4.5} \pm 0.9) \text{MeV}/c^2, \Gamma = (66.0^{+12.3}_{-8.3} \pm 0.4) \text{MeV}$
  - $M = (4391.5^{+6.3}_{-6.8} \pm 1.0) \text{MeV}/c^2, \Gamma = (139.5^{+16.2}_{-20.6} \pm 0.6) \text{MeV}$
- > The Y(4220) here is consistent with state in  $\pi^+\pi^- J/\psi$
- $\succ$  The Y(4390) is different from Y(4360) and  $\psi(4415)$


#### Process $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$



| Parameters                                 | Solution I       | Solution I    |  |
|--------------------------------------------|------------------|---------------|--|
| $M(Y4220) (MeV/c^2)$                       | $4209.5 \pm 7.4$ |               |  |
| $\Gamma(Y(4220))$ (MeV)                    | $80.1 \pm 24.6$  |               |  |
| $\mathcal{B}\Gamma^{e^+e^-}(Y(4220))$ (eV) | $0.8\pm0.7$      | $0.4\pm0.3$   |  |
| $M(Y4390)$ (MeV/ $c^2$ )                   | $4383.8 \pm 4.2$ |               |  |
| $\Gamma(Y(4390))$ (MeV)                    | $84.2 \pm 12.5$  |               |  |
| $\mathcal{B}\Gamma^{e^+e^-}(Y(4390))$ (eV) | $3.6 \pm 1.5$    | $2.7 \pm 1.0$ |  |
| $\phi_1$ (rad)                             | $3.3 \pm 1.0$    | $2.8\pm0.4$   |  |
| $\phi_2$ (rad)                             | $0.8\pm0.9$      | $4.7\pm0.1$   |  |

- The fit to the cross section shows contributions from two structures, Y(4220)+Y(4390)
- The Y(4360) observed by Belle and BaBar consists of two structure.

#### Process $e^+e^- \rightarrow \pi^+\pi^- D^+ D^- \& \pi^+\pi^- D^0 \overline{D}{}^0$



> The  $\pi^{\pm}\psi(3770)$  invariant mass distribution