Hidden－charm molecule with

strangeness

Zhi Yang（杨智）

University of Electronic Science and Technology of China（电子科技大学）

Based on Phys．Rev．D103， 074029
In collaboration with 曹须，郭奉坤，Juan Nieves，Manuel Pavon Valderrama

第七届XYZ粒子研讨会，2021／5／17

Outline

- Hadron structure
- Zc family
- Molecular interpretation of $\mathrm{Zc}(3900)$
- Line shape and pole position of $\operatorname{Zcs}(3985)$
in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$
- Outlook and Summary

Hadron structures

Conventional hadrons

- Proposals for the heavy exotic hadrons
- Hadron structure is a platform to study the QCD in low energy region.
- Quark model classified the hadrons very well.
- However, many new hadrons can not fit into the conventional hadrons (mass and properties).

Exotic hadrons in Zc family

Lebed, Mitchell, Swanson, PPNP93(2017)143
$\mathrm{Zc}(3900)^{+}$
PRL 110, 252001 (2013)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{-} \pi^{+} / / / 1 \mathrm{~b}$ $\mathrm{Zc}(3900)^{0}$
PRL 115, 112003 (2015)

$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi$ $\mathrm{Zc}(4020)^{+}$
PRL 111, 242001(2013)

$e^{+} e^{-} \rightarrow \pi^{-} \pi^{+} h_{c}$
$\mathrm{Zc}(4020)^{0}$
PRL113,212002 (2014)

$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} h_{c}$
$\mathrm{Zc}(3885)^{+}$
PRL 112, 022001(2014)

$$
e^{+} e^{-} \rightarrow \pi^{-}\left(D \bar{D}^{*}\right)^{+}
$$

$\mathrm{Zc}(3885)^{0}$
PRL115, 222002 (2015)

$e^{+} e^{-} \rightarrow \pi^{0}\left(\boldsymbol{D}^{*} \overline{\boldsymbol{D}}\right)^{0}$
Zc(4025) ${ }^{+}$
PRL 112, 132001 (2014)

$$
e^{+} e^{-} \rightarrow \pi^{-}\left(D^{*} \bar{D}^{*}\right)^{+}
$$

$$
\mathrm{Zc}(4025)^{0}
$$

PRL115, 182002 (2015)

$e^{+} e^{-} \rightarrow \pi^{0}\left(\boldsymbol{D}^{*} \overline{\boldsymbol{D}}^{*}\right)^{\mathbf{0}}$

Zc(3900): kinematical effect or molecular?

- The charged one was observed in $J / \psi \pi^{ \pm}$mass distribution by BESIII and Belle.
- Must contain at least 4 quarks, $\bar{c} \bar{d} \bar{d}$, slightly above the $D^{*} \bar{D}$ threshold, mainly $D^{*} \bar{D}$ molecular? Or tetraquark, hybrid...?
- Kinematical cusp effect? In this scenario, it is not self consistent.

Guo, Hanhart, Wang and Zhao, PRD91(2015)051504

- Hadronic molecule, not triangle singularity

Gong, Pang, Wang and Zheng, EPJC78 (2018)276

$\mathrm{Zc}(3900)$: absence in B decay
$>$ The $Z_{c}(3900)$ was found through $e^{+} e^{-} \rightarrow J / \psi \pi \pi$ and $D^{*} \bar{D} \pi$.
$>$ However, it was not found in the $B \rightarrow K Z c\left(Z_{c} \rightarrow J / \psi \pi\right)$ decay. Instead, the $Z_{c}(4200)$ and $Z_{c}(4430)$ were found.
> The absence may have something to do with its internal structure.
$>$ Under the hadronic molecular picture, both $X(3872)$ and $Z_{c}(3900)$ have $D^{*} \bar{D}$ constituent, with isospin 0 and 1 , respectively.
\Rightarrow The production of the $D^{*} \bar{D}$ pair with isospin 1 is highly suppressed in B decays.
\rightarrow The $\mathrm{Zc}(3900)$ being a $D^{*} \bar{D}$ hadronic molecule naturally explains its absence in the B decays.

Zcs studies before 2020

Theoretical predictions:

> Molecule picture using QCD sum rule

```
Lee, Nielsen and Wiedner, J. Korean Phys. Soc. 55, 424 (2009)
```

> Hadrocharmonium Voloshin, PLB798,135022 (2019); Ferretti and Santopinto, JHEP04,119
> Single kaon emission model

Experimental measurements:

> Unsuccessful searches for Zcs by Belle and BES3 in the hidden channel in $e^{+} e^{-} \rightarrow J / \psi K^{+} K^{-}$.

PRD77, 011105(2008); PRD89,072015(2014); PRD97, 071101(2018)
$>$ No signal in LHCb measurement of $\bar{B}_{s}^{0} \rightarrow J / \psi K^{+} K^{-}$.
Phys.Rev.D 87, 072004(2013)

Zcs signal in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$

> The recoil mass distribution was studied by BES3;

- A clear peak was found at energy point 4.681 GeV :

$$
M\left[Z_{c s}(3985)\right]=3982.5_{-3.3}^{+2.8} \mathrm{MeV}, \Gamma\left[Z_{c s}(3985)\right]=12.8_{-5.3}^{+6.1} \mathrm{MeV}
$$

BES3,Phys.Rev.Lett.126.102001

Theoretical explanation of Zcs

> Kinematic effect: two-body reflection/triangle singularity;

> Molecule;

> Tetraquark;

........

```
L Meng, Bo Wang, Shi-Lin Zhu, Phys.Rev.D 102 (2020) 11, 111502;
Bing-Dong Wan, Cong-Feng Qiao, arXiv:2011.08747;
Jun-Zhang Wang, Qing-Song Zhou, Xiang Liu, Takayuki Matsuki, Eur.Phys.J.C81(2021)1,51;
Rui Chen, Qi Huang, Phys.Rev.D103(2021)3,034008;
Meng-Chuan Du, Qian Wang, Qiang Zhao, arXiv:2011.09225;
Zhi-Feng Sun, Chu-Wen Xiao, arXiv:2011.09404;
Qi-Nan Wang, Wei Chen, Hua-Xing Chen, arXiv:2011.10495;
Bo Wang, Lu Meng, Shi-Lin Zhu, Phys.Rev.D103(2021)2,L021501;
Zhi-Gang Wang, arXiv:2011.10959;
K. Azizi, N. Er, Eur.Phys.J.C81(2021)1,61;
Xin Jin, Xuejie Liu, Yaoyao Xue, Hongxia Huang. Jialun Ping, arXiv:2011.12230;
Yu A. Simonov, JHEP04(2021)051;
J.Y. Sungu, A. Turkan, H.Sundu, E. Veli Veliev, arXiv:2011.13013;
Natsumi Ikeno, Raquel Molina, Eulogio Oset, Phys.Lett.B814(2021)136120;
Xiang-Kun Dong, Feng-Kun Guo, Bing-Song Zou, Phys.Rev.Lett.126(2021)15,152001;
Yong-Jiang Xu, Chun-Yu Cui, Ming-Qiu Huang, arXiv:2011.14313;
```

\qquad

Zcs signal in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$

> The Zcs structure was also observed in other four energy points.

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}_{\mathrm{int}}\left(\mathrm{pb}^{-1}\right)$
4.628	511.1
4.641	541.4
4.661	523.6
4.681	1643.4
4.698	526.2

BES3,Phys.Rev.Lett.126.102001
> There exists one particle in the energy range:

$$
\psi(4660) \quad I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
$$

```
\psi(4660) MASS
\psi(4660) WIDTH
4633 \pm7 MeV (S = 1.4)
64\pm9 MeV
```


Triangle singularity in Zcs production

$>$ There is such triangle diagram which appears as peak around threshold at c.m. energy 4.681 GeV ;
$>$ It can enhance the production of near-threshold hadronic molecules.

Guo, Liu and Sakai, PPNP112,103757; Guo, Hanhart, Meissner, Wang, Zhao and Zou, RMP90,015004

Energy points: $[4.628,4.641,4.661,4.681,4.698] \mathrm{GeV}$

Zcs in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$

- Constant-contant EFT: (for virtual/bound state)

$$
V_{\text {virtual }}^{(O)}=C^{(O)}
$$

- N: overall constant (e+evertex);
- r: relative weight between

(c)

(e)

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}_{\text {int }}\left(\mathrm{pb}^{-1}\right)$	$n_{\text {sig }}$	$f_{\text {corr }} \bar{\varepsilon}(\%)$	$\sigma^{B} \cdot \mathcal{B}(\mathrm{pb})$
4.628	511.1	$4.2_{-4.2}^{+6.1}$	1.03	$0.8_{-0.8}^{+1.2} \pm 0.6(<3.0)$
4.641	541.4	$9.3_{-6.2}^{+7.3}$	1.09	$1.6_{-1.1}^{+1.2} \pm 1.3(<4.4)$
4.661	523.6	$10.6_{-7.4}^{+8.9}$	1.28	$1.6_{-1.1}^{+1.3} \pm 0.8(<4.0)$
4.681	1643.4	$85.2_{-1.7}^{+1.6}$	1.18	$4.4_{-0.8}^{+0.9} \pm 1.4$
4.698	526.2	$17.8_{-7.2}^{+8.1}$	1.42	$2.4_{-1.0}^{+1.1} \pm 1.2(<4.7)$

Fits of Zcs line shapes

> The fits are quite well, $\chi^{2} /$ dof ≈ 0.6 for both cases.

Energy points: 4.681 GeV

Fits of Zcs line shapes

Resonance EFT

Energy points: $[4.628,4.641,4.661,4.698] \mathrm{GeV}$

LECs and Poles

$>$ The LECs in fitting Zcs line shapes:
for constant-contact EFT:

$$
C^{(O)}(\Lambda)=-0.77_{-0.10}^{+0.12}\left(-0.45_{-0.04}^{+0.05}\right) \mathrm{fm}^{2}
$$

for resonant EFT:

$$
\begin{aligned}
& C^{(O)}(\Lambda)=-0.72_{-0.13}^{+0.18}\left(-0.44_{-0.05}^{+0.06}\right) \mathrm{fm}^{2} \\
& D^{(O)}(\Lambda)=-0.17_{-0.21}^{+0.21}\left(-0.025_{-0.049}^{+0.066}\right) \mathrm{fm}^{4}
\end{aligned}
$$

Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {virtual }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	3871_{-3}^{+2}	3867_{-7}^{+4}	$3884.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	4014_{-3}^{+2}	4012_{-6}^{+3}	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*}-D^{*} \bar{D}_{s}$	$3979.4,3976.9$	3974_{-3}^{+2}	3971_{-6}^{+3}	
	$D^{*} \bar{D}_{s}^{*}$	4120.8	4117_{-5}^{+3}	4115_{-6}^{+3}	
Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {res }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	$3861_{-0}^{+20}-i 6_{-6}^{+14}(\mathrm{R} / \mathrm{V})$	$3861_{-35}^{+16}-i 0_{-0}^{+29}(\mathrm{R} / \mathrm{V})$	$3884.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	$4004_{-0}^{+18}-i 0_{-0}^{+20}(\mathrm{R} / \mathrm{V})$	$4006_{-37}^{+10}-i 0_{-0}^{+28}(\mathrm{R} / \mathrm{V})$	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*}-D^{*} \bar{D}_{s}$	$3979.4,3976.9$	$3963_{-0}^{+20}-i 3_{-3}^{+16}(\mathrm{R} / \mathrm{V})$	$3966_{-36}^{+12}-i 0_{-0}^{+20}(\mathrm{R} / \mathrm{V})$	$3982.5_{-3.3}^{+2.8}-i 25.6_{-10.6}^{+12.1}[4]$
	$D^{*} \bar{D}_{s}^{*}$	4120.8	$4110_{-0}^{+14}-i 0_{-0}^{+19}(\mathrm{R} / \mathrm{V})$	$4111_{-25}^{+9}-i 0_{-0}^{+15}(\mathrm{R} / \mathrm{V})$	

$Z c(3900):$ line shape in $J / \psi \pi$ and $D^{*-} D^{0}$ channels

Albaladejo, Guo, Hidalgo and Nieves, PLB755,337(2016)

$M_{Z_{c}}(\mathrm{MeV})$	$\Gamma_{Z_{c}} / 2(\mathrm{MeV})$	Ref.	Final state
$3894 \pm 6 \pm 1$	$30 \pm 12 \pm 6$	$\Lambda_{2}=1.0 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$
$3886 \pm 4 \pm 1$	$22 \pm 6 \pm 4$	$\Lambda_{2}=0.5 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$
$3831 \pm 26_{-28}^{+7}$	virtual state	$\Lambda_{2}=1.0 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$
$3844 \pm 19_{-21}^{+12}$	virtual state	$\Lambda_{2}=0.5 \mathrm{GeV}$	$J / \psi \pi, \bar{D}^{*} D$

LECs and Poles from $\mathrm{Zc}(3900)$ case

$>$ The LECS in reproducing the pole position of $\mathrm{Zc}(3900)$:
for constant-contact EFT:
[19] Albaladejo, Guo, Hidalgo and Nieves, PLB755,337

$$
C^{(O)}(\Lambda)=-0.29_{-0.32}^{+0.15}\left(-0.28_{-0.39}^{+0.08}\right) \mathrm{fm}^{2}
$$

for resonant EFT:

$$
\begin{aligned}
& C^{(O)}(\Lambda)=-0.06_{-0.16}^{+0.24}\left(-0.22_{-0.06}^{+0.10}\right) \mathrm{fm}^{2} \\
& D^{(O)}(\Lambda)=-0.31_{-0.17}^{+0.10}\left(-0.09_{-0.07}^{+0.03}\right) \mathrm{fm}^{4}
\end{aligned}
$$

Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {virtual }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	Input $[19]$	Input $[19]$	$3888.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	3988_{-27}^{+21}	3978_{-36}^{+25}	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*} / D^{*} \bar{D}_{s}$	$3979.4 / 3976.9$	3948_{-27}^{+22}	3937_{-36}^{+25}	
	$D^{*} \bar{D}_{s}^{*}$	4120.8	4092_{-26}^{+21}	4083_{-35}^{+24}	
Potential	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$	Masses $(\Lambda=1 \mathrm{GeV})$	Experiment
$V_{\text {res }}^{(O)}$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.8	Input $[19]$	Input $[19]$	$3888.4 \pm 2.5[11]$
	$D^{*} \bar{D}^{*}$	4017.2	$4025 \pm 4-i(21 \pm 7)$	$4035 \pm 6-i(29 \pm 13)$	$4024.1 \pm 1.9[11]$
	$D \bar{D}_{s}^{*} / D^{*} \bar{D}_{s}$	$3979.4 / 3976.9$	$3986 \pm 4-i(22 \pm 7)$	$3996 \pm 6-i(30 \pm 13)$	$3982.5_{-3.3}^{+2.8}-i 25.6_{-10.6}^{+12.1}[4]$
	$D^{*} \bar{D}_{s}^{*}$	4120.8	$4129 \pm 4-i(21 \pm 7)$	$4138 \pm 6-i(28 \pm 12)$	

Zcs signal in J/ ψK channel through pp collider

> LHCb measurement of $B^{+} \rightarrow J / \psi \phi K^{+}$:

$$
\begin{aligned}
& M\left[Z_{c s}(4000)\right]=4003 \pm 6_{-14}^{+4} \mathrm{MeV} \\
& \Gamma\left[Z_{c s}(4000)\right]=131 \pm 15 \pm 26 \mathrm{MeV}
\end{aligned}
$$

Ying-Hui Ge, Xiao-Hai Liu, Hong-wei Ke, arXiv:2103.05282;

Xiaoyun Chen, Yue Tan, Yuan Chen, arXiv:2103.07347;

Ortega, Entem, Fernandez, arXiv:2103.07871;
Hua-Xing Chen, arXiv:2103.08586;
Maiani, Polosa, Riquer, arXiv:2103.08331;
Xuejie Liu, Hongxia Huang, Jialun Ping, Dianyong Chen, Xiemei Zhu, arXiv:2103.12425;
U.Ozdem, A.Karadeniz Yildirim, arXiv:2104.13074;

Pan-Pan Shi, Fei Huang, Wen-Ling Wang, arXiv:2105.02397;

$$
\begin{aligned}
& M\left[Z_{c s}(4220)\right]=4216 \pm 24_{-30}^{+43} \mathrm{MeV}, \\
& \Gamma\left[Z_{c s}(4220)\right]=233 \pm 52_{-73}^{+97} \mathrm{MeV}
\end{aligned}
$$

Outlook: Zcs cross section from T-matrix?

- Our cross section and ZCS production cross section of BES3:

$\sqrt{s}(\mathrm{GeV})$	$\sigma^{B} \cdot \mathcal{B}(\mathrm{pb})$
4.628	$0.8_{-0.8}^{+1.2} \pm 0.6(<3.0)$
4.641	$1.6_{-1.2}^{+1.1} \pm 1.3(<4.4)$
4.661	$1.6_{-1.1}^{+1.3} \pm 0.8(<4.0)$
4.681	$4.4_{-0.8}^{+0.9} \pm 1.4$
4.698	$2.4_{-1.0}^{+1.1} \pm 1.2(<4.7)$

Summary

> Two EFTs correspond to two origins: virtual/bound and resonance states. Both can fit the line shapes very well.
> Triangle singularity plays an important role.
$>$ Zc and Zcs are partners in SU(3)-flavor symmetry with molecular configurations.
> High statistic measurements from different channels or energies are needed to:

- classify the origin of Zcs;
- reduce the error of pole position.

Thank you!

