

含径向/轨道激发全重 四夸克态质量谱

刘风萧 湖南师范大学

₩合作者:刘名声、赵强、钟显辉

第七届XYZ粒子研讨会(青岛)

Outline

研究背景

第七届XYZ粒子研讨会(青岛)

研究背景

工作:

M. S. Liu, F. X. Liu, X. H. Zhong, Q. Zhao, arXiv: 2006.11952

F. X. Liu, M. S. Liu, X. H. Zhong, Q. Zhao, Phys. Rev. D 103, 016016

夸克模型与波函数分类

第七届XYZ粒子研讨会(青岛)

夸克模型

哈密顿量: $H = T + \sum_{i < j} \left(V_{ij}^{Conf} + V_{ij}^{Coul} \right) + \sum_{i < j} \left(V_{ij}^{SS} + V_{ij}^{LS} + V_{ij}^{Ten} \right)$

			_
参数:	m_c (GeV)	1.483	-
	m_b (GeV)	4.852	
	$lpha_{cc}$	0.5461	
	$lpha_{bb}$	0.4311	
	$\sigma_{cc}~({ m GeV})$	1.1384	
	$\sigma_{bb}~({ m GeV})$	2.3200	
	<i>b</i> (GeV ²)	0.1425	

W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Phys. Rev. D 95, 034026.

Q. Li, M. S. Liu, L. S. Lu, Q. F. L, L. C. Gui, and X. H.Zhong, Phys. Rev. D 99, 096020.

味道空间: 对称 {{qq} { $\bar{q}\bar{q}}$ }

颜色空间:

对称 $|6\bar{6}\rangle^c : \{\{qq\}^6 \{\bar{q}\bar{q}\}^{\bar{6}}\}\$ 反对称 $|\bar{3}3\rangle^c : \{\{qq\}^{\bar{3}} \{\bar{q}\bar{q}\}^{\bar{3}}\}$

自旋空间: (S-S耦合)

自旋空间:

1	χ^{00}_{00}	=	$\frac{1}{2}\left(\downarrow\uparrow\downarrow\uparrow-\downarrow\uparrow\uparrow\downarrow-\uparrow\downarrow\downarrow\uparrow+\uparrow\downarrow\uparrow\downarrow\right)$
2	χ^{10}_{11}	=	$\frac{1}{\sqrt{2}}\left(-\uparrow\uparrow\downarrow\uparrow+\uparrow\uparrow\uparrow\downarrow\right)$
3	χ^{10}_{10}	=	$\frac{1}{2}\left(-\downarrow\uparrow\downarrow\uparrow+\downarrow\uparrow\uparrow\downarrow-\uparrow\downarrow\downarrow\uparrow+\uparrow\downarrow\uparrow\downarrow\right)$
4	χ^{10}_{1-1}	=	$\frac{1}{\sqrt{2}}\left(\downarrow\downarrow\uparrow\downarrow-\downarrow\downarrow\downarrow\uparrow\right)$
5	χ^{01}_{11}	=	$\frac{1}{\sqrt{2}}\left(\uparrow\downarrow\uparrow\uparrow-\downarrow\uparrow\uparrow\uparrow\right)$
6	χ^{01}_{10}	=	$\frac{1}{2}\left(\uparrow\downarrow\uparrow\downarrow-\downarrow\uparrow\uparrow\downarrow+\uparrow\downarrow\downarrow\uparrow-\downarrow\uparrow\downarrow\uparrow\right)$
7	χ^{01}_{1-1}	=	$\frac{1}{\sqrt{2}}\left(\uparrow\downarrow\downarrow\downarrow\downarrow-\downarrow\uparrow\downarrow\downarrow\downarrow\right)$
8	χ^{11}_{00}	=	$\frac{1}{\sqrt{12}} \left(2 \uparrow \uparrow \downarrow \downarrow - \uparrow \downarrow \uparrow \downarrow - \downarrow \uparrow \uparrow \downarrow - \uparrow \downarrow \downarrow \uparrow - \downarrow \uparrow \downarrow \uparrow$
9	χ^{11}_{11}	=	$\frac{1}{2}\left(\uparrow\uparrow\uparrow\downarrow\downarrow+\uparrow\uparrow\downarrow\uparrow-\uparrow\downarrow\uparrow\uparrow-\downarrow\uparrow\uparrow\uparrow\right)$
10	χ^{11}_{10}	=	$\frac{1}{\sqrt{2}}\left(\uparrow\uparrow\downarrow\downarrow-\downarrow\downarrow\uparrow\uparrow\right)$
11	χ^{11}_{1-1}	=	$\frac{1}{2}\left(\uparrow\downarrow\downarrow\downarrow\downarrow+\downarrow\uparrow\downarrow\downarrow-\downarrow\downarrow\uparrow\downarrow-\downarrow\downarrow\downarrow\uparrow\right)$
12	χ^{11}_{22}	=	<u> </u>
13	χ^{11}_{21}	=	$\frac{1}{2}\left(\uparrow\uparrow\uparrow\downarrow\downarrow+\uparrow\uparrow\downarrow\uparrow+\uparrow\downarrow\uparrow\uparrow+\downarrow\uparrow\uparrow\uparrow\right)$
14	χ^{11}_{20}	=	$\frac{1}{\sqrt{6}}\left(\uparrow\uparrow\downarrow\downarrow\downarrow+\uparrow\downarrow\uparrow\downarrow+\downarrow\uparrow\uparrow\downarrow+\uparrow\downarrow\downarrow\uparrow+\downarrow\uparrow\downarrow\uparrow+\downarrow\downarrow\uparrow\uparrow+\downarrow\downarrow\uparrow\uparrow\right)$
15	χ^{11}_{2-1}	=	$\frac{1}{2}\left(\uparrow\downarrow\downarrow\downarrow\downarrow+\downarrow\uparrow\downarrow\downarrow+\downarrow\downarrow\uparrow\downarrow+\downarrow\downarrow\downarrow\downarrow\uparrow\right)$
16	χ^{11}_{2-2}	=	$\downarrow \downarrow \downarrow \downarrow \downarrow$

坐标空间:	(L-L耦合)
-------	---------

		\mathbf{I}_{ξ_1}	\mathbf{I}_{ξ_2}	\mathbf{I}_{ξ_3}	L
25		0	0	0	0
1P	ξ_1	1	0	0	1
	ξ_2	0	1	0	1
	ξ_3	0	0	1	1
1D	ξ_1	2	0	0	2
	ξ_2	0	2	0	2
	ξ3	0	0	2	2
	$\xi_1 \otimes \xi_3$	1	0	1	0,1,2
	$\xi_2 \otimes \xi_3$	0	1	1	0,1,2
	$\xi_1 \otimes \xi_2$	1	1	0	0,1,2

依据置换对称性、J^{PC}量子数的要求构造总波函数。

4个1S态

0++	J_{00}^{00}	:	$\psi^{1S}_{000}\chi^{00}_{00}$	$ 6\overline{6}\rangle^c$
	J_{00}^{00}	:	$\psi^{1S}_{000}\chi^{11}_{00}$	$ \bar{3}3\rangle^c$
1+-	J_{11}^{01}	•	$\psi^{1S}_{000}\chi^{11}_{11}$	$ \bar{3}3\rangle^{c}$
2^{++}	J_{22}^{02}		$\psi^{1S}_{000}\chi^{11}_{22}$	$ \bar{3}3\rangle^c$

12个2S态

0+-	:	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} - \psi_{100}^{\xi_2} \right)$	χ^{00}_{00}	$ 6\bar{6}\rangle^{c}$	1+-	:	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} - \psi_{100}^{\xi_2} \right)$	χ^{11}_{11}	$ \bar{3}3\rangle^c$
0+-	:	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} - \psi_{100}^{\xi_2} \right)$	χ^{11}_{00}	$ \overline{3}3\rangle^{c}$	1+-	:	$\psi_{100}^{\xi_3}$	χ^{11}_{11}	$ \bar{3}3\rangle^c$
0++	:	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} + \psi_{100}^{\xi_2} \right)$	χ^{00}_{00}	$ 6\overline{6}\rangle^{c}$	1++	:	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} + \psi_{100}^{\xi_2} \right)$	χ^{11}_{11}	$ \bar{3}3\rangle^c$
0^{++}	:	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} + \psi_{100}^{\xi_2} \right)$	χ^{11}_{00}	$ \bar{3}3\rangle^c$	2^{+-}	:	$\sqrt{rac{1}{2}} \left(\psi_{100}^{\xi_1} - \psi_{100}^{\xi_2} ight)$	χ^{11}_{22}	$ \bar{3}3\rangle^c$
0^{++}	;	$\psi_{100}^{\xi_3}$	χ^{00}_{00}	$ 6\bar{6}\rangle^{c}$	2^{++}	:	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} + \psi_{100}^{\xi_2} \right)$	χ^{11}_{22}	$ \bar{3}3\rangle^c$
0++	:	$\psi_{100}^{\xi_3}$	χ^{11}_{00}	$ \bar{3}3\rangle^{c}$	2^{++}	:	$\psi_{100}^{\xi_3}$	χ^{11}_{22}	$ \bar{3}3\rangle^{c}$

20个1P态

			20 A 197	
0	J_{00}^{11}	:	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{10} - \psi_{010}^{\xi_1} \chi_{10}^{10} + \psi_{01-1}^{\xi_1} \chi_{11}^{10} - \psi_{011}^{\xi_2} \chi_{1-1}^{01} + \psi_{010}^{\xi_2} \chi_{10}^{01} - \psi_{01-1}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
0	J_{00}^{11}	•	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{01} - \psi_{010}^{\xi_1} \chi_{10}^{01} + \psi_{01-1}^{\xi_1} \chi_{11}^{01} - \psi_{011}^{\xi_2} \chi_{1-1}^{10} + \psi_{010}^{\xi_2} \chi_{10}^{10} - \psi_{01-1}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
0-+	J_{00}^{11}	:	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{10} - \psi_{010}^{\xi_1} \chi_{10}^{10} + \psi_{01-1}^{\xi_1} \chi_{11}^{10} + \psi_{011}^{\xi_2} \chi_{1-1}^{01} - \psi_{010}^{\xi_2} \chi_{10}^{01} + \psi_{01-1}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
0-+	J_{00}^{11}	:	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{01} - \psi_{010}^{\xi_1} \chi_{10}^{01} + \psi_{01-1}^{\xi_1} \chi_{11}^{01} + \psi_{0111}^{\xi_2} \chi_{1-1}^{10} - \psi_{010}^{\xi_2} \chi_{10}^{10} + \psi_{01-1}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
0-+	J_{00}^{11}	:	$\sqrt{rac{1}{3}} \left(\psi_{011}^{\xi_3} \chi_{1-1}^{11} - \psi_{010}^{\xi_3} \chi_{10}^{11} + \psi_{01-1}^{\xi_3} \chi_{11}^{11} ight)$	$ \bar{3}3\rangle^c$
1	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{10} - \psi_{010}^{\xi_1} \chi_{11}^{10} - \psi_{011}^{\xi_2} \chi_{10}^{01} + \psi_{010}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
1	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{01} - \psi_{010}^{\xi_1} \chi_{11}^{01} - \psi_{011}^{\xi_2} \chi_{10}^{10} + \psi_{010}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^c$
1	J_{11}^{12}	:	$\sqrt{\frac{1}{10}}\psi_{011}^{\xi_3}\chi_{20}^{11} - \sqrt{\frac{3}{10}}\psi_{010}^{\xi_3}\chi_{21}^{11} + \sqrt{\frac{3}{5}}\psi_{01-1}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^{c}$
1	J_{11}^{10}	:	$\psi_{011}^{\xi_3}\chi_{00}^{00}$	$ 6\overline{6}\rangle^{c}$
1	J_{11}^{10}	:	$\psi_{011}^{\xi_3}\chi_{00}^{11}$	$ \bar{3}3\rangle^{c}$
1-+	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{10} - \psi_{010}^{\xi_1} \chi_{11}^{10} + \psi_{011}^{\xi_2} \chi_{10}^{01} - \psi_{010}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\overline{6}\rangle^{c}$
1-+	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{01} - \psi_{010}^{\xi_1} \chi_{11}^{01} + \psi_{011}^{\xi_2} \chi_{10}^{10} - \psi_{010}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
1-+	J_{11}^{11}		$\sqrt{rac{1}{2}} \left(\psi_{011}^{\xi_3} \chi_{10}^{11} - \psi_{010}^{\xi_3} \chi_{11}^{11} ight)$	$ \bar{3}3\rangle^c$
2	J_{22}^{11}	•	$\sqrt{rac{1}{2}} \left(\psi_{011}^{\xi_1} \chi_{11}^{10} - \psi_{011}^{\xi_2} \chi_{11}^{01} ight)$	$ 6\bar{6}\rangle^{c}$
2	J_{22}^{11}	:	$\sqrt{rac{1}{2}} \left(\psi_{011}^{\xi_1} \chi_{11}^{01} - \psi_{011}^{\xi_2} \chi_{11}^{10} ight)$	$ \bar{3}3\rangle^{c}$
2	J_{22}^{12}	:	$\sqrt{\frac{1}{3}}\psi_{011}^{\xi_3}\chi_{21}^{11} - \sqrt{\frac{2}{3}}\psi_{010}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^c$
2-+	J_{22}^{11}	:	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1} \chi_{11}^{10} + \psi_{011}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\overline{6}\rangle^{c}$
2 ⁻⁺	J_{22}^{11}	:	$\sqrt{rac{1}{2}} \left(\psi_{011}^{\xi_1} \chi_{11}^{01} + \psi_{011}^{\xi_2} \chi_{11}^{10} ight)$	$ \bar{3}3\rangle^c$
2-+	J_{22}^{11}	:	$\psi_{011}^{\xi_3}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
3	J_{33}^{12}	:	$\psi_{011}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^c$

2021-5-17

11

80个1D态-

0+-	J_{00}^{11}	:	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{1-1}^{10} - \psi_{010}^{\xi_1 \xi_3} \chi_{10}^{10} + \psi_{01-1}^{\xi_1 \xi_3} \chi_{11}^{10} - \psi_{011}^{\xi_2 \xi_3} \chi_{1-1}^{01} + \psi_{010}^{\xi_2 \xi_3} \chi_{10}^{01} - \psi_{01-1}^{\xi_2 \xi_3} \chi_{11}^{01} \right)$	$ 6\overline{6}\rangle^{c}$
-+0	J_{00}^{11}	:	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{1-1}^{01} - \psi_{010}^{\xi_1 \xi_3} \chi_{10}^{01} + \psi_{01-1}^{\xi_1 \xi_3} \chi_{11}^{01} - \psi_{011}^{\xi_2 \xi_3} \chi_{10}^{10} + \psi_{010}^{\xi_2 \xi_3} \chi_{10}^{10} - \psi_{01-1}^{\xi_2 \xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
0+-	J_{00}^{22}	:	$\sqrt{\frac{1}{10}} \left(\psi_{022}^{\xi_1} \chi_{2-2}^{11} - \psi_{021}^{\xi_1} \chi_{2-1}^{11} + \psi_{020}^{\xi_1} \chi_{20}^{11} - \psi_{02-1}^{\xi_1} \chi_{21}^{11} + \psi_{02-2}^{\xi_1} \chi_{22}^{11} - \psi_{022}^{\xi_2} \chi_{2-2}^{11} + \psi_{021}^{\xi_2} \chi_{2-1}^{11} - \psi_{020}^{\xi_2} \chi_{20}^{11} + \psi_{02-2}^{\xi_2} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^{c}$
0++	J_{00}^{00}	:	$\psi_{000}^{\xi_1\xi_2}\chi_{00}^{00}$	$ \overline{3}3\rangle^{c}$
0++	J_{00}^{00}	:	$\psi_{000}^{\xi_1\xi_2}\chi_{00}^{11}$	$ 6\overline{6}\rangle^{c}$
0++	J_{00}^{11}	:	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{1-1}^{10} - \psi_{010}^{\xi_1 \xi_3} \chi_{10}^{10} + \psi_{01-1}^{\xi_1 \xi_3} \chi_{11}^{10} + \psi_{011}^{\xi_2 \xi_3} \chi_{1-1}^{01} - \psi_{010}^{\xi_2 \xi_3} \chi_{10}^{01} + \psi_{01-1}^{\xi_2 \xi_3} \chi_{11}^{01} \right)$	$ 6\overline{6}\rangle^{c}$
0++	J_{00}^{11}	:	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{1-1}^{01} - \psi_{010}^{\xi_1 \xi_3} \chi_{10}^{01} + \psi_{01-1}^{\xi_1 \xi_3} \chi_{11}^{01} + \psi_{011}^{\xi_2 \xi_3} \chi_{10}^{10} - \psi_{010}^{\xi_2 \xi_3} \chi_{10}^{10} + \psi_{01-1}^{\xi_2 \xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
:0++	J_{00}^{11}	:	$\sqrt{\frac{1}{3}} \left(\psi_{011}^{\xi_1 \xi_2} \chi_{1-1}^{11} - \psi_{010}^{\xi_1 \xi_2} \chi_{10}^{11} + \psi_{01-1}^{\xi_1 \xi_2} \chi_{11}^{11} \right)$	$ 6\overline{6}\rangle^{c}$
0++	J_{00}^{22}	:	$\sqrt{\frac{1}{10}} \left(\psi_{022}^{\xi_1} \chi_{2-2}^{11} - \psi_{021}^{\xi_1} \chi_{2-1}^{11} + \psi_{020}^{\xi_1} \chi_{20}^{11} - \psi_{02-1}^{\xi_1} \chi_{21}^{11} + \psi_{02-2}^{\xi_1} \chi_{22}^{11} + \psi_{022}^{\xi_2} \chi_{2-2}^{11} - \psi_{021}^{\xi_2} \chi_{2-1}^{11} + \psi_{020}^{\xi_2} \chi_{20}^{11} - \psi_{02-1}^{\xi_2} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^{c}$
0++	J_{00}^{22}	:	$\sqrt{\frac{1}{5}} \left(\psi_{022}^{\xi_3} \chi_{2-2}^{11} - \psi_{021}^{\xi_3} \chi_{2-1}^{11} + \psi_{020}^{\xi_3} \chi_{20}^{11} - \psi_{02-1}^{\xi_3} \chi_{21}^{11} + \psi_{02-2}^{\xi_3} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^{c}$
:0++	J_{00}^{22}	:	$\sqrt{\frac{1}{5}} \left(\psi_{022}^{\xi_1\xi_2} \chi_{2-2}^{11} - \psi_{021}^{\xi_1\xi_2} \chi_{2-1}^{11} + \psi_{020}^{\xi_1\xi_2} \chi_{20}^{11} - \psi_{02-1}^{\xi_1\xi_2} \chi_{21}^{11} + \psi_{02-2}^{\xi_1\xi_2} \chi_{22}^{11} \right)$	$ 6\overline{6}\rangle^{c}$
1+-	J_{11}^{01}	:	$\sqrt{\frac{1}{2}} \left(\psi_{000}^{\xi_1 \xi_3} \chi_{11}^{10} - \psi_{000}^{\xi_2 \xi_3} \chi_{11}^{01} \right)$	$ 6\overline{6}\rangle^{c}$
1+-	J_{11}^{01}	:	$\sqrt{\frac{1}{2}} \left(\psi_{000}^{\xi_1 \xi_3} \chi_{11}^{01} - \psi_{000}^{\xi_2 \xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^c$
1+-	J_{11}^{01}	:	$\psi_{000}^{\xi_1\xi_2}\chi_{11}^{11}$	$ 6\bar{6}\rangle^{c}$
1+-	J_{11}^{10}	:	$\psi_{011}^{\xi_1\xi_2}\chi_{00}^{00}$	$ \bar{3}3\rangle^{c}$
1+-	J_{11}^{10}	:	$\psi_{011}^{\xi_1\xi_2}\chi_{00}^{11}$	$ 6\overline{6}\rangle^{c}$
1+-	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1\xi_3} \chi_{10}^{10} - \psi_{010}^{\xi_1\xi_3} \chi_{11}^{10} - \psi_{011}^{\xi_2\xi_3} \chi_{10}^{01} + \psi_{010}^{\xi_2\xi_3} \chi_{11}^{01} \right)$	$ 6\overline{6}\rangle^{c}$
1+-	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1\xi_3} \chi_{10}^{01} - \psi_{010}^{\xi_1\xi_3} \chi_{11}^{01} - \psi_{011}^{\xi_2\xi_3} \chi_{10}^{10} + \psi_{010}^{\xi_2\xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
1+-	J_{11}^{12}	:	$\sqrt{\frac{1}{10}}\psi_{011}^{\xi_1\xi_2}\chi_{20}^{11} - \sqrt{\frac{3}{10}}\psi_{010}^{\xi_1\xi_2}\chi_{21}^{11} + \sqrt{\frac{3}{5}}\psi_{01-1}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\overline{6}\rangle^{c}$
1+-	J_{11}^{21}	:	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1}\chi_{1-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1}\chi_{10}^{11} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1}\chi_{11}^{11} - \sqrt{\frac{3}{10}}\psi_{022}^{\xi_2}\chi_{1-1}^{11} + \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2}\chi_{10}^{11} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_2}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
1+-	J_{11}^{21}	:	$\sqrt{\frac{3}{5}}\psi_{022}^{\xi_3}\chi_{1-1}^{11} - \sqrt{\frac{3}{10}}\psi_{021}^{\xi_3}\chi_{10}^{11} + \sqrt{\frac{1}{10}}\psi_{020}^{\xi_3}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
:1+-	J_{11}^{21}	:	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1\xi_3}\chi_{1-1}^{10} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1\xi_3}\chi_{10}^{10} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1\xi_3}\chi_{11}^{10} - \sqrt{\frac{3}{10}}\psi_{022}^{\xi_2\xi_3}\chi_{1-1}^{01} + \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2\xi_3}\chi_{10}^{01} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_2\xi_3}\chi_{11}^{01} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_3}\chi_{11}^{01} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_$	$ 6\overline{6}\rangle^{c}$
1+-	J_{11}^{21}	:	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1\xi_3}\chi_{1-1}^{01} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1\xi_3}\chi_{10}^{01} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1\xi_3}\chi_{11}^{01} - \sqrt{\frac{3}{10}}\psi_{022}^{\xi_2\xi_3}\chi_{1-1}^{10} + \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2\xi_3}\chi_{10}^{10} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_2\xi_3}\chi_{11}^{10} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_3}\chi_{11}^{10} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_$	$ \bar{3}3\rangle^{c}$
1+-	J_{11}^{21}	:	$\sqrt{\frac{3}{5}}\psi_{022}^{\xi_1\xi_2}\chi_{1-1}^{11} - \sqrt{\frac{3}{10}}\psi_{021}^{\xi_1\xi_2}\chi_{10}^{11} + \sqrt{\frac{1}{10}}\psi_{020}^{\xi_1\xi_2}\chi_{11}^{11}$	$ 6\overline{6}\rangle^{c}$
1+-	J_{11}^{22}	:	$\sqrt{\frac{1}{10}\psi_{022}^{\xi_1}\chi_{2-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1}\chi_{20}^{11} + \sqrt{\frac{3}{20}}\psi_{020}^{\xi_1}\chi_{21}^{11} - \sqrt{\frac{1}{10}}\psi_{02-1}^{\xi_1}\chi_{22}^{11} - \sqrt{\frac{1}{10}}\psi_{022-1}^{\xi_2}\chi_{2-1}^{11} + \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2}\chi_{20}^{11} - \sqrt{\frac{3}{20}}\psi_{020}^{\xi_2}\chi_{21}^{11} + \sqrt{\frac{1}{10}}\psi_{02-1}^{\xi_2}\chi_{22}^{11} - \sqrt{\frac{1}{10}}\psi_{02-1}^{\xi_2}\chi_{22}^{11} + \sqrt{\frac{3}{20}}\psi_{020}^{\xi_2}\chi_{21}^{11} - \sqrt{\frac{1}{10}}\psi_{02-1}^{\xi_2}\chi_{22}^{11} - \sqrt{\frac{1}{10}}\psi_{02-1}^$	$ \bar{3}3\rangle^{c}$

13

波函数分类:

	1++	J_{11}^{01}	:	$\sqrt{rac{1}{2}} \left(\psi_{000}^{\xi_1\xi_3}\chi_{11}^{10} + \psi_{000}^{\xi_2\xi_3}\chi_{11}^{01} ight)$	$ 6\overline{6}\rangle^{c}$
	1++	J_{11}^{01}	:	$\sqrt{\frac{1}{2}} \left(\psi_{000}^{\xi_1 \xi_3} \chi_{11}^{01} + \psi_{000}^{\xi_2 \xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
	1++	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1\xi_3} \chi_{10}^{10} - \psi_{010}^{\xi_1\xi_3} \chi_{11}^{10} + \psi_{011}^{\xi_2\xi_3} \chi_{10}^{01} - \psi_{010}^{\xi_2\xi_3} \chi_{11}^{01} \right)$	$ 6\overline{6}\rangle^{c}$
	1++	J_{11}^{11}	:	$\frac{1}{2} \left(\psi_{011}^{\xi_1\xi_3} \chi_{10}^{01} - \psi_{010}^{\xi_1\xi_3} \chi_{11}^{01} + \psi_{011}^{\xi_2\xi_3} \chi_{10}^{10} - \psi_{010}^{\xi_2\xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
	1++	J_{11}^{11}	:	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1\xi_2} \chi_{10}^{11} - \psi_{010}^{\xi_1\xi_2} \chi_{11}^{11} \right)$	$ 6\overline{6}\rangle^{c}$
	1++	J_{11}^{21}	:	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1}\chi_{1-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1}\chi_{10}^{11} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1}\chi_{11}^{11} + \sqrt{\frac{3}{10}}\psi_{022}^{\xi_2}\chi_{1-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2}\chi_{10}^{11} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_2}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
	1++	J_{11}^{21}	:	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1\xi_3}\chi_{1-1}^{10} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1\xi_3}\chi_{10}^{10} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1\xi_3}\chi_{11}^{10} + \sqrt{\frac{3}{10}}\psi_{022}^{\xi_2\xi_3}\chi_{1-1}^{01} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2\xi_3}\chi_{10}^{01} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_2\xi_3}\chi_{11}^{01}$	$ 6\bar{6}\rangle^{c}$
	1++	J_{11}^{21}	:	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1\xi_3}\chi_{1-1}^{01} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1\xi_3}\chi_{10}^{01} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1\xi_3}\chi_{11}^{01} + \sqrt{\frac{3}{10}}\psi_{022}^{\xi_2\xi_3}\chi_{1-1}^{10} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2\xi_3}\chi_{10}^{10} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_2\xi_3}\chi_{11}^{10}$	$ \bar{3}3\rangle^c$
	1++	J_{11}^{22}	:	$\sqrt{\frac{1}{10}}\psi_{022}^{\xi_1}\chi_{2-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1}\chi_{20}^{11} + \sqrt{\frac{3}{20}}\psi_{020}^{\xi_1}\chi_{21}^{11} - \sqrt{\frac{1}{10}}\psi_{02-1}^{\xi_1}\chi_{22}^{11} + \sqrt{\frac{1}{10}}\psi_{022}^{\xi_2}\chi_{2-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2}\chi_{20}^{11} + \sqrt{\frac{3}{20}}\psi_{020}^{\xi_2}\chi_{21}^{11} - \sqrt{\frac{1}{10}}\psi_{02-1}^{\xi_2}\chi_{22}^{11} + \sqrt{\frac{1}{10}}\psi_{02-1}^$	$ \bar{3}3\rangle^{c}$
	1++	J_{11}^{22}	:	$\sqrt{\frac{1}{5}}\psi_{022}^{\xi_3}\chi_{2-1}^{11} - \sqrt{\frac{3}{10}}\psi_{021}^{\xi_3}\chi_{20}^{11} + \sqrt{\frac{3}{10}}\psi_{020}^{\xi_3}\chi_{21}^{11} - \sqrt{\frac{1}{5}}\psi_{02-1}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^{c}$
	1++	J_{11}^{22}		$\sqrt{\frac{1}{5}}\psi_{022}^{\xi_1\xi_2}\chi_{2-1}^{11} - \sqrt{\frac{3}{10}}\psi_{021}^{\xi_1\xi_2}\chi_{20}^{11} + \sqrt{\frac{3}{10}}\psi_{020}^{\xi_1\xi_2}\chi_{21}^{11} - \sqrt{\frac{1}{5}}\psi_{02-1}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\overline{6}\rangle^{c}$
	2+-	J_{22}^{11}	:	$\sqrt{rac{1}{2}} \Big(\psi^{\xi_1 \xi_3}_{011} \chi^{10}_{11} - \psi^{\xi_2 \xi_3}_{011} \chi^{01}_{11} \Big)$	$ 6\overline{6}\rangle^{c}$
	2+-	J_{22}^{11}	:	$\sqrt{rac{1}{2}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{11}^{01} - \psi_{011}^{\xi_2 \xi_3} \chi_{11}^{10} ight)$	$ \bar{3}3\rangle^{c}$
	2+-	J_{22}^{12}	:	$\sqrt{\frac{1}{3}}\psi_{011}^{\xi_1\xi_2}\chi_{21}^{11} - \sqrt{\frac{2}{3}}\psi_{010}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\overline{6}\rangle^{c}$
	2+-	J_{22}^{20}	:	$\sqrt{\frac{1}{2}}\psi_{022}^{\xi_1}\chi_{00}^{00} - \sqrt{\frac{1}{2}}\psi_{022}^{\xi_2}\chi_{00}^{00}$	$ 6\overline{6}\rangle^{c}$
	2+-	J_{22}^{20}		$\sqrt{\frac{1}{2}}\psi_{022}^{\xi_1}\chi_{00}^{11} - \sqrt{\frac{1}{2}}\psi_{022}^{\xi_2}\chi_{00}^{11}$	$ \bar{3}3\rangle^{c}$
	2+-	J_{22}^{21}	:	$\sqrt{\frac{2}{6}}\psi_{022}^{\xi_1}\chi_{10}^{11} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_1}\chi_{11}^{11} - \sqrt{\frac{2}{6}}\psi_{022}^{\xi_2}\chi_{10}^{11} + \sqrt{\frac{1}{6}}\psi_{021}^{\xi_2}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
	2+-	J_{22}^{21}	:	$\sqrt{\frac{2}{3}}\psi_{022}^{\xi_3}\chi_{10}^{11} - \sqrt{\frac{1}{3}}\psi_{021}^{\xi_3}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
	2+-	J_{22}^{21}	:	$\sqrt{\frac{2}{6}}\psi_{022}^{\xi_1\xi_3}\chi_{10}^{10} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_1\xi_3}\chi_{11}^{10} - \sqrt{\frac{2}{6}}\psi_{022}^{\xi_2\xi_3}\chi_{10}^{01} + \sqrt{\frac{1}{6}}\psi_{021}^{\xi_2\xi_3}\chi_{11}^{01}$	$ 6\overline{6}\rangle^{c}$
	2+-	J_{22}^{21}	:	$\sqrt{\frac{2}{6}}\psi_{022}^{\xi_1\xi_3}\chi_{10}^{01} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_1\xi_3}\chi_{11}^{01} - \sqrt{\frac{2}{6}}\psi_{022}^{\xi_2\xi_3}\chi_{10}^{10} + \sqrt{\frac{1}{6}}\psi_{021}^{\xi_2\xi_3}\chi_{11}^{10}$	$ \bar{3}3\rangle^{c}$
	2+-	J_{22}^{21}	:	$\sqrt{\frac{2}{3}}\psi_{022}^{\xi_1\xi_2}\chi_{10}^{11} - \sqrt{\frac{1}{3}}\psi_{021}^{\xi_1\xi_2}\chi_{11}^{11}$	$ 6\overline{6}\rangle^{c}$
	2+-	J_{22}^{22}	:	$\sqrt{\frac{2}{14}}\psi_{022}^{\xi_1}\chi_{20}^{11} - \sqrt{\frac{3}{14}}\psi_{021}^{\xi_1}\chi_{21}^{11} + \sqrt{\frac{2}{14}}\psi_{020}^{\xi_1}\chi_{22}^{11} - \sqrt{\frac{2}{14}}\psi_{022}^{\xi_2}\chi_{20}^{11} + \sqrt{\frac{3}{14}}\psi_{021}^{\xi_2}\chi_{21}^{11} - \sqrt{\frac{2}{14}}\psi_{020}^{\xi_2}\chi_{22}^{11}$	$ \bar{3}3\rangle^{c}$
	2^{++}	J_{22}^{02}	:	$\psi_{000}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\overline{6}\rangle^{c}$
	2^{++}	J_{22}^{11}	:	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{51c3} \chi_{11}^{10} + \psi_{011}^{52c3} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
	2++	J_{22}^{11}	:	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\text{st}\text{s}} \chi_{11}^{01} + \psi_{011}^{\text{sz}\text{s}\text{s}11} \right)$	$ \bar{3}3\rangle^c$
	2++	J_{22}^{11}	:	$\psi_{011}^{512}\chi_{11}^{11}$	$ 66\rangle^c$
2021-5-17	211	J22	:	$\sqrt{\frac{1}{2}\psi_{002}^{-2}\chi_{00}^{-2}} + \sqrt{\frac{1}{2}\psi_{002}^{-2}\chi_{00}^{-2}}$	$ 66\rangle^c$

波函数分类:

2^{++}	J_{22}^{20}	:	$\sqrt{\frac{1}{2}}\psi_{022}^{\xi_1}\chi_{00}^{11} + \sqrt{\frac{1}{2}}\psi_{022}^{\xi_2}\chi_{00}^{11}$	$ \overline{3}3\rangle^{c}$
2^{++}	J_{22}^{20}	:	$\psi_{122}^{\xi_3} \chi_{00}^{00}$	$ 6\overline{6}\rangle^{c}$
2^{++}	J_{22}^{20}	:	$\psi^{\xi_3}_{022}\chi^{11}_{00}$	$ \bar{3}3\rangle^c$
2^{++}	J_{22}^{20}	:	$\psi^{\xi_1\xi_2}_{022}\chi^{00}_{00}$	$ \bar{3}3\rangle^c$
2^{++}	J^{20}_{22}	:	$\psi_{022}^{\xi_1\xi_2}\chi_{00}^{11}$	$ 6\overline{6}\rangle^{c}$
2^{++}	J_{22}^{21}	:	$\sqrt{\frac{2}{6}}\psi_{022}^{\xi_1}\chi_{10}^{11} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_1}\chi_{11}^{11} + \sqrt{\frac{2}{6}}\psi_{022}^{\xi_2}\chi_{10}^{11} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_2}\chi_{11}^{11}$	$ \bar{3}3\rangle^c$
2^{++}	J_{22}^{21}	:	$\sqrt{\frac{2}{6}}\psi_{022}^{\xi_1\xi_3}\chi_{10}^{10} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_1\xi_3}\chi_{11}^{10} + \sqrt{\frac{2}{6}}\psi_{022}^{\xi_2\xi_3}\chi_{10}^{01} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_2\xi_3}\chi_{11}^{01}$	$ 6\bar{6}\rangle^{c}$
2^{++}	J_{22}^{21}	:	$\sqrt{\tfrac{2}{6}}\psi_{022}^{\xi_1\xi_3}\chi_{10}^{01} - \sqrt{\tfrac{1}{6}}\psi_{021}^{\xi_1\xi_3}\chi_{11}^{01} + \sqrt{\tfrac{2}{6}}\psi_{022}^{\xi_2\xi_3}\chi_{10}^{10} - \sqrt{\tfrac{1}{6}}\psi_{021}^{\xi_2\xi_3}\chi_{11}^{10}$	$ \overline{3}3\rangle^c$
2^{++}	J_{22}^{22}	:	$\sqrt{\frac{2}{14}}\psi_{022}^{\xi_1}\chi_{20}^{11} - \sqrt{\frac{3}{14}}\psi_{021}^{\xi_1}\chi_{21}^{11} + \sqrt{\frac{2}{14}}\psi_{020}^{\xi_1}\chi_{22}^{11} + \sqrt{\frac{2}{14}}\psi_{022}^{\xi_2}\chi_{20}^{11} - \sqrt{\frac{3}{14}}\psi_{021}^{\xi_2}\chi_{21}^{11} + \sqrt{\frac{2}{14}}\psi_{020}^{\xi_2}\chi_{22}^{11}$	$ \overline{3}3\rangle^{c}$
2^{++}	J_{22}^{22}	:	$\sqrt{\frac{2}{7}}\psi_{022}^{\xi_3}\chi_{20}^{11} - \sqrt{\frac{3}{7}}\psi_{021}^{\xi_3}\chi_{21}^{11} + \sqrt{\frac{2}{7}}\psi_{020}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^c$
2^{++}	J_{22}^{22}	:	$\sqrt{\tfrac{2}{7}}\psi_{022}^{\xi_1\xi_2}\chi_{20}^{11} - \sqrt{\tfrac{3}{7}}\psi_{021}^{\xi_1\xi_2}\chi_{21}^{11} + \sqrt{\tfrac{2}{7}}\psi_{020}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\bar{6}\rangle^{c}$
3+-	J_{33}^{12}	:	$\psi_{011}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\overline{6}\rangle^{c}$
3+-	J^{21}_{33}	:	$\sqrt{rac{1}{2}} \left(\psi_{022}^{\xi_1} \chi_{11}^{11} - \psi_{022}^{\xi_2} \chi_{11}^{11} ight)$	$ \bar{3}3\rangle^c$
3+-	J_{33}^{21}	:	$\psi_{022}^{\xi_3}\chi_{11}^{11}$	$ \bar{3}3\rangle^c$
3+-	J^{21}_{33}	:	$\sqrt{rac{1}{2}} \left(\psi_{022}^{\xi_1 \xi_3} \chi_{11}^{10} - \psi_{022}^{\xi_2 \xi_3} \chi_{11}^{01} ight)$	$ 6\overline{6}\rangle^{c}$
3+-	J^{21}_{33}	:	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_1\xi_3} \chi_{11}^{01} - \psi_{022}^{\xi_2\xi_3} \chi_{11}^{10} ight)$	$ \bar{3}3\rangle^{c}$
3+-	J^{21}_{33}	:	$\psi_{022}^{\xi_1\xi_2}\chi_{11}^{11}$	$ 6\overline{6}\rangle^{c}$
3+-	J^{22}_{33}	:	$\frac{1}{2} \left(\psi_{022}^{\xi_1} \chi_{21}^{11} - \psi_{021}^{\xi_1} \chi_{22}^{11} - \psi_{022}^{\xi_2} \chi_{21}^{11} + \psi_{021}^{\xi_2} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^c$
3^{++}	J^{21}_{33}	:	$\sqrt{rac{1}{2}} \left(\psi_{022}^{\xi_1} \chi_{11}^{11} + \psi_{022}^{\xi_2} \chi_{11}^{11} ight)$	$ \bar{3}3\rangle^c$
3^{++}	J^{21}_{33}	:	$\sqrt{rac{1}{2}} \left(\psi_{022}^{\xi_1\xi_3} \chi_{11}^{10} + \psi_{022}^{\xi_2\xi_3} \chi_{11}^{01} ight)$	$ 6\bar{6}\rangle^{c}$
3++	J^{21}_{33}	:	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_1\xi_3} \chi_{11}^{01} + \psi_{022}^{\xi_2\xi_3} \chi_{11}^{10} \right)$	$ \overline{3}3\rangle^{c}$
3++	J^{22}_{33}	:	$\frac{1}{2} \left(\psi_{022}^{\xi_1} \chi_{21}^{11} - \psi_{021}^{\xi_1} \chi_{22}^{11} + \psi_{022}^{\xi_2} \chi_{21}^{11} - \psi_{021}^{\xi_2} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^{c}$
3^{++}	J^{22}_{33}	:	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_3} \chi_{21}^{11} - \psi_{021}^{\xi_3} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^{c}$
3++	J^{22}_{33}	:	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_1 \xi_2} \chi_{21}^{11} - \psi_{021}^{\xi_1 \xi_2} \chi_{22}^{11} \right)$	$ 6\bar{6}\rangle^{c}$
4+-	J_{44}^{22}	:	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_1} \chi_{22}^{11} - \psi_{022}^{\xi_2} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^{c}$
4++	J_{44}^{22}	:	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_1} \chi_{22}^{11} + \psi_{022}^{\xi_2} \chi_{22}^{11} \right)$	$ \bar{3}3\rangle^{c}$
4++	J_{44}^{22}	:	$\psi^{\xi_3}_{022}\chi^{11}_{22}$	$ \overline{3}3\rangle^{c}$
4++	J_{44}^{22}	:	$\psi_{022}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\bar{6}\rangle^{c}$
	$\begin{array}{c}2^{++}\\2^{++}\\2^{++}\\2^{++}\\2^{++}\\2^{++}\\2^{++}\\2^{++}\\2^{++}\\2^{++}\\3^{+-}\\3^{+-}\\3^{+-}\\3^{+-}\\3^{+-}\\3^{+-}\\3^{+-}\\3^{++}\\3^{++}\\3^{++}\\3^{++}\\3^{++}\\3^{++}\\4^{+-}\\4^{++}\\4^{$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

14

第七届XYZ粒子研讨会(青岛)

计算方法

+

计算质量矩阵元

$$\langle \psi^n | H | \psi^m \rangle = E_m \langle \psi^n | \psi^m \rangle$$

$$= \begin{pmatrix} \bar{\psi}^{n} | H | \bar{\psi}^{m} \rangle \\ \begin{pmatrix} \sum_{i=1}^{4} m_{i} \end{pmatrix} & \langle \varphi^{c_{n}} | \varphi^{c_{m}} \rangle & \langle \psi^{n} \chi^{n} | \psi^{m} \chi^{m} \rangle \\ \end{pmatrix}$$

$$\langle \varphi^{c_n} | \varphi^{c_m} \rangle \qquad \langle \psi^n \chi^n | \left(\sum_{i=1}^4 T_i \right) - T_G | \psi^m \chi^m \rangle \qquad \langle \phi^f | \phi^f \rangle$$

$$-\sum_{i < j} \frac{3}{16} \cdot b_{ij} \quad \langle \varphi^{c_n} | \boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j | \varphi^{c_m} \rangle \quad \langle \psi^n \chi^n | r_{ij} | \psi^m \chi^m \rangle \qquad \langle \phi^f | \phi^f \rangle$$

$$+ \sum_{i < j} \frac{\alpha_{ij}^{Coul}}{4} \quad \langle \varphi^{c_n} | \boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j | \varphi^{c_m} \rangle \quad \langle \psi^n \chi^n | \frac{1}{r_{ij}} | \psi^m \chi^m \rangle \qquad \langle \phi^f | \phi^f \rangle$$

$$-\sum_{i< j} \frac{2\pi\alpha_{ij}^{SS}}{3m_im_j} \quad \langle \varphi^{c_n} | \boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j | \varphi^{c_m} \rangle \quad \langle \psi^n \chi^n | \frac{\sigma_{ij}^3 e^{-\sigma_{ij}^2 r_{ij}^2}}{\pi^{\frac{3}{2}}} \cdot (\boldsymbol{s}_i \cdot \boldsymbol{s}_j) | \psi^m \chi^m \rangle \quad \langle \phi^f | \phi^f \rangle$$

$$-\sum_{i< j} \frac{\alpha_{ij}^{ten}}{4m_i m_j} \quad \left\langle \varphi^{c_n} | \boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j | \varphi^{c_m} \right\rangle \quad \left\langle \psi^n \chi^n | \frac{1}{r_{ij}^3} \cdot \left[\frac{3(\boldsymbol{s}_i \cdot \boldsymbol{r}_{ij})(\boldsymbol{s}_j \cdot \boldsymbol{r}_{ij})}{r_{ij}^2} - (\boldsymbol{s}_i \cdot \boldsymbol{s}_j) \right] | \psi^m \chi^m \right\rangle \qquad \left\langle \phi^f | \phi^f \right\rangle$$

$$-\sum_{i < j} \frac{\alpha_{ij}^{SO}}{16} \quad \langle \varphi^{c_n} | \boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j | \varphi^{c_m} \rangle \quad \langle \psi^n \chi^n | \frac{1}{r_{ij}^3} \cdot \left[\left(\frac{1}{m_i^2} + \frac{1}{m_j^2} + 4 \frac{1}{m_i m_j} \right) \cdot \boldsymbol{l}_{ij} \cdot (\boldsymbol{s}_i + \boldsymbol{s}_j) \right] | \psi^m \chi^m \rangle \quad \langle \phi^f | \phi^f \rangle$$

$$-\sum \frac{3}{16} \cdot c_{ij} \quad \langle \varphi^{c_n} | \boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j | \varphi^{c_m} \rangle \quad \langle \psi^n \chi^n | \psi^m \chi^m \rangle \qquad \langle \phi^f | \phi^f \rangle$$

计算方法

试探波函数用一组高斯基展开:

$$\begin{split} \prod_{i=1}^{3} R_{n_{\xi_{i}}l_{\xi_{i}}}(\xi_{i}) &= \sum_{\ell'}^{n} \sum_{\ell''}^{n} \sum_{\ell''}^{n} \mathcal{C}_{\xi_{1}\ell} \mathcal{C}_{\xi_{2}\ell'} \mathcal{C}_{\xi_{3}\ell''} \phi_{n_{\xi_{1}}l_{\xi_{1}}}(\omega_{\xi_{1}\ell'},\xi_{1}) \phi_{n_{\xi_{2}}l_{\xi_{2}}}(\omega_{\xi_{2}\ell'},\xi_{2}) \phi_{n_{\xi_{3}}l_{\xi_{3}}}(\omega_{\xi_{3}\ell''},\xi_{3}) \delta_{\ell\ell'} \delta_{\ell\ell''} \\ &= \sum_{\ell'}^{n} \mathcal{C}_{\ell} \phi_{n_{\xi_{1}}l_{\xi_{1}}}(\omega_{\ell},\xi_{1}) \phi_{n_{\xi_{2}}l_{\xi_{2}}}(\omega_{\ell},\xi_{2}) \phi_{n_{\xi_{3}}l_{\xi_{3}}}(\omega_{\ell'},\xi_{3}). \end{split}$$

$$\phi_{n_{\xi}l_{\xi}}(d_{\xi\ell},\xi) = \left(\frac{1}{d_{\xi\ell}}\right)^{\frac{3}{2}} \left[\frac{2^{l_{\xi}+2-n_{\xi}}(2l_{\xi}+2n_{\xi}+1)!!}{\sqrt{\pi}n_{\xi}!\left[(2l_{\xi}+1)!!\right]^{2}}\right]^{\frac{1}{2}} \left(\frac{\xi}{d_{\xi\ell}}\right)^{l_{\xi}} \times e^{-\frac{1}{2}\left(\frac{\xi}{d_{\xi\ell}}\right)^{2}} F\left(-n_{\xi},l_{\xi}+\frac{3}{2},\left(\frac{\xi}{d_{\xi\ell}}\right)^{2}\right)^{2}$$

参数 $d_{\xi l}$ 与谐振子频率 $\omega_{\xi l}$ 的关系: $\frac{1}{d_{\xi l}^2} = M_{\xi} \omega_{\xi l}$ d_l 设为: $d_l = d_1 a^{l-1} (l = 1, ..., n)$ n是谐振子函数的个数 a是等比系数

计算方法

2S试探波函数展开:

 $\psi_{NLM}\left(\boldsymbol{\xi}_{1},\boldsymbol{\xi}_{2},\boldsymbol{\xi}_{3}\right)$

$$= \psi_{nlm} \left(\boldsymbol{\xi}_{1}\right) \psi_{nlm} \left(\boldsymbol{\xi}_{2}\right) \psi_{nlm} \left(\boldsymbol{\xi}_{3}\right)$$

计算方法

一、求解广义本征值问题-确定质量和波函数

$$\sum_{l'=1}^{l} \left(H_{ll'} - EN_{ll'} \right) C_{l'} = 0$$

二、对角化相同 J^{PC} 量子数质量矩阵获得物理态

eg.	$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Ma	uss (MeV))	Eigen	vector
	0++	$1^{1}S_{0^{++}(6\bar{6})_{c}}$	6518	45)		6455		(0.58	-0.81)
	0	$1^{1}S_{0^{++}(\bar{3}3)_{c}}$	45	6487		6550)		-0.81	-0.58)

第七届XYZ粒子研讨会(青岛)

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0++	$1^{1}S_{0^{++}(6\bar{6})_{c}}$	(6518 45)	(6455)	(0.58 -0.81)
0	$1^{1}S_{0^{++}(\bar{3}3)_{c}}$	45 6487	6550	(-0.81 - 0.58)
1+-	$1^{3}S_{1^{+-}(\bar{3}3)_{c}}$	(6500)	6500	1
2++	$1^5 S_{2^{++}(\bar{3}3)_c}$	(6524)	6524	1

1S态的质量分布在6.4GeV~6.6GeV范围内。

 $T_{0}^{++}(6455)$ 、 $T_{0}^{++}(6550)$ 、 $T_{2}^{++}(6524)$ 对 (6200-6800)有重要贡献,是X(6500)可能 的候选者。

			1.000			
$J^{P(C)}$	Configuration	$\langle E$	$\langle MeV \rangle$		Mass (MeV)	Eigenvector
0+-	$2^{1}S_{0^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(70	08 -8		(6998)	(-0.63 - 0.78)
0	$2^{1}S_{0^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(–	8 7005)	(7015)	$(-0.78 \ 0.63)$
	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(6954 -	9 93	-8	(6908)	$((-0.62 \ 0.69 \ 0.13 \ -0.34))$
0++	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	-19 70	00 -4	-33	6927	(-0.36 -0.13 -0.92 0.04)
0	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{3})}$	93 –	4 7183	-12	7015	(0.18 -0.28 -0.07 -0.94)
	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	(-8 -2	33 -12	6930)	7217	(-0.67 -0.65 0.35 0.04)
1+-	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(70	09 0)	(7009)	$\left(\left(1 0 \right) \right)$
1	$2^{3}S_{1^{+-}(\bar{3}3)c(\xi_{3})}$		6934)	(6934)	$((0 \ 1))$
1++	$2^{3}S_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(7006)		7006	1
2+-	$2^5 S_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	(7017)		7017	1
2++	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(70	18 –29)	(7028)	$((-0.95 \ 0.32))$
	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	(-2	6942)	(6932)	(0.32 -0.95)

2S激发态的计算结果

2S态的质量分布在6.9GeV~7.3GeV范围内。

T₀++(6908)、T₀++(6927)、T₂++(6932) 是X(6900)可能的候选者。

T₀++(7217)是X(7200)可能的候选者。

2S激发态的计算结果

$J^{P(C)}$ (Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$
0 ⁺⁻ 2 2	$\frac{2^{1}S_{0^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}}{S_{0^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}}$	7008 7005	706 776	899 924	-540 -629	10 3
2 0 ⁺⁺ 2	$\frac{1}{2} S_{0^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6954 7000	725 774 757	883 919	-598 -622	11 -4 7
2	$L^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	6930	761	876	- <i>522</i> -642	3
1 ⁺⁻ 2 2	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$ $2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{3})}$	7009 6934	773 745	925 885	-628 -634	7 6
1++ 3	$S_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	7006	774	920	-622	2
2+- 2	$2^{5}S_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	7017	762	932	-624	15
2 ⁺⁺ 2 2	$ \sum_{2} \sum_{2^{++}(\bar{3}3)_c(\xi_1,\xi_2)} \sum_{2^{++}(\bar{3}3)_c(\xi_3)} $	7018 6942	753 741	932 888	-613 -633	14 14

 $\langle T \rangle$ 、 $\langle V^{Lin} \rangle$ 、 $\langle V^{Coul} \rangle$ 对2S态 有重要贡献。

S-S相互作用的贡献很小, 但对混合矩阵元有关键影 响。

2S激发态的计算结果比较

		Mass	(MeV)
$J^{P(C)}$	Configuration	Ours	Q. F. L
0+-	$2^{1}S_{0^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(6998)	
0	$2^{1}S_{0^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(7015)	
	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(6908)	(6849)
0++	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	6927	6940
0	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{3})}$	7015	· · ·
	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	(7217)	
1+-	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(6934)	(6928)
1	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{3})}$	7009	()
1++	$2^{3}S_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	7006	
2+-	$2^{5}S_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	7017	
2++	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(6932)	(6947)
2	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	(7028)	\ /

Q.F. Lü, D.Y.Chen, Y.B.Dong, epjc/s10052-020-08454-1

1P激发态的计算结果

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0	${}^{3}P_{0^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{0^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$ \left(\begin{array}{rrr} 6751 & -132 \\ -132 & 6827 \end{array}\right) $	$\left(\begin{array}{c} 6651\\ 6926 \end{array}\right)$	$\left(\begin{array}{cc} \left(\begin{array}{cc} -0.80 & -0.60 \\ \left(\begin{array}{c} -0.6 & 0.80 \end{array}\right) \end{array}\right)$
0-+	${}^{3}P_{0^{-+}(\bar{6}\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{3})}$	$\left(\begin{array}{rrrr} 6746 & 88 & 37 \\ 88 & 6825 & 18 \\ 37 & 18 & 6750 \end{array}\right)$	$\left(\begin{array}{c} 6681\\ 6749\\ 6891 \end{array}\right)$	$ \begin{pmatrix} \left(\begin{array}{ccc} 0.82 & -0.47 & -0.32 \\ \left(\begin{array}{ccc} -0.14 & 0.38 & 0.91 \\ \left(\begin{array}{ccc} 0.55 & 0.80 & 0.25 \end{array} \right) \\ \end{pmatrix} $
1	${}^{3}P_{1^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{1^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ {}^{5}P_{1^{}(\bar{3}3)_{c}(\xi_{3})} \\ {}^{1}P_{1^{}(\bar{3}3)_{c}(\xi_{3})} \\ {}^{1}P_{1^{}(6\bar{6})_{c}(\xi_{3})} $	$ \begin{pmatrix} 6733 & 132 & -29 & -16 & 31 \\ 132 & 6827 & -14 & -7 & 26 \\ -29 & -14 & 6754 & -3 & 10 \\ -16 & -7 & -3 & 6770 & -19 \\ 31 & 26 & 10 & -19 & 6968 \end{pmatrix} $	$ \left(\begin{array}{c} 6636\\ 6750\\ 6768\\ 6904\\ 6993 \end{array}\right) $	$\left(\begin{array}{ccccc} \left(\begin{array}{ccccc} 0.82 & -0.55 & 0.12 & 0.06 & -0.03 \\ \left(\begin{array}{cccccc} 0.02 & -0.24 & -0.96 & -0.16 & 0.06 \\ \left(\begin{array}{ccccccc} -0.01 & 0.05 & -0.17 & 0.98 & 0.10 \\ \left(\begin{array}{cccccccccccc} -0.48 & -0.69 & 0.19 & 0.02 & 0.50 \\ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
1-+	${}^{3}P_{1^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{3})}$	$\left(\begin{array}{rrrr} 6751 & -108 & 9\\ -108 & 6834 & -4\\ 9 & -4 & 6769 \end{array}\right)$	$\left(\begin{array}{c} 6676\\ 6769\\ 6908 \end{array}\right)$	$ \begin{pmatrix} \left(\begin{array}{ccc} 0.82 & 0.56 & -0.05 \end{array} \right) \\ \left(\begin{array}{ccc} -0.01 & -0.08 & -1.00 \end{array} \right) \\ \left(\begin{array}{ccc} -0.57 & 0.82 & -0.06 \end{array} \right) \end{pmatrix} $
2	${}^{3}P_{2^{}(\bar{6}\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{2^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ {}^{5}P_{2^{}(\bar{3}3)_{c}(\xi_{3})}$	$\left(\begin{array}{rrrr} 6746 & -155 & -18 \\ -155 & 6837 & 9 \\ -18 & 9 & 6781 \end{array}\right)$	$\left(\begin{array}{c} 6630\\ 6780\\ 6955 \end{array}\right)$	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} 0.80 & 0.59 & 0.06 \end{array}\right) \\ \left(\begin{array}{ccc} -0.01 & 0.12 & -1.00 \end{array}\right) \\ \left(\begin{array}{ccc} -0.60 & 0.80 & 0.10 \end{array}\right) \end{array}\right)$
2-+	${}^{3}P_{2^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{3})}$	$\left(\begin{array}{rrrr} 6754 & 123 & 12 \\ 123 & 6841 & 6 \\ 12 & 6 & 6783 \end{array}\right)$	$\left(\begin{array}{c} 6667\\ 6783\\ 6928 \end{array}\right)$	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} 0.82 & -0.57 & -0.06 \end{array}\right) \\ \left(\begin{array}{ccc} 0.00 & 0.10 & -1.00 \end{array}\right) \\ \left(\begin{array}{ccc} 0.58 & 0.81 & 0.08 \end{array}\right) \end{array}\right)$
3	${}^{5}P_{3^{}(\bar{3}3)_{c}(\xi_{3})}$	(6801)	6801	1

1P激发态的计算结果

1P态的质量分布在6.6GeV~7.0GeV范围内。

 $T_{0^{-+}(6681)}$ 、 $T_{0^{-+}(6749)}$ 、 $T_{1^{-+}(6676)}$ 、 $T_{1^{-+}(6769)}$ 、 $T_{1^{-+}(6667)}$ 、 $T_{1^{-+}(6783)$ 是 X(6500)可能的候选者。

 $T_{0^{-+}}(6891)$ 、 $T_{1^{-+}}(6908)$ 、 $T_{2^{-+}}(6928)$ 是X(6900)可能的候选者。

1P激发态的计算结果

									-	
$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Conf} \rangle$	$\langle V_{coul}^{OGE} \rangle$	$\langle V_{SS}^{OGE} \rangle$	$\langle V_{tensor}^{OGE} \rangle$	$\langle V_{LS}^{OGE} \rangle$		
0	${}^{3}P_{0^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6751	717	778	-686	1.62	12.92	-4.31		
0	${}^{3}P_{0^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	6827	741	810	-651	0.62	3.04	-9.11		
	${}^{3}P_{0^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6746	727	773	-691	11.59	-1.48	-4.43		
0-+	${}^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	6825	745	808	-653	4.70	-3.07	-9.21		
	${}^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{3})}$	6750	765	769	-694	4.22	-6.45	-19.35		
	${}^{3}P_{1^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6733	743	765	-699	1.73	-6.89	-2.30		
	${}^{3}P_{1} - (\bar{3}3)_{c}(\xi_{1},\xi_{2})$	6827	741	810	-651	0.62	-1.52	-4.55		
1	${}^{5}P_{1^{}(\bar{3}3)c(\xi_{3})}$	6754	761	771	-692	15.62	-4.47	-28.76		主 西 献 来 白 千 中 本 最 贡 最 西 本 4 5 5 5 5 5 5 5 5 5
	${}^{1}P_{1^{}(\bar{3}3)_{c}(\xi_{3})}$	6770	734	784	-679	-1.38	0	0		$\bot \downarrow \downarrow$
	${}^{1}P_{1^{}(6\bar{6})_{c}(\xi_{3})}$	6968	714	885	-578	13.51	0	0		$\langle I \rangle_{\Sigma} \langle V^{-m} \rangle_{\Sigma} \langle V^{-m} \rangle$
	${}^{3}P_{1^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6751	720	776	-688	11.45	0.73	-2.18		
1-+	${}^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	6834	732	815	-647	4.63	1.49	-4.46		
	${}^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{3})}$	6769	736	783	-680	4.03	3.01	-9.03		
	${}^{3}P_{2^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6746	724	774	-690	1.65	1.32	2.19		
2	${}^{3}P_{2^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	6837	725	819	-644	0.64	0.29	4.38		
	${}^{5}P_{2^{}(\bar{3}3)c(\xi_{3})}$	6781	720	791	-672	14.38	4.05	-8.69		
	${}^{3}P_{2^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6754	715	779	-685	11.35	-0.14	2.15		
2-+	${}^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	6841	722	821	-642	4.57	-0.29	4.35		
	${}^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{3})}$	6783	715	794	-670	3.89	-0.57	8.59		
3	${}^{5}P_{3(\bar{3}3)c(\bar{\xi}_{3})}$	6801	692	807	-658	13.55	-1.08	16.20		

0

DICO				
$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0+-	$1^{3}P_{0^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	(6868 -113)	(6788)	((-0.82 - 0.58))
0	$1^{3}P_{0^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	(-113 6948)	(7028)	$(-0.58 \ 0.82)$
	$1^5 D_{0^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	(7054)	7054	1
	$1^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}$	(6838 -24)	(6833)	((-0.98 -0.19))
	$1^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	(-24 6957)	6962	(-0.19 0.98)
0++	$1^3 P_{0^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	(7053)	7053	1
	$1^{3}P_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	(6857 136)	(6758)	$((-0.81 \ 0.59))$
	$1^{3}P_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	136 6944	(7043)	(0.59 0.81)
	$1^5 D_{0^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	(7051 61 6)	(7048)	(0.88 - 0.09 0.47)
	$1^5 D_{0^{++}(\bar{3}3)_c(\xi_3)}$	61 6968 -128	6848	(-0.25 0.76 0.6)
	$1^5 D_{0^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	(6 -128 7013)	(7136)	$(0.41 \ 0.64 \ -0.65))$

1D激发态的计算结果

1D态的质量分布在6.6GeV~7.3GeV范围内。

 $T_{0^{++}}(6758)$ 、 $T_{1^{++}}(6756)$ 、 $T_{2^{++}}(6685)$ 、 $T_{2^{++}}(6758)$ 是X(6500)可 能的候选者。

 $T_{1^{++}}(6851)$ 、 $T_{2^{++}}(6857)$ 、 $T_{2^{++}}(6924)$ 、 $T_{3^{++}}(6863)$ 、 $T_{4^{++}}(6870)$ 是X(6900)可能的候选者。

 $T_{2^{++}}(7165)$ 、 $T_{2^{++}}(7178)$ 、 $T_{3^{++}}(7170)$ 、 $T_{3^{++}}(7189)$ 、 $T_{4^{++}}(7211)$ 是X(7200)可能的候选者。

1D激发态的计算结果

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
0+-	$ 1^{3} P_{0^{+-}(6\bar{6})c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3}) 1^{3} P_{0^{+-}(\bar{3}3)c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3}) 1^{5} D_{0^{+-}(\bar{3}3)c}(\xi_{1}, \xi_{2}) $	6868 6948 7054	732 749 809	837 876 924	-636 -601 -572	6.18 -2.66 9.25	0 0 -5.91	-2.28 -4.73 -43.52
0++	$ \begin{array}{l} 1^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})} \\ 1^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \\ 1^{3}P_{0^{++}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})} \\ 1^{3}P_{0^{++}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})} \\ 1^{3}P_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \\ 1^{5}D_{0^{++}(\bar{3}3)_{c}}(\xi_{1},\xi_{2})} \\ 1^{5}D_{0^{++}(\bar{3}3)_{c}}(\xi_{3})} \\ 1^{5}D_{0^{++}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{2})} \end{array} $	6838 6957 6857 6944 7053 7051 6968 7013	769 788 745 754 775 798 783 802	 818 877 830 873 925 927 883 902 	-657 -603 -642 -603 -553 -577 -603 -585	-24.14 -37.55 -2.02 -6.08 -15.43 9.84 10.84 9.78	0 0 -2.35 -0.96 2.49 -4.46 -4.59 -5.96	$0 \\ 0 \\ -2.35 \\ -4.79 \\ -12.47 \\ -35.39 \\ -32.12 \\ -41.73$

$$1^{3}P_{1-(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{--} \overset{3}{-} P_{1-(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{--} \overset{5}{-} P_{1-(\bar{3}3)_{c}(\xi_{3})} \\ \overset{1}{-} P_{1-(\bar{3}3)_{c}(\xi_{3})} \\ \overset{1}{-} P_{1-(6\bar{6})_{c}(\xi_{3})} \\ 1^{2} \begin{pmatrix} 6733 & 132 & -29 & -16 & 31 \\ 132 & 6827 & -14 & -7 & 26 \\ -29 & -14 & 6754 & -3 & 10 \\ -16 & -7 & -3 & 6770 & -19 \\ 31 & 26 & 10 & -19 & 6968 \end{pmatrix} \\ \overset{1}{-} \overset{$$

Mass	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$	● 不同颜色结构也有混合。
132 -29	64 0	66 0	16 0	-3 -11	-10 -18	• $\chi_{SS_m}^{S_{12}S_{34}}$ 相同时, V^{Lin} 、 V^{Coul} 和 V^{SS} 有较大的贡献。
-19	0	0	-19	0	0	$ o SS_m$ 相同时, V^{SS} 有贡献。

ccccc质量谱

*bbbb*质量谱

TABLE I: Configurations for the tetraquark $qq\bar{q}\bar{q}$ system.

$J^{P(C)}$	Configuration	Wave Function	
$J^{PC} = 0^{++}$	$1^{1}S_{0^{++}(6\bar{6})_{c}} \qquad \psi_{000}^{1S}\chi_{0}^{0}$		6Ē⟩ ^c
$J^{PC} = 0^{++}$	$1^{1}S_{0^{++}(\bar{3}3)_{c}} \qquad \psi_{000}^{1\bar{s}}\chi_{0}^{1}$		33) ^c
$J^{PC} = 1^{+-}$	$1^{3}S_{1^{+-}(\bar{3}3)_{c}} \qquad \psi_{000}^{1S}\chi_{1}^{1}$		33) ^c
$J^{PC} = 2^{++}$	$1^5 S_{2^{++}(\bar{3}3)_c} \qquad \psi_{000}^{15} \chi_2^1$		$ \bar{3}3\rangle^{c}$

TABLE II: Configurations for the tetraquark $qq\bar{q}\bar{q}$ system up to the 2*S*-wave states. ξ_1, ξ_2, ξ_3 are the Jacobi coordinates. (ξ_1, ξ_2) stands for a configuration containing both ξ_1 - and ξ_2 -mode orbital excitations.

$J^{P(C)}$	Configuration	Wave Function	
J ^{PC} =0 ⁺⁻	$2^1S_{0^{+-}(6\bar{6})_c(\xi_1,\xi_2)}$	$\sqrt{rac{1}{2}}\left(\psi_{100}^{\xi_1}\chi_{00}^{00}-\psi_{100}^{\xi_2}\chi_{00}^{00} ight)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 0^{+-}$	$2^1S_{0^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{rac{1}{2}}\left(\psi_{100}^{\xi_1}\chi_{00}^{11}-\psi_{100}^{\xi_2}\chi_{00}^{11} ight)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 0^{++}$	$2^1S_{0^{++}(6\bar{6})_c(\xi_1,\xi_2)}$	$\sqrt{rac{1}{2}} \left(\psi^{arepsilon_1}_{100} \chi^{00}_{00} + \psi^{arepsilon_2}_{100} \chi^{00}_{00} ight)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 0^{++}$	$2^1S_{0^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{rac{1}{2}} \left(\psi_{100}^{\xi_1} \chi_{00}^{11} + \psi_{100}^{\xi_2} \chi_{00}^{11} ight)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 0^{++}$	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{3})}$	$\psi_{100}^{\xi_3}\chi_{00}^{00}$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 0^{++}$	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	$\psi_{100}^{\xi_3}\chi_{00}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{+-}$	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{rac{1}{2}} \left(\psi_{100}^{\xi_1} \chi_{11}^{11} - \psi_{100}^{\xi_2} \chi_{11}^{11} ight)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{+-}$	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{3})}$	$\psi_{100}^{\xi_3}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{++}$	$2^3S_{1^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{\frac{1}{2}} \left(\psi_{100}^{\xi_1} \chi_{11}^{11} + \psi_{100}^{\xi_2} \chi_{11}^{11} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{+-}$	$2^5S_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{rac{1}{2}}\left(\psi_{100}^{\xi_1}\chi_{22}^{11}-\psi_{100}^{\xi_2}\chi_{22}^{11} ight)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{++}$	$2^5 S_{2^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{rac{1}{2}} \left(\psi_{100}^{\xi_1} \chi_{22}^{11} + \psi_{100}^{\xi_2} \chi_{22}^{11} ight)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{++}$	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	$\psi_{100}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^{c}$

$J^{P(C)}$	Configuration	Wave Function	
J ^{PC} =0	$1^{3}P_{0^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{10} - \psi_{010}^{\xi_1} \chi_{10}^{10} + \psi_{01-1}^{\xi_1} \chi_{11}^{10} - \psi_{011}^{\xi_2} \chi_{1-1}^{01} + \psi_{010}^{\xi_2} \chi_{10}^{01} - \psi_{01-1}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 0^{}$	$1^{3}P_{0^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{01} - \psi_{010}^{\xi_1} \chi_{10}^{01} + \psi_{01-1}^{\xi_1} \chi_{11}^{01} - \psi_{011}^{\xi_2} \chi_{1-1}^{10} + \psi_{010}^{\xi_2} \chi_{10}^{10} - \psi_{01-1}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 0^{-+}$	$1^3 P_{0^{-+}(6\bar{6})_c(\xi_1,\xi_2)}$	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{10} - \psi_{010}^{\xi_1} \chi_{10}^{10} + \psi_{01-1}^{\xi_1} \chi_{11}^{10} + \psi_{011}^{\xi_2} \chi_{1-1}^{01} - \psi_{010}^{\xi_2} \chi_{10}^{01} + \psi_{01-1}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 0^{-+}$	$1^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1} \chi_{1-1}^{01} - \psi_{010}^{\xi_1} \chi_{10}^{01} + \psi_{01-1}^{\xi_1} \chi_{11}^{01} + \psi_{011}^{\xi_2} \chi_{1-1}^{10} - \psi_{010}^{\xi_2} \chi_{10}^{10} + \psi_{01-1}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 0^{-+}$	$1^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{3})}$	$\sqrt{\frac{1}{3}} \left(\psi_{011}^{\xi_3} \chi_{1-1}^{11} - \psi_{010}^{\xi_3} \chi_{10}^{11} + \psi_{01-1}^{\xi_3} \chi_{11}^{11} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{}$	$1^{3}P_{1^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{10} - \psi_{010}^{\xi_1} \chi_{11}^{10} - \psi_{011}^{\xi_2} \chi_{10}^{01} + \psi_{010}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 1^{}$	$1^{3}P_{1^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{01} - \psi_{010}^{\xi_1} \chi_{11}^{01} - \psi_{011}^{\xi_2} \chi_{10}^{10} + \psi_{010}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{}$	$1^5 P_{1^{}(\bar{3}3)_c(\xi_3)}$	$\sqrt{\frac{1}{10}}\psi_{011}^{\xi_3}\chi_{20}^{11} - \sqrt{\frac{3}{10}}\psi_{010}^{\xi_3}\chi_{21}^{11} + \sqrt{\frac{3}{5}}\psi_{01-1}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{}$	$1^{1}P_{1^{}(\bar{3}3)_{c}(\bar{c}_{3})}$	$\psi_{011}^{\xi_3}\chi_{00}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{}$	$1^{1}P_{1^{}(6\bar{6})c}(\xi_{3})$	$\psi_{011}^{\xi_3}\chi_{00}^{00}$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 1^{-+}$	$1^{3}P_{1^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{10} - \psi_{010}^{\xi_1} \chi_{11}^{10} + \psi_{011}^{\xi_2} \chi_{10}^{01} - \psi_{010}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 1^{-+}$	$1^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\frac{1}{2} \left(\psi_{011}^{\xi_1} \chi_{10}^{01} - \psi_{010}^{\xi_1} \chi_{11}^{01} + \psi_{011}^{\xi_2} \chi_{10}^{10} - \psi_{010}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{-+}$	$1^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{3})}$	$\sqrt{rac{1}{2}} \left(\psi^{\xi_3}_{011} \chi^{11}_{10} - \psi^{\xi_3}_{010} \chi^{11}_{11} ight)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{}$	$1^{3}P_{2^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	$\sqrt{rac{1}{2}}ig(\psi^{\xi_1}_{011}\chi^{10}_{11}-\psi^{\xi_2}_{011}\chi^{01}_{11}ig)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 2^{}$	$1^{3}P_{2^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1} \chi_{11}^{01} - \psi_{011}^{\xi_2} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{}$	$1^5 P_{2^{}(\bar{3}3)_c(\xi_3)}$	$\sqrt{\frac{1}{3}}\psi_{011}^{\xi_3}\chi_{21}^{11} - \sqrt{\frac{2}{3}}\psi_{010}^{\xi_3}\chi_{22}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{-+}$	$1^{3}P_{2^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1} \chi_{11}^{10} + \psi_{011}^{\xi_2} \chi_{11}^{01} \right)$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 2^{-+}$	$1^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1} \chi_{11}^{01} + \psi_{011}^{\xi_2} \chi_{11}^{10} \right)$	33> ^c
$J^{PC} = 2^{-+}$	$1^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{3})}$	$\psi_{011}^{\xi_3}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
J ^{PC} =3	$1^5 P_{3^{}(\bar{3}3)_c(\xi_3)}$	$\psi_{011}^{\xi_3}\chi_{22}^{11}$	33> ^c

TABLE III: Configurations for the tetraquark $qq\bar{q}\bar{q}$ system up to the 1*P*-wave states. ξ_1, ξ_2, ξ_3 are the Jacobi coordinates. (ξ_1, ξ_2) stands for a configuration containing both ξ_1 - and ξ_2 -mode orbital excitations.

TABLE IV: Configurations for the tetraquark $qq\bar{q}\bar{q}$ system up to the 1*D*-wave states. ξ_1, ξ_2, ξ_3 are the Jacobi coordinates. (ξ_1, ξ_2) stands for a configuration containing both ξ_1 - and ξ_2 -mode orbital excitations. $\xi_i \otimes \xi_j$ means two independent internal $\psi_{n_{\xi_i}, l_{\xi_i}m_{\xi_i}}(\xi_i)$ and $\psi_{n_{\xi_j}, l_{\xi_j}m_{\xi_j}}(\xi_j)$ wave functions excited.

$J^{P(C)}$	Configuration	Wave Function	
$J^{PC} = 0^{+-}$	$1^{3}P_{0^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	$\overline{\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{1-1}^{10} - \psi_{010}^{\xi_1 \xi_3} \chi_{10}^{10} + \psi_{01-1}^{\xi_1 \xi_3} \chi_{11}^{10} - \psi_{011}^{\xi_2 \xi_3} \chi_{01}^{01} + \psi_{010}^{\xi_2 \xi_3} \chi_{10}^{01} - \psi_{01-1}^{\xi_2 \xi_3} \chi_{11}^{01} \right)}$	6Ē) ^c
$J^{PC} = 0^{+-}$	$1^{3}P_{0^{+-}(\bar{3}3)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\sqrt{\frac{1}{6}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{1-1}^{01} - \psi_{010}^{\xi_1 \xi_3} \chi_{10}^{01} + \psi_{01-1}^{\xi_1 \xi_3} \chi_{11}^{01} - \psi_{011}^{\xi_2 \xi_3} \chi_{10}^{10} + \psi_{010}^{\xi_2 \xi_3} \chi_{10}^{10} - \psi_{01-1}^{\xi_2 \xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 0^{+-}$	$1^5 D_{0^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{\frac{1}{10}}(\psi_{022}^{\xi_1}\chi_{2-2}^{11} - \psi_{021}^{\xi_1}\chi_{2-1}^{11} + \psi_{020}^{\xi_1}\chi_{20}^{11} - \psi_{02-1}^{\xi_1}\chi_{21}^{11} + \psi_{02-2}^{\xi_1}\chi_{22}^{11}$	
		$-\psi_{022}^{\xi_2}\chi_{2-2}^{11} + \psi_{021}^{\xi_2}\chi_{2-1}^{11} - \psi_{020}^{\xi_2}\chi_{20}^{11} + \psi_{02-1}^{\xi_2}\chi_{21}^{11} - \psi_{02-2}^{\xi_2}\chi_{22}^{11})$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 0^{++}$	$1^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}$	$\psi_{000}^{\xi_1\xi_2} \chi_{00}^{00}$	$ \bar{3}3\rangle^c$
$J^{PC} = 0^{++}$	$1^{3} D_{0^{++}(6\bar{6})_{c}(\xi_{1} \otimes \xi_{2})}$	$\psi_{000}^{$	166)°
J = 0 $I^{PC} = 0^{++}$	$1 I 0^{++} (66)_c (\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3)$ $13 D$	$ \sqrt{\frac{5}{6}} \begin{pmatrix} \psi_{011} \chi_{1-1} - \psi_{010} \chi_{10} + \psi_{01-1} \chi_{11} + \psi_{011} \chi_{1-1} - \psi_{010} \chi_{10} + \psi_{01-1} \chi_{11} \end{pmatrix} $	12216
$J^{PC} = 0$	$\Gamma P_{0^{++}(\bar{3}3)c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3})$	$ \sqrt{\frac{1}{6}} \begin{pmatrix} \psi_{011} \chi_{1-1} - \psi_{010} \chi_{10} + \psi_{01-1} \chi_{11} + \psi_{011} \chi_{1-1} - \psi_{010} \chi_{10} + \psi_{01-1} \chi_{11} \end{pmatrix} $	155)
$J^{PC} = 0^{++}$	$1^{5}P_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	$\sqrt{\frac{1}{3}} \left(\psi_{011}^{(0)1} \chi_{1-1}^{(1)} - \psi_{010}^{(0)} \chi_{10}^{(1)} + \psi_{01-1}^{(0)} \chi_{11}^{(1)} \right)$	66) ^c
$J^{TC} = 0^{++}$	$\Gamma^{5}D_{0^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{10}}(\psi_{022}^{i_1}\chi_{2-2}^{i_1} - \psi_{021}^{i_1}\chi_{2-1}^{i_1} + \psi_{020}^{i_1}\chi_{20}^{i_1} - \psi_{02-1}^{i_1}\chi_{21}^{i_1} + \psi_{02-2}^{i_1}\chi_{22}^{i_1}}$	1 <u>3</u> 3\c
$I^{PC} = 0^{++}$	$1^5 D_{0+1/(5)}$ (*)	$+ \psi_{022\chi_{2-2}} - \psi_{021\chi_{2-1}} + \psi_{020\chi_{20}} - \psi_{02-1\chi_{21}} + \psi_{02-2\chi_{22}} - \psi_{02-1\chi_{21}} + \psi_{02-2\chi_{22}} + \psi_{$	133)°
$I^{PC} = 0^{++}$	$1^{5}D_{0}$	$\sqrt{5} \left(\frac{9}{022} \frac{2}{2-2} + \frac{9}{02} \frac{2}{2-1} + \frac{9}{020} \frac{2}{20} - \frac{9}{02-1} \frac{2}{21} + \frac{9}{02-2} \frac{2}{22} \right)$ $= \frac{1}{\sqrt{2}} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{$	166)¢
J =0	$1^{3} \Sigma_{0^{++}(66)_{c}(\xi_{1} \otimes \xi_{2})}$	$\frac{\sqrt{5}}{1} \left(\frac{\sqrt{5}}{4} \frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2} - \frac{\sqrt{5}}{4} \frac{\sqrt{5}}{2} \frac{\sqrt{5}}{2} - \frac{\sqrt{5}}{4} \frac{\sqrt{5}}{2} \frac{\sqrt{5}}{2} \frac{\sqrt{5}}{2} - \frac{\sqrt{5}}{4} \frac{\sqrt{5}}{2} \frac{\sqrt{5}}{2}$	166)¢
J = 1 IPC = 1 + -	$1^{3} S_{1^{+-}(66)c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3})$	$\frac{\sqrt{2}}{1} \left(\frac{\psi_{000} \chi_{11} - \psi_{000} \chi_{11}}{\sqrt{1}} \right) \frac{\psi_{000} \chi_{11}}{\sqrt{1}}$	12226
$J^{PC} = 1^{+-}$	$1^{3}S_{1^{+-}(\bar{3}3)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\sqrt{\frac{1}{2}} \left(\psi_{000}^{-} \chi_{11}^{-} - \psi_{000}^{-} \chi_{11}^{-} \right)$	(33)°
$J^{PC} = 1^{+-}$	$1^{1}S_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$ $1^{1}P_{1^{+-}(\bar{3}\bar{3})}(\xi_{1}\otimes\xi_{2})$	$\psi_{000} \chi_{11} \\ \psi_{011}^{515} \chi_{000}^{00}$	$ \bar{3}3\rangle^c$
$J^{PC} = 1^{+-}$	$1^{1}P_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	$\psi_{0 1}^{i_1i_2}\chi_{00}^{11}$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 1^{+-}$	$1^{3}P_{1^{+-}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}$	$\frac{1}{2} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{10}^{10} - \psi_{010}^{\xi_1 \xi_3} \chi_{11}^{10} - \psi_{011}^{\xi_2 \xi_3} \chi_{10}^{01} + \psi_{011}^{\xi_2 \xi_3} \chi_{11}^{01} \right)$	6 ē ⟩ ^c
$J^{PC} = 1^{+-}$	$1^{3}P_{1^{+-}(\bar{3}3)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\frac{1}{2} \left(\psi_{011}^{\xi_1\xi_3} \chi_{10}^{01} - \psi_{010}^{\xi_1\xi_3} \chi_{11}^{01} - \psi_{011}^{\xi_2\xi_3} \chi_{10}^{10} + \psi_{010}^{\xi_2\xi_3} \chi_{11}^{10} \right)$	33) ^c
$J^{PC} = 1^{+-}$	$1^5 P_{1^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	$\sqrt{\frac{1}{10}}\psi_{011}^{\xi_1\xi_2}\chi_{20}^{11} - \sqrt{\frac{3}{10}}\psi_{010}^{\xi_1\xi_2}\chi_{21}^{11} + \sqrt{\frac{3}{5}}\psi_{01-1}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 1^{+-}$	$1^3D_{1^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	$-\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1}\chi_{1-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1}\chi_{10}^{11} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1}\chi_{11}^{11} - \sqrt{\frac{3}{10}}\psi_{022}^{\xi_2}\chi_{1-1}^{11} + \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2}\chi_{10}^{11} - \sqrt{\frac{1}{20}}\psi_{020}^{\xi_2}\chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{+-}$	$1^3 D_{1^{+-}(\bar{3}3)_c(\xi_3)}$	$\sqrt{\frac{3}{5}} \psi_{022}^{\xi_3} \chi_{1-1}^{11} - \sqrt{\frac{3}{10}} \psi_{021}^{\xi_3} \chi_{10}^{11} + \sqrt{\frac{1}{10}} \psi_{020}^{\xi_3} \chi_{11}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{+-}$	$1^3D_{1^{+-}(6\bar{6})_c\left(\xi_1\otimes\xi_3,\xi_2\otimes\xi_3\right)}$	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1\xi_3}\chi_{1-1}^{10} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1\xi_3}\chi_{10}^{10} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1\xi_3}\chi_{11}^{10}$	
		$-\sqrt{\frac{3}{10}}\psi_{022}^{\xi_2\xi_3}\chi_{1-1}^{01}+\sqrt{\frac{3}{20}}\psi_{021}^{\xi_2\xi_3}\chi_{10}^{01}-\sqrt{\frac{1}{20}}\psi_{020}^{\xi_2\xi_3}\chi_{11}^{01}$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 1^{+-}$	$1^{3}D_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	$\sqrt{\frac{3}{10}}\psi_{022}^{\xi_1\xi_3}\chi_{1-1}^{01} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1\xi_3}\chi_{10}^{01} + \sqrt{\frac{1}{20}}\psi_{020}^{\xi_1\xi_3}\chi_{11}^{01}$	
		$-\sqrt{\frac{3}{10}}\psi_{022}^{\xi_2\xi_3}\chi_{1-1}^{10}+\sqrt{\frac{3}{20}}\psi_{021}^{\xi_2\xi_3}\chi_{10}^{10}-\sqrt{\frac{1}{20}}\psi_{020}^{\xi_2\xi_3}\chi_{11}^{10}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 1^{+-}$	$1^3 D_{1^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	$\sqrt{\frac{3}{5}}\psi_{022}^{\xi_1\xi_2}\chi_{1-1}^{11} - \sqrt{\frac{3}{10}}\psi_{021}^{\xi_1\xi_2}\chi_{10}^{11} + \sqrt{\frac{1}{10}}\psi_{020}^{\xi_1\xi_2}\chi_{11}^{11}$	6ē⟩ ^c
$J^{PC} = 1^{+-}$	$1^5 D_{1^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{\frac{1}{10}}\psi_{022}^{\xi_1}\chi_{2-1}^{11} - \sqrt{\frac{3}{20}}\psi_{021}^{\xi_1}\chi_{20}^{11} + \sqrt{\frac{3}{20}}\psi_{020}^{\xi_1}\chi_{21}^{11} - \sqrt{\frac{1}{10}}\psi_{02-1}^{\xi_1}\chi_{22}^{11}$	
		$-\sqrt{\frac{1}{10}}\psi_{023}^{\xi_2}\chi_{2-1}^{11} + \sqrt{\frac{3}{20}}\psi_{021}^{\xi_2}\chi_{20}^{11} - \sqrt{\frac{3}{20}}\psi_{022}^{\xi_2}\chi_{21}^{11} + \sqrt{\frac{1}{10}}\psi_{02}^{\xi_2}\chi_{22}^{11}$	33) ^c
$J^{PC} = 1^{++}$	$1^{3}S_{1+\sqrt{2}}$ (t at t at)	$\sqrt{\frac{1}{10}} \left(\psi_{\alpha\alpha\alpha}^{\xi_1\xi_3} \chi_{11}^{10} + \psi_{\alpha\alpha\alpha}^{\xi_2\xi_3} \chi_{11}^{01} \right)$	6 <u>6</u> ⟩°
$I^{PC} - 1^{++}$	1^{3} S = (00) _c ($\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3}$)	$ \sqrt{\frac{1}{2}} \left(\frac{1}{4} \sqrt{\frac{1}{2}} \frac{1}{3} \sqrt{\frac{1}{2}} \frac{1}{4} \sqrt{\frac{1}{2}} \frac{1}{2} \sqrt{\frac{1}{2}} \frac{1}{3} \sqrt{\frac{1}{2}} \frac{1}{4} \sqrt{\frac{1}{2}} \frac{1}{2} \sqrt{\frac{1}{2}} \frac{1}{3} \sqrt{\frac{1}{2}} \frac{1}{4} \sqrt{\frac{1}{2}} \frac{1}{2} \sqrt{\frac{1}{2}} \frac{1}{4} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{1}{4} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2$	133\0
$J^{PC} = 1^{++}$	$1^{3}P_{1} = (33)_{c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3})$	$\frac{\sqrt{2}}{(\mu_{\xi_{1}\xi_{3}}^{\xi_{1}\xi_{3}}v^{10} - \mu_{\xi_{1}\xi_{3}}^{\xi_{1}\xi_{3}}v^{10} + \mu_{\xi_{2}\xi_{3}}^{\xi_{2}\xi_{3}}v^{01} - \mu_{\xi_{2}\xi_{3}}^{\xi_{2}\xi_{3}}v^{01})}$	1557 166)°
$J^{PC} = 1^{++}$	$1^{3}P_{1^{++}(\bar{3}3)}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\frac{1}{2} \left(\psi_{011}^{\xi_1\xi_3} \chi_{10}^{01} - \psi_{010}^{\xi_1\xi_3} \chi_{11}^{01} + \psi_{011}^{\xi_2\xi_3} \chi_{10}^{10} - \psi_{010}^{\xi_2\xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^c$
$J^{PC} = 1^{++}$	$1^{3}P_{1^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1 \xi_2} \chi_{11}^{11} - \psi_{010}^{\xi_1 \xi_2} \chi_{11}^{11} \right)$	$ 6\bar{6}\rangle^c$
$J^{PC} = 1^{++}$	$1^{3}D_{1^{++}(\bar{3}3)_{-}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{2}{30}}\psi_{022}^{\xi_1}\chi_{11}^{11} - \sqrt{\frac{3}{30}}\psi_{012}^{\xi_1}\chi_{10}^{11} + \sqrt{\frac{1}{30}}\psi_{020}^{\xi_1}\chi_{11}^{11} + \sqrt{\frac{3}{30}}\psi_{022}^{\xi_2}\chi_{11}^{11} - \sqrt{\frac{3}{30}}\psi_{021}^{\xi_2}\chi_{10}^{11} + \sqrt{\frac{1}{30}}\psi_{022}^{\xi_2}\chi_{11}^{11}$	33) ^c
$J^{PC} = 1^{++}$	$1^{3}D_{1++(6\bar{6})}$ (5.95, 5.95)	$\sqrt{\frac{10}{10}} \sqrt{\frac{10}{20}} \frac$. ,
	$1 \cdot (00)_c (\varsigma_1 \otimes \varsigma_3, \varsigma_2 \otimes \varsigma_3)$	$ \sqrt{10^{+}022^{+}1^{-1}} \sqrt{20^{+}021^{+}10} \sqrt{20^{+}020^{+}11} + \sqrt{\frac{3}{21}} \psi_{12}^{\xi_{2}\xi_{3}} \chi_{11}^{01} + \sqrt{\frac{1}{21}} \psi_{12}^{\xi_{3}} \chi_{11}^{01} + \sqrt{\frac{1}{21}} \psi_{11}^{\xi_{3}} \chi_{11}^{01} + \sqrt{\frac{1}{21}} \psi_{12}^{\xi_{3}} \chi_{11}^{01} + \sqrt{\frac{1}{21}} \psi_{$	16 <u>6</u>)°
$I^{PC} = 1^{++}$	$1^3 D_{\rm eff}$	$\sqrt{10^{+0.22} \times 1^{-1}} \sqrt{20^{+0.21} \times 10^{-1}} 20^$	1007
0 1	$1 D_{1^{++}(33)c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3)$	$ \sqrt{10^{\varphi} 022^{\chi} 1-1} \sqrt{20^{\varphi} 021^{\chi} 10^{-1}} \sqrt{20^{\varphi} 020^{\chi} 11} \\ + \frac{\sqrt{3}}{3} u^{\xi_2 \xi_3} v^{10} - \frac{\sqrt{3}}{3} u^{\xi_2 \xi_3} v^{10} + \frac{\sqrt{1}}{4} u^{\xi_2 \xi_3} v^{10} $	133\0
<i>IPC</i> 1++	150	$+ \sqrt{\frac{1}{10}\psi_{022}\chi_{1-1}} - \sqrt{\frac{1}{20}\psi_{021}\chi_{10}} + \sqrt{\frac{1}{20}\psi_{020}\chi_{11}}$	557
J = 1	1 $D_{1^{++}(\tilde{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{10}\psi_{022}\chi_{2-1} - \sqrt{20}\psi_{021}\chi_{20} + \sqrt{20}\psi_{020}\chi_{21} - \sqrt{10}\psi_{02-1}\chi_{22}$	iānis
D C		$+ \sqrt{\frac{1}{10}\psi_{022}^{-2}\chi_{2-1}^{-1}} - \sqrt{\frac{2}{20}\psi_{021}^{-2}\chi_{2-1}^{-1}} + \sqrt{\frac{2}{20}\psi_{020}^{-2}\chi_{21}^{-1}} - \sqrt{\frac{1}{10}\psi_{02-1}^{-2}\chi_{22}^{-1}}$	33) ^c
J ^{PC} =1 ⁺⁺	$1^{5}D_{1^{++}(\bar{3}3)_{c}(\xi_{3})}$	$\sqrt{\frac{1}{5}}\psi_{022}^{53}\chi_{2-1}^{11} - \sqrt{\frac{1}{10}}\psi_{021}^{53}\chi_{20}^{11} + \sqrt{\frac{1}{10}}\psi_{020}^{50}\chi_{21}^{11} - \sqrt{\frac{1}{5}}\psi_{02-1}^{53}\chi_{22}^{11}$	33 <i>)</i> °
$J^{PC} = 1^{++}$	$1^5 D_{1^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	$\sqrt{\frac{1}{5}}\psi_{022}^{\xi_{1}\xi_{2}}\chi_{2-1}^{11} - \sqrt{\frac{3}{10}}\psi_{021}^{\xi_{1}\xi_{2}}\chi_{20}^{11} + \sqrt{\frac{3}{10}}\psi_{020}^{\xi_{1}\xi_{2}}\chi_{21}^{11} - \sqrt{\frac{1}{5}}\psi_{02-1}^{\xi_{1}\xi_{2}}\chi_{22}^{11}$	$ 6\bar{6}\rangle^{c}$

$\frac{J^{P(C)}}{J^{P(C)}}$	Configuration	Wave Function	
J ^{PC} =2 ⁺⁻	$1^{3}P_{2^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	$\sqrt{\frac{1}{2}} \Big(\psi_{011}^{\xi_1 \xi_3} \chi_{11}^{10} - \psi_{011}^{\xi_2 \xi_3} \chi_{11}^{01} \Big)$	6ē⟩ ^c
$J^{PC} = 2^{+-}$	$1^{3}P_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{3})}$	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{01}^{01} - \psi_{011}^{\xi_2 \xi_3} \chi_{10}^{10} \right)$	33⟩ ^c
$J^{PC} = 2^{+-}$	$1^5 P_{2^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	$\sqrt{\frac{1}{3}}\psi_{011}^{\xi_1\xi_2}\chi_{21}^{11} - \sqrt{\frac{2}{3}}\psi_{010}^{\xi_1\xi_2}\chi_{22}^{11}$	6ē⟩ ^c
$J^{PC} = 2^{+-}$	$1^1 D_{2^{+-}(6\bar{6})_c(\xi_1,\xi_2)}$	$\sqrt{\frac{1}{2}}\psi_{022}^{\xi_1}\chi_{00}^{00} - \sqrt{\frac{1}{2}}\psi_{022}^{\xi_2}\chi_{00}^{00}$	6ē⟩ ^c
$J^{PC} = 2^{+-}$	$1^{1}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{2}}\psi_{02}^{\xi_1}\chi_{00}^{11} - \sqrt{\frac{1}{2}}\psi_{022}^{\xi_2}\chi_{00}^{11}$	33) ^c
$J^{PC} = 2^{+-}$	$1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{2}{6}}\psi_{022}^{\xi_1}\chi_{10}^{11} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_1}\chi_{11}^{11} - \sqrt{\frac{2}{6}}\psi_{022}^{\xi_2}\chi_{10}^{11} + \sqrt{\frac{1}{6}}\psi_{021}^{\xi_2}\chi_{11}^{11}$	33⟩ ^c
$J^{PC} = 2^{+-}$	$1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{3})}$	$\sqrt{\frac{2}{3}}\psi_{022}^{\xi_3}\chi_{10}^{11} - \sqrt{\frac{1}{3}}\psi_{021}^{\xi_3}\chi_{11}^{11}$	33⟩ ^c
$J^{PC} = 2^{+-}$	$1^{3}D_{2^{+-}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\sqrt{\frac{2}{6}}\psi_{022}^{\xi_1\xi_3}\chi_{10}^{10} - \sqrt{\frac{1}{6}}\psi_{021}^{\xi_1\xi_3}\chi_{11}^{10} - \sqrt{\frac{2}{6}}\psi_{022}^{\xi_2\xi_3}\chi_{10}^{01} + \sqrt{\frac{1}{6}}\psi_{021}^{\xi_2\xi_3}\chi_{11}^{01}$	6ē⟩ ^c
$J^{PC} = 2^{+-}$	$1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	$\sqrt{\tfrac{2}{6}}\psi_{022}^{\xi_1\xi_3}\chi_{10}^{01} - \sqrt{\tfrac{1}{6}}\psi_{021}^{\xi_1\xi_3}\chi_{11}^{01} - \sqrt{\tfrac{2}{6}}\psi_{022}^{\xi_2\xi_3}\chi_{10}^{10} + \sqrt{\tfrac{1}{6}}\psi_{021}^{\xi_2\xi_3}\chi_{11}^{10}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{+-}$	$1^{3}D_{2^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	$\sqrt{\frac{2}{3}}\psi_{022}^{\xi_1\xi_2}\chi_{10}^{11} - \sqrt{\frac{1}{3}}\psi_{021}^{\xi_1\xi_2}\chi_{11}^{11}$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 2^{+-}$	$1^5 D_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	$\sqrt{\frac{2}{14}}\psi_{022}^{\xi_1}\chi_{20}^{11} - \sqrt{\frac{3}{14}}\psi_{021}^{\xi_1}\chi_{21}^{11} + \sqrt{\frac{2}{14}}\psi_{020}^{\xi_1}\chi_{22}^{11} - \sqrt{\frac{2}{14}}\psi_{022}^{\xi_2}\chi_{20}^{11} + \sqrt{\frac{3}{14}}\psi_{021}^{\xi_2}\chi_{21}^{11} - \sqrt{\frac{2}{14}}\psi_{020}^{\xi_2}\chi_{22}^{11}$	$ \bar{3}3\rangle^{c}$
$J^{PC} = 2^{++}$	$1^5S_{2^{++}(6\bar{6})_c(\xi_1\otimes\xi_2)}$	$\psi_{000}^{\ell_1\ell_2}\chi_{22}^{11}$	$ 6\bar{6}\rangle^{c}$
$J^{PC} = 2^{++}$	$1^{3}P_{2^{++}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}$	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{11}^{10} + \psi_{011}^{\xi_2 \xi_3} \chi_{11}^{01} \right)$	6ē⟩ ^c
$J^{PC} = 2^{++}$	$1^{3}P_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	$\sqrt{\frac{1}{2}} \left(\psi_{011}^{\xi_1 \xi_3} \chi_{11}^{01} + \psi_{011}^{\xi_2 \xi_3} \chi_{11}^{10} \right)$	33⟩ ^c
$J^{PC} = 2^{++}$	$1^{3}P_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	$\psi_{011}^{\xi_{122}}\chi_{11}^{11}$	$ 66\rangle^{c}$
$J^{PC} = 2^{++}$	$1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{2}} \frac{\psi_{022}}{\psi_{022}} \chi_{00}^{00} + \sqrt{\frac{1}{2}} \frac{\psi_{022}}{\psi_{022}} \chi_{00}^{00}$	66)°
$J^{PC} = 2^{++}$ $I^{PC} = 2^{++}$	$1^{1}D_{2^{++}(\bar{3}3)c(\xi_{1},\xi_{2})}$ $1^{1}D_{2^{++}(\bar{3}3)c(\xi_{1},\xi_{2})}$	$\frac{\sqrt{\frac{1}{2}}\psi_{022}^{*}\chi_{00}^{*}}{\mu^{\xi_{3}}} \sqrt{\frac{1}{2}}\psi_{022}^{*}\chi_{00}^{*}}$	33)°
$J^{PC} = 2^{++}$	$1^{-}D_{2^{++}(66)_c}(\xi_3)$ $1^{-}D_{2^{++}(\bar{3}3)_c}(\xi_2)$	$\psi_{022}^{\ell} \chi_{00}^{02} \psi_{000}^{\ell_3}$	33) ^c
$J^{PC} = 2^{++}$	$1^{1}D_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}$	$\psi_{022}^{\xi_1\xi_2}\chi_{00}^{00}$	33) ^c
$J^{PC} = 2^{++}$	$1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	$\psi_{022}^{(s)2}\chi_{00}^{(0)}$ $\left[2,(\xi_{1}^{s}),(11,-11,-\xi_{1}^{s}),(11,-\xi_{2$	66) ^c
$J^{PC} = 2$	$1^{\circ}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\frac{\sqrt{6}\psi_{022}\chi_{10}}{\sqrt{2}\psi_{021}\chi_{11}} + \sqrt{6}\psi_{021}\chi_{11} + \sqrt{6}\psi_{022}\chi_{10} - \sqrt{6}\psi_{021}\chi_{11}}{\sqrt{6}\psi_{021}\chi_{11}}$	155)
$J^{PC} = 2^{++}$	$1^{2}D_{2^{++}(6\bar{6})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\frac{\sqrt{6}\psi_{022}\chi_{10}^{-1} - \sqrt{6}\psi_{021}\chi_{11}^{-1} + \sqrt{6}\psi_{022}\chi_{10}^{-1} - \sqrt{6}\psi_{021}\chi_{11}^{-1}}{\sqrt{2}\sqrt{5}\sqrt{5}\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{5}\sqrt{5}\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}6$	122)c
$J^{PC} = 2^{++}$	$1^{5}D_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	$\sqrt{5}\psi_{022}\chi_{10}^{-1} - \sqrt{5}\psi_{021}\chi_{11}^{-1} + \sqrt{5}\psi_{022}\chi_{10}^{-1} - \sqrt{5}\psi_{021}\chi_{11}^{-1}$	33)°
$J^{PC} = 2^{++}$	$1^{5}D_{2^{++}(\tilde{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{1}{14}\psi_{022}\chi_{20}^{2}} - \sqrt{\frac{1}{14}\psi_{021}\chi_{21}^{2}} + \sqrt{\frac{1}{14}\psi_{020}\chi_{22}^{2}} + \sqrt{\frac{1}{14}\psi_{022}\chi_{20}^{2}} - \sqrt{\frac{1}{14}\psi_{021}\chi_{21}^{2}} + \sqrt{\frac{1}{14}\psi_{020}\chi_{22}^{2}}$	33)°
$J^{PC} = 2^{++}$	$1^{5}D_{2^{++}(\bar{3}3)c}(\xi_{3})$	$\sqrt{\frac{\pi}{7}} \frac{\sqrt{\pi}}{\sqrt{022}} \chi_{20}^{-2} - \sqrt{\frac{\pi}{7}} \frac{\sqrt{\pi}}{\sqrt{021}} \chi_{21}^{-1} + \sqrt{\frac{\pi}{7}} \frac{\sqrt{\pi}}{\sqrt{020}} \chi_{22}^{-2}$	33)°
$J^{PC} = 2^{++}$ $I^{PC} = 2^{++}$	$1^{5}D_{2^{++}(6\bar{6})c(\xi_{1}\otimes\xi_{2})}$ $1^{5}P_{2^{++}(6\bar{6})c(\xi_{1}\otimes\xi_{2})}$	$\frac{\sqrt{7}\psi_{022}}{\chi_{20}}\chi_{20}^{11} - \sqrt{7}\psi_{021}^{112}\chi_{21}^{11} + \sqrt{7}\psi_{020}^{113}\chi_{22}^{11}$	166)°
$J^{PC}=3^{+-}$	$1^{3}D_{3^{+-}(\bar{3}3)}(\xi_{1}\otimes\xi_{2})$	$\gamma_{011}^{\psi_{011}}\chi_{22} \\ \gamma_{12}^{\frac{1}{2}} \left(\psi_{022}^{\xi_1} \chi_{11}^{11} - \psi_{022}^{\xi_2} \chi_{11}^{11} \right)$	33) ^c
$J^{PC} = 3^{+-}$	$1^{3}D_{3^{+-}(\bar{3}3)_{c}(\xi_{3})}$	$\psi_{022}^{\xi_3} \chi_{11}^{\xi_1}$	33) ^c
$J^{PC} = 3^{+-}$	$1^{3}D_{3^{+-}(6\bar{6})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_1 \xi_3} \chi_{11}^{10} - \psi_{022}^{\xi_2 \xi_3} \chi_{11}^{01} \right)$	6ē⟩ ^c
$J^{PC} = 3^{+-}$	$1^{3}D_{3^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{\xi_1\xi_3} \chi_{11}^{01} - \psi_{022}^{\xi_2\xi_3} \chi_{11}^{10} \right)$	$ \bar{3}3\rangle^c$
$J^{PC} = 3^{+-}$	$1^{3}D_{3^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	$\psi_{022}^{\xi_1\xi_2}\chi_{11}^{11}$	6ē⟩ ^c
$J^{PC} = 3^{+-}$	$1^{3}D_{3^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\frac{1}{2} \left(\psi_{022}^{+1} \chi_{21}^{+1} - \psi_{021}^{+1} \chi_{22}^{+1} - \psi_{022}^{-2} \chi_{21}^{+1} + \psi_{021}^{-2} \chi_{22}^{+1} \right)$	33) ^c
$J^{PC} = 3^{++}$	$1^{2}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\sqrt{\frac{2}{2}} \left(\psi_{022}^{2} \chi_{11}^{11} + \psi_{022}^{2} \chi_{11}^{11} \right)$ $\int \left[\int \left(\chi_{11}^{2} \xi_{11}^{2} + \chi_{11}^{2} + \chi_{11$	(33)°
$J^{PC} = 3^{++}$	$1^{3}D_{3^{++}(6\bar{6})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\sqrt{\frac{1}{2}} \left(\psi_{022}^{-1} \chi_{11}^{-1} + \psi_{022}^{-1} \chi_{11}^{-1} \right)$	100)°
$J^{PC} = 3^{++}$	$1^{5}D_{3^{++}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$ $1^{5}D_{3^{++}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	$\frac{\sqrt{2}}{2} \left(\psi_{022}^{\xi_1} \chi_{11}^{11} + \psi_{022}^{\xi_2} \chi_{11}^{11} \right) \\ \frac{1}{2} \left(\mu_{\xi_1}^{\xi_1} \chi_{11}^{11} - \mu_{\xi_1}^{\xi_2} \chi_{11}^{11} - \mu_{\xi_2}^{\xi_2} \chi_{11}^{11} \right)$	33)°
$J^{PC}=3^{++}$	$1^5 D_{2^{++}(\bar{2}2)} (\xi_1, \xi_2)$	$2 (\Psi 0224 21 \Psi 0214 22 \Psi 0224 21 \Psi 0214 22)$ $\sqrt{\frac{1}{2}} \left(\psi_{23}^{\xi_3} \chi_{21}^{11} - \psi_{23}^{\xi_3} \chi_{21}^{11} \right)$	<u>3</u> 3) ^c
$J^{PC}=3^{++}$	$1^5 D_{2^{++}(6\bar{6})}$ (* 2*)	$ \sqrt{\frac{1}{2}} \left(\frac{\psi_{515}^{5}}{\psi_{515}^{5}} \frac{1}{\chi_{11}^{1}} - \frac{\psi_{515}^{5}}{\psi_{515}^{5}} \frac{\chi_{11}^{11}}{\chi_{22}^{5}} \right) $	6Ē) ^c
$J^{PC}=4^{+-}$	$1^5 D_{4^{\pm}(\bar{2}2)}$ (6.7)	$ \sqrt{\frac{1}{2}} \left(\frac{\psi_{12}^{2} \chi_{21}^{2}}{\psi_{12}^{2} \chi_{12}^{1}} - \frac{\psi_{22}^{2} \chi_{21}^{2}}{\psi_{12}^{2} \chi_{12}^{1}} \right) $	<u>3</u> 3) ^c
$J^{PC}=4^{++}$	$1^5 D_{4^{++}(\bar{2}2)}$ (5.5)	$ \sqrt{\frac{1}{2}} \left(\frac{\psi_{12}^{2} + 22}{\psi_{12}^{2} + \psi_{12}^{2} + \psi_{12}^{$	33)°
$J^{PC}=4^{++}$	$1^{5}D_{4^{++}(\bar{3}3)_{c}(\xi_{3})}$	$\frac{\sqrt{2}}{\sqrt{22}} \frac{\sqrt{22}}{\sqrt{22}} \frac{\sqrt{22}}{22$	$ \bar{3}3\rangle^c$
$J^{PC} = 4^{++}$	$1^5 D_{4^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	$\psi_{022}^{\xi_1\xi_2}\chi_{22}^{11}$	$ 6\bar{6}\rangle^{c}$

TABLE V: Configurations for the tetraquark $qq\bar{q}\bar{q}$ system up to the 1*D*-wave states. ξ_1, ξ_2, ξ_3 are the Jacobi coordinates. (ξ_1, ξ_2) stands for a configuration containing both ξ_1 - and ξ_2 -mode orbital excitations. $\xi_i \otimes \xi_j$ means two independent internal $\psi_{n_{\xi_i}, l_{\xi_i}m_{\xi_i}}(\xi_i)$ and $\psi_{n_{\xi_j}, l_{\xi_j}m_{\xi_j}}(\xi_j)$ wave functions excited.

TABLE VI: Predicted mass spectra for the $cc\bar{c}\bar{c}$ systems up to the 1*S*-wave states.

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0++	$1^{1}S_{0^{++}(6\bar{6})_{c}}$	6518 45	(6455)	(0.58 -0.81)
0	$1^{1}S_{0^{++}(\bar{3}3)_{c}}$	45 6487	(6550)	(-0.81 -0.58)
1+-	$1^{3}S_{1^{+-}(\bar{3}3)_{c}}$	(6500)	6500	1
2++	$1^5 S_{2^{++}(\bar{3}3)_c}$	(6524)	6524	1

TABLE VII: Predicted mass spectra for the $cc\bar{c}\bar{c}$ systems up to the 2S -wave states.

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0+-	$2^{1}S_{0^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(7008 -8)	(6998)	((-0.63 - 0.78))
	$2^{1}S_{0^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(-8 7005)	(7015)	(-0.78 0.63)
	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(6954 - 19 93 - 8)	(6908)	$(-0.62 \ 0.69 \ 0.13 \ -0.34))$
0++	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	-19 7000 -4 -33	6927	(-0.36 -0.13 -0.92 0.04)
0	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{3})}$	93 -4 7183 -12	7015	(0.18 -0.28 -0.07 -0.94)
	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	(-8 -33 -12 6930)	(7217)	((-0.67 -0.65 0.35 0.04))
1+-	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(7009 0)	(7009)	$\left(\left(1 0 \right) \right)$
1	$2^{3}S_{1^{+-}(\bar{3}3)c(\xi_{3})}$	0 6934	(6934)	$\left(\left(\begin{array}{cc} 0 & 1 \end{array} \right) \right)$
1^{++}	$2^{3}S_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(7006)	7006	1
2+-	$2^{5}S_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(7017)	7017	1
2++	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(7018 - 29)	(7028)	$((-0.95 \ 0.32))$
2	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	(-29 6942)	6932	(0.32 - 0.95)

TABLE VIII: Predicted masses for the *P*-wave $cc\bar{c}\bar{c}$ states.

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector		
0	${}^{3}P_{0^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{0^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	$\left(\begin{array}{cc} 6751 & -132 \\ -132 & 6827 \end{array}\right)$	$\left(\begin{array}{c} 6651\\ 6926 \end{array}\right)$	$\left(\begin{array}{c} \left(\begin{array}{c} -0.7985 & -0.6020 \end{array} \right) \\ \left(\begin{array}{c} -0.6020 & 0.7985 \end{array} \right) \end{array}\right)$		
0-+	${}^{3}P_{0^{-+}(\bar{66})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{0^{-+}(\bar{33})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{0^{-+}(\bar{33})_{c}(\xi_{3})} $	$\left(\begin{array}{rrrr} 6746 & 88 & 37 \\ 88 & 6825 & 18 \\ 37 & 18 & 6750 \end{array}\right)$	$\left(\begin{array}{c} 6681\\ 6749\\ 6891 \end{array}\right)$	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} 0.82 & -0.47 & -0.32 \\ \left(\begin{array}{ccc} -0.14 & 0.38 & 0.91 \\ \left(\begin{array}{ccc} 0.55 & 0.80 & 0.25 \end{array}\right) \end{array}\right)$		
1	${}^{3}P_{1(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{1(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ {}^{5}P_{1(\bar{3}3)_{c}(\xi_{3})} \\ {}^{1}P_{1(\bar{3}3)_{c}(\xi_{3})} \\ {}^{1}P_{1(6\bar{6})_{c}(\xi_{3})}$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{c} 6636\\ 6750\\ 6768\\ 6904\\ 6993 \end{array}\right)$	$\left(\begin{array}{ccccc} \left(0.82 & -0.55 & 0.12 & 0.06 & -0.03 \right) \\ \left(0.02 & -0.24 & -0.96 & -0.16 & 0.06 \right) \\ \left(-0.01 & 0.05 & -0.17 & 0.98 & 0.10 \right) \\ \left(-0.48 & -0.69 & 0.19 & 0.02 & 0.50 \right) \\ \left(0.31 & 0.39 & -0.02 & -0.11 & 0.86 \right) \end{array}\right)$		
1-+	${}^{3}P_{1^{-+}(\bar{66})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{1^{-+}(\bar{33})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{1^{-+}(\bar{33})_{c}(\xi_{3})}$	$\left(\begin{array}{rrrr} 6751 & -108 & 9 \\ -108 & 6834 & -4 \\ 9 & -4 & 6769 \end{array}\right)$	$\left(\begin{array}{c} 6676\\ 6769\\ 6908 \end{array}\right)$	$\left(\begin{array}{ccc} \left(0.82 & 0.56 & -0.05 \right) \\ \left(-0.01 & -0.08 & -1.00 \right) \\ \left(-0.57 & 0.82 & -0.06 \right) \end{array}\right)$		
2	${}^{3}P_{2^{}(\bar{66})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{2^{}(\bar{33})_{c}(\xi_{1},\xi_{2})} \\ {}^{5}P_{2^{}(\bar{33})_{c}(\xi_{3})} $	$\left(\begin{array}{ccc} 6746 & -155 & -18\\ -155 & 6837 & 9\\ -18 & 9 & 6781 \end{array}\right)$	$\left(\begin{array}{c} 6630\\ 6780\\ 6955 \end{array}\right)$	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} 0.80 & 0.59 & 0.06 \end{array}\right) \\ \left(\begin{array}{ccc} -0.01 & 0.12 & -1.00 \end{array}\right) \\ \left(\begin{array}{ccc} -0.60 & 0.80 & 0.10 \end{array}\right) \end{array}\right)$		
2-+	${}^{3}P_{2^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ {}^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{3})} $	$\left(\begin{array}{rrrr} 6754 & 123 & 12 \\ 123 & 6841 & 6 \\ 12 & 6 & 6783 \end{array}\right)$	$\left(\begin{array}{c} 6667\\ 6783\\ 6928 \end{array}\right)$	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} 0.82 & -0.57 & -0.06 \end{array}\right) \\ \left(\begin{array}{ccc} 0.00 & 0.10 & -1.00 \end{array}\right) \\ \left(\begin{array}{ccc} 0.58 & 0.81 & 0.08 \end{array}\right) \end{array}\right)$		
3	${}^{5}P_{3^{}(\bar{3}3)c(\xi_{3})}$	(6801)	6801	1		

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0+-	$(1^{3}P_{0^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})})$	(6868 -113)	(6788)	(-0.82 - 0.58)
0	$\left(1^{3} P_{0^{+-}(\bar{3}3)_{c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3})} \right)$	(-113 6948)	(7028)	(-0.58 0.82)
	$\left(1^5 D_{0^{+-}(\bar{3}3)_c(\xi_1,\xi_2)} \right)$	(7054)	7054	1
	$(1^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})})$	(6838)	6838	1
	$(1^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})})$	(6957)	6957	1
0++	$(1^{3}P_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})})$	(6857 136)	(6758)	$(-0.81 \ 0.59)$
0	$\left(1^{3}P_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}\right)$	136 6944	(7043)	0.59 0.81
	$\left(1^{3}P_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(7053)	7053	1
	$\begin{pmatrix} 1^5 D_{0^{++}(\bar{3}3)_c(\xi_1,\xi_2)} \\ 1^5 D \end{pmatrix}$	$(7051 \ 61 \ 6)$	(7048)	(0.88 - 0.09 0.47)
	$1^{5}D_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	61 6968 -128	6848	-0.25 0.76 0.6
	$\frac{(1^{3}D_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})})}{(1^{3}S_{0}-(\xi_{1}\otimes\xi_{2}))}$	(0 -128 /013)	(/130)	$(0.41 \ 0.04 \ -0.05)$
	$\begin{pmatrix} 1 & S_{1^{+-}(6\bar{6})_c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \\ 1^3 S_{1^{+-}}(g_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \end{pmatrix}$	$\begin{pmatrix} 7002 & -7 \\ -7 & 7007 \end{pmatrix}$	$\begin{pmatrix} 6997\\ 7012 \end{pmatrix}$	$\begin{pmatrix} -0.82 & -0.58 \\ -0.58 & 0.82 \end{pmatrix}$
	$\begin{pmatrix} 1 & \mathcal{S} \\ 1^{+-}(33)_c(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \end{pmatrix}$	(6073)	6973	(0.50 0.02)
	$\begin{pmatrix} 1 & D & 1^{+-}(66)_{c}(\xi_{1} \otimes \xi_{2}) \\ (1 & 1^{+} P & \end{pmatrix}$	(6973)	6871	1
	$\begin{pmatrix} 1 & I & 1^{+-}(33)_c(\xi_1 \otimes \xi_2) \\ (1^1 P & - \end{pmatrix}$	(7052)	7052	1
	$\begin{pmatrix} 1 & I & 1^{+-}(66)_c(\xi_1 \otimes \xi_2) \end{pmatrix}$	(7032)	1032	(0.82 0.58)
1^{+-}	$\begin{pmatrix} 1 & P_{1^{+-}(66)_c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \\ 1^3 P_{4^{+}}(\bar{a}_2) & (a_1 + a_2 + a_3) \end{pmatrix}$	$\begin{pmatrix} 0807 & -112 \\ -112 & 6946 \end{pmatrix}$	$\begin{pmatrix} 0788 \\ 7025 \end{pmatrix}$	$\begin{pmatrix} -0.82 & -0.38 \\ -0.58 & 0.82 \end{pmatrix}$
	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & (33)_c (\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \end{pmatrix}$	(7069)	7069	1
	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 $	(700)	7070	1
	$\begin{pmatrix} 1 & D_{1^{+-}(33)_{c}(\xi_{1},\xi_{2})} \\ 1^{3} D_{1^{+-}(\bar{2}2)_{c}(\xi_{1})} \end{pmatrix}$	(6978 - 142)	(6850)	(-0.74 - 0.67)
	$\begin{pmatrix} 1 & D_{1}^{+} & (33)_{c}(\xi_{3}) \\ 1^{3}D_{1^{+-}(6\bar{6})} & (\xi_{1} \otimes \xi_{2}) \end{pmatrix}$	$\begin{pmatrix} -142 & 7008 \end{pmatrix}$	7136	$\begin{pmatrix} -0.67 & 0.74 \end{pmatrix}$
	$\left(1^{3}D_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})} \right)$	(7092 93)	(7158)	(-0.82 - 0.58)
	$\left(1^{3}D_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}\right)$	93 7026	6960	(0.58 -0.82)
	$\left(1^5 D_{1^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}\right)$	(7064)	7064	1
	$\left(1^{3}S_{1^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}\right)$	(6991 34)	(6962)	$(-0.77 \ 0.64)$
	$\left(1^{3}S_{1^{++}(\bar{3}3)_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)} \right)$	34 7003	(7032)	0.64 0.77
	$\left(\begin{array}{c}1^{3}P_{1^{++}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}\\1^{2}\end{array}\right)$	(6861 140)	(6756)	$(-0.80 \ 0.60)$
	$\left(1^{3} P_{1^{++}(\bar{3}3)_{c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3})} \right)$	(140 6944)	(7049)	(0.60 0.80)
1++	$\left(\begin{array}{c}1^{3}P_{1^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(7051)	7051	1
	$\left(\begin{array}{c}1^{3}D_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(7062)	7062	1
	$\begin{pmatrix} 1^{3}D_{1^{++}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}D \end{pmatrix}$	$\begin{pmatrix} 7096 & -69 \\ 60 & 7028 \end{pmatrix}$	$\begin{pmatrix} 7139 \\ 6085 \end{pmatrix}$	$\begin{pmatrix} -0.85 & 0.53 \\ 0.52 & 0.85 \end{pmatrix}$
	$\left(\begin{array}{c} 1^{*}D_{1^{++}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}) \end{array} \right)$	(-09 / 028)	(7060)	(-0.53 - 0.85)
	$1^{5}D_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	62 6976 -132	6851	-0.25 0.76 0.6
	$\begin{pmatrix} 1^{5}O_{1^{++}(6\bar{6})_{c}}(\xi_{3}) \\ 1^{5}D_{1^{++}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{2}) \end{pmatrix}$	$\begin{pmatrix} 02 & 0370 & 102 \\ 10 & -132 & 7022 \end{pmatrix}$	(7146)	$\left(\begin{array}{ccc} 0.32 & 0.17 & 0.16 \\ 0.38 & 0.65 & -0.66 \end{array}\right)$
	$\left(\frac{1^{3}P_{2^{+-}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}{(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})} \right)$	(6873 -121)	(6788)	(0.82 0.58)
	$\left(1^{3}P_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}\right)$	(-121 6959)	(7044)	(-0.58 0.82)
	$(1^5 P_{2^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)})$	(7072)	7072	1
	$(1^1 D_{2^{+-}(6\bar{6})_c(\xi_1,\xi_2)})$	(6985)	6985	1
	$\left(1^{1}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(7087)	7087	1
2+-	$\left(1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(7085)	7085	1
	$(1^3 D_{2^{+-}(\bar{3}3)_c(\xi_3)})$	(6985 - 149)	(7157)	$(-0.65 \ 0.76)$
	$\left(\frac{1^{3}D_{2^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}}{2} \right)$	(-149 7028)	6856	0.76 0.65
	$\left(\begin{array}{c}1^{3}D_{2^{+-}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}\\1^{3}D\end{array}\right)$	$\begin{pmatrix} 7106 & 86 \\ 86 & 7045 \end{pmatrix}$	(7167)	$\begin{pmatrix} 0.82 & 0.58 \\ 0.59 & 0.92 \end{pmatrix}$
	$(1^{5}D_{2^{+-}(\bar{3}3)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})))$	(86 7045)	(6984)	(-0.58 0.82)
	$(1^{J}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})})$	(7082)	7082	1

TABLE IX: Predicted mass spectra for the $cc\bar{c}\bar{c}$ systems up to the 1*D*-wave states.

TABLE X: Predicted mass spectra for the $cc\bar{c}\bar{c}$ sy	ystems up to the 1 <i>D</i> -wave states.
---	---

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
	$\left(1^{5}S_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(7004)	7004	1
	$(1^{3}P_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})})$	(6864 145)	(6758)	$(-0.81 \ 0.59)$
2++	$(1^{3}P_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})})$	(145 6955)	(7061)	(0.59 0.81)
	$(1^{3}P_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})})$	(7073)	7073	1
	$\left(\begin{array}{c} 1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \end{array} \right)$	6955 -19 174 5 25 3) (7151) (-0.45 -0.17 -0.55 -0.45 0.21 0.46
	$1^{1}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	-19 7073 5 72 1 28	7086	0.03 -0.9 -0.08 0.02 0.09 -0.42
	$1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{3})}$	174 5 6964 -21 -147 -6	6685	0.46 0.06 -0.62 -0.13 -0.6 -0.12
	$1^{+}D_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	5 12 -21 6986 -2 -153	6024	-0.09 0.28 0.1 -0.72 0.13 -0.61
	$\begin{bmatrix} 1^{*}D_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})} \\ 1^{1}D_{2^{++}(\bar{s}\bar{s})_{c}(\xi_{1}\otimes\xi_{2})} \end{bmatrix}$	$3 \ 28 \ -6 \ -153 \ -20 \ 7018$	$\binom{0924}{7178}$	-0.38 0.28 -0.5 0.51 0.23 -0.46
	$\left(1^{3}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(7073)	7073	1
	$(1^{3}D_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})})$	(7105 -74)	(7155)	$(-0.83 \ 0.56)$
	$\left(1^{3}D_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}\right)$	(-74 7045)	(6995)	(0.56 0.83)
	$\left(\begin{array}{c}1^{5}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\\\end{array}\right)$	(7073 65 17)	(7080)	(-0.90 0.02 -0.43)
	$1^{5}D_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	65 6989 - 138	6857	-0.27 0.76 0.59
	$(1^{5}D_{2^{++}(6\bar{6})c(\xi_{1}\otimes\xi_{2})})$	(1/-138/040)	(7165)	(-0.34 -0.65 0.68)
	$\left(\begin{array}{c} 1^{3}P_{3^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \\ \end{array} \right)$	(7102)	7102	1
	$\left(\begin{array}{c}1^{3}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(7103)	7103	1
3+-	$\begin{pmatrix} 1^{3}D_{3^{+-}(\bar{3}3)_{c}(\xi_{3})} \\ 1^{3}D \end{pmatrix}$	$\begin{pmatrix} 7002 & -154 \\ 154 & 7042 \end{pmatrix}$	$\binom{6867}{7179}$	$\begin{pmatrix} 0.75 & 0.66 \\ 0.66 & 0.75 \end{pmatrix}$
	$\left(\begin{array}{c} 1^{3}D_{3^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \right)$	$\begin{pmatrix} -134 & /043 \end{pmatrix}$	(71/8)	$(-0.66 \ 0.75)$
	$\begin{pmatrix} 1 D_{3^{+-}(6\tilde{6})c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \\ 1^3 D \end{pmatrix}$	$\begin{pmatrix} /124 & 8/\\ 87 & 7062 \end{pmatrix}$	$\binom{7185}{7001}$	$\begin{pmatrix} -0.82 & -0.58 \\ 0.58 & 0.82 \end{pmatrix}$
	$\begin{pmatrix} 1 D_{3^{+-}(\bar{3}3)c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \end{pmatrix}$	(37,7002)	7102	(0.38 -0.82)
	$(1^{*}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})})$	(7103)	7103	I
	$\begin{pmatrix} 1^{3}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \end{pmatrix}$	(7089)	/089	
3++	$\begin{pmatrix} 1 D_{3^{++}(6\tilde{6})c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \\ 1^3 D \end{pmatrix}$	$\begin{pmatrix} /126 & -69 \\ 60 & 7063 \end{pmatrix}$	$\begin{pmatrix} 7170\\7010 \end{pmatrix}$	$\begin{pmatrix} 0.84 & -0.54 \\ 0.54 & 0.84 \end{pmatrix}$
	$\begin{pmatrix} 1 D_{3^{++}(\bar{3}3)_c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3) \end{pmatrix} $	(-09,7003)	(7019)	$(0.34 \ 0.34 \)$
	$1^{5}D_{3^{++}(33)_{c}(\xi_{1},\xi_{2})}$ $1^{5}D_{2^{++}(\bar{2}2)_{c}(\xi_{1})}$	$\begin{pmatrix} 7091 & 09 & 23 \\ 69 & 7005 & -146 \end{pmatrix}$	6863	-0.29 0.75 0.59
	$\left(\begin{array}{c} 5^{5+6}(55)_{c}(\xi_{3}) \\ 1^{5}D_{3^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \end{array} \right)$	(25 -146 7060)	(7189)	(-0.29 - 0.66 0.69)
4+-	$\left(1^5 D_{4^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}\right)$	(7122)	7122	1
	$\left(1^{5}D_{4^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(7108 72 31)	(7126)	(0.92 0.07 0.39)
4++	$1^{5}D_{4^{++}(\bar{3}3)_{c}(\xi_{3})}$	72 7020 -153	6870	
	$(1^{\circ}D_{4^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})})$	(31 -153 7079)	(7211)	(0.25 0.66 -0.71)

TABLE XI: Predicted mass spectra for the $cc\bar{c}\bar{c}$ systems up to the 1S-wave states.

$J^{P(C)}$	Configuration	$\langle H \rangle$ (N	(leV)	Mass (MeV) Eigenvector
0++	$1^{1}S_{0^{++}(6\bar{6})_{c}}$	19338	-23	(19306)	(0.58 -0.81)
0	$1^{1}S_{0^{++}(\bar{3}3)_{c}}$	-23	19322) (19355)	(-0.81 -0.58)
1+-	$1^{3}S_{1^{+-}(\bar{3}3)_{c}}$	(193	29)	19329	1
2++	$1^5 S_{2^{++}(\bar{3}3)_c}$	(193-	41)	19341	1

TABLE XII: Predicted mass spectra for the $bb\bar{b}\bar{b}$ systems up to the 2S-wave states.

		•	•	
$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0+-	$2^{1}S_{0^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(19840 3)	(19840)	(-1.0000 - 0.0500))
0	$2^{1}S_{0^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	3 19790	(19790)	(0.0500 -1.0000)
	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	(19770 -7 32 -3)	(19765)	$((-0.97 \ -0.07 \ 0.15 \ 0.15))$
0++	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	-7 19797 -2 -28	19809	(0.12 -0.93 -0.02 0.35)
0	$2^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{3})}$	32 -2 19972 -4	19977	(-0.16 0.01 -0.99 0.02)
	$2^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	(-3 -28 -4 19733)	(19722)	$(0.12 \ 0.36 \ 0 \ 0.93)$
1+-	$2^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(19792 0)	(19792)	$\left(\left(1 0 \right) \right)$
1	$2^{3}S_{1^{+-}(\bar{3}3)c(\xi_{3})}$	0 19735	(19735)	$\left(\left(\begin{array}{c} 0 & 1 \end{array} \right) \right)$
1^{++}	$2^{3}S_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(19800)	19800	1
2+-	$2^{5}S_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(19795)	19795	1
2++	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	(19804 - 28)	(19815)	$((-0.94 \ 0.35))$
2	$2^{5}S_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	(-28 19738)	(19727)	(0.35 -0.94))

TABLE XIII: Predicted masses for the *P*-wave $cc\bar{c}\bar{c}$ states.

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
0	$\begin{array}{c} 1^{3}P_{0^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{0^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \end{array}$	$\left(\begin{array}{rrr} 19579 & 129 \\ 129 & 19662 \end{array}\right)$	$\left(\begin{array}{c}19485\\19756\end{array}\right)$	$\left(\begin{array}{c} \left(\begin{array}{c} -0.81 & 0.59 \\ 0.59 & 0.81 \end{array} \right) \right)$
0-+	$\begin{array}{c} 1^{3}P_{0^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})}\\ 1^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\\ 1^{3}P_{0^{-+}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array}$	$\left(\begin{array}{rrrr} 19577 & -110 & 15\\ -110 & 19662 & -7\\ 15 & -7 & 19596 \end{array}\right)$	$\left(\begin{array}{c} 19500\\ 19595\\ 19739 \end{array}\right)$	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} 0.82 & 0.56 & -0.09 \\ \left(\begin{array}{ccc} 0.02 & 0.13 & 0.99 \\ \left(\begin{array}{ccc} 0.57 & -0.82 & 0.10 \end{array}\right) \end{array}\right)$
1	$\begin{array}{c} 1^{3}P_{1^{}(6\bar{\delta})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{5}P_{1^{}(\bar{3}3)_{c}(\xi_{3})} \\ 1^{1}P_{1^{}(\bar{3}3)_{c}(\xi_{3})} \\ 1^{1}P_{1^{}(6\bar{\delta})_{c}(\xi_{3})} \end{array}$	$ \begin{pmatrix} 19571 & -129 & 12 & -12 & 7 \\ -129 & 19662 & -5 & 10 & -3 \\ 12 & -5 & 19598 & 4 & -1 \\ -12 & 10 & 4 & 19789 & -8 \\ 7 & -3 & -1 & -8 & 19604 \end{pmatrix} , $	$\left(\begin{array}{c}19479\\19597\\19603\\19749\\19795\end{array}\right)$	$ \left(\begin{array}{cccc} (-0.82 & -0.57 & 0.06 & -0.01 & 0.03 \\ (0.00 & 0.10 & 0.98 & -0.02 & 0.18 \\ (0.00 & 0.03 & -0.18 & 0.04 & 0.98 \\ (0.53 & -0.76 & 0.08 & 0.36 & 0.02 \\ (0.22 & -0.28 & 0.00 & -0.93 & 0.05 \\ \end{array} \right) $
1-+	$\begin{array}{c} 1^{3}P_{1^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{-+}(\bar{3}3)_{c}\left(\xi_{3}\right)} \end{array}$	$\left(\begin{array}{rrrr} 19579 & -118 & -4 \\ -118 & 19665 & 2 \\ -4 & 2 & 19604 \end{array}\right)$	$\left(\begin{array}{c} 19496 \\ 19603 \\ 19748 \end{array}\right)$	$\left(\begin{array}{ccc} \left(0.82 & 0.57 & 0.02 \right) \\ \left(0.00 & 0.03 & -1.00 \\ \left(-0.57 & 0.82 & 0.02 \right) \end{array}\right)$
2	$\begin{array}{c} 1^{3}P_{2^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})}\\ 1^{3}P_{2^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\\ 1^{5}P_{2^{}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array}$	$\left(\begin{array}{rrrr}19576&138&8\\138&19667&4\\8&4&19609\end{array}\right)$	$\left(\begin{array}{c} 19476\\ 19608\\ 19767 \end{array}\right)$	$\left(\begin{array}{ccc} \left(0.81 & -0.59 & -0.03\right) \\ \left(0.00 & 0.06 & -1.00\right) \\ \left(0.59 & 0.81 & 0.05\right) \end{array}\right)$
2-+	$\begin{array}{c} 1^{3}P_{2^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})}\\ 1^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\\ 1^{3}P_{2^{-+}(\bar{3}3)_{c}\left(\xi_{3}\right)}\end{array}$	$\left(\begin{array}{rrrr} 19580 & -124 & 5\\ -124 & 19668 & -2\\ 5 & -2 & 19609 \end{array}\right)$	$\left(\begin{array}{c} 19492\\ 19609\\ 19756 \end{array}\right)$	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} 0.82 & 0.58 & -0.02 \end{array}\right) \\ \left(\begin{array}{ccc} 0.00 & -0.04 & -1.00 \\ \left(\begin{array}{ccc} -0.58 & 0.82 & -0.03 \end{array}\right) \end{array}\right)$
3	$1^5 P_{3^{}(\bar{3}3)_c(\xi_3)}$	(19587)	19587	1

$\overline{\mathbf{r}P(C)}$	TABLE XIV: Predicted m	hass spectra for the <i>bbbb</i> system	stems up to the	e 1 <i>D</i> -wave states.
<i>J^r(c)</i>	Configuration	$\langle H \rangle (\text{MeV})$	Mass (MeV)	Eigenvector
0+-	$\begin{pmatrix} 1^{\circ}P_{0^{+-}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}P_{0^{+-}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}) \end{pmatrix}$	$\begin{pmatrix} 19693 & -116 \\ -116 & 19775 \end{pmatrix}$	$\begin{pmatrix} 19611\\ 19857 \end{pmatrix}$	$\begin{pmatrix} -0.82 & -0.58\\ 0.58 & -0.82 \end{pmatrix}$
0^{+-}	$\left(1^5 D_{0^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}\right)$	(19884)	19884	1
0++	$(1^1 S_{0^{++}(\bar{3}3)_c(\xi_1 \otimes \xi_2)})$	(19677)	19677	1
0^{++}	$\left(1^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(19796)	19796	1
0++	$\begin{pmatrix} 1^{3}P_{0^{++}(\bar{6}\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}P_{0^{++}(\bar{2}3)}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{3}) \end{pmatrix}$	$\begin{pmatrix} 19688 & 125\\ 125 & 19773 \end{pmatrix}$	$\begin{pmatrix} 19598\\ 19863 \end{pmatrix}$	$\begin{pmatrix} -0.81 & 0.58 \\ 0.58 & 0.81 \end{pmatrix}$
0^{++}	$\left(1^{3}P_{0^{++}(6\bar{6})}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\right)$	(19884)	19884	1
0++	$\begin{pmatrix} 1^5 D_{0^{++}(\bar{3}3)_c(\xi_1,\xi_2)} \\ 1^5 D_{0^{++}(\bar{3}3)_c(\xi_3)} \end{pmatrix}$	$\left(\begin{array}{rrrr}19873 & 59 & 22\\59 & 19800 & -126\end{array}\right)$	$\begin{pmatrix} 19885\\ 19677 \end{pmatrix}$	$\left(\begin{array}{rrrr} 0.91 & 0.04 & 0.4 \\ -0.29 & 0.75 & 0.59 \end{array}\right)$
	$\left(1^{5}D_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(22 -126 19847)	(19958)	(0.28 0.66 -0.7)
1+-	$\begin{pmatrix} 1^{3}S_{1^{+-}(6\tilde{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}S_{1^{+-}(\tilde{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}) \end{pmatrix}$	$\left(\begin{array}{rrr} 19812 & -24 \\ -24 & 19828 \end{array}\right)$	$\left(\begin{array}{c}19795\\19845\end{array}\right)$	$\left(\begin{array}{cc} 0.81 & 0.58 \\ 0.58 & -0.81 \end{array}\right)$
1^{+-}	$\left(1^{3}S_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(19802)	19802	1
1+-	$\left(1^{1}P_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(19711)	19711	1
1+-	$\begin{pmatrix} 1^{1}P_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}\\ 1^{1}P_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \end{pmatrix}$	(19883)	19883	1
1+-	$\begin{pmatrix} 1^{3}P_{1^{+-}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}P_{1^{+-}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}) \end{pmatrix}$	$\left(\begin{array}{cc} 19692 & -116\\ -116 & 19774 \end{array}\right)$	$\left(\begin{array}{c}19610\\19856\end{array}\right)$	$\left(\begin{array}{cc} -0.82 & -0.58 \\ -0.58 & 0.82 \end{array}\right)$
1+-	$\left(1^5 P_{1^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)}\right)$	(19890)	19890	1
1+-	$\left(1^{3}D_{1^{+-}(\bar{3}3)c(\xi_{1},\xi_{2})}\right)$	(19889)	19889	1
1+-	$\begin{pmatrix} 1^{3}D_{1^{+-}(\bar{3}3)c}(\xi_{3}) \\ 1^{3}D_{1^{+-}(\bar{6}\bar{5})}(\xi_{3}) \end{pmatrix}$	$\begin{pmatrix} 19803 & -131 \\ -131 & 19845 \end{pmatrix}$	$\begin{pmatrix} 19691\\ 19957 \end{pmatrix}$	$\begin{pmatrix} -0.76 & -0.65 \\ -0.65 & 0.76 \end{pmatrix}$
1+-	$\begin{pmatrix} 1^{3}D_{1^{+-}(\bar{66})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})} \\ 1^{3}D_{1^{+-}(\bar{23})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})} \\ \end{pmatrix}$	$\begin{pmatrix} 19906 & 70 \\ 70 & 19856 \end{pmatrix}$	$\begin{pmatrix} 19955\\ 19807 \end{pmatrix}$	$\begin{pmatrix} -0.82 & -0.58 \\ 0.58 & -0.82 \end{pmatrix}$
1+-	$\begin{pmatrix} 1^5 D_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \end{pmatrix}$	(19887)	19887	1
1++	$\left(\begin{array}{c}1^{3}S_{1^{++}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}\right)$	(19807 34)	(19782)	$(-0.8 \ 0.6)$
1	$\left(\begin{array}{c}1^{3}S_{1^{++}(\bar{3}3)_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}\right)$	(34 19827)	(19852)	$\left(\begin{array}{cc} 0.6 & 0.8 \end{array}\right)$
1++	$\begin{pmatrix} 1^{-9}P_{1^{++}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}P_{1^{++}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}) \end{pmatrix}$	$\left(\begin{array}{cc} 19690 & 127\\ 127 & 19773 \end{array}\right)$	$\left(\begin{array}{c}19598\\19865\end{array}\right)$	$\left(\begin{array}{cc} -0.81 & 0.59\\ 0.59 & 0.81 \end{array}\right)$
1++	$\left(1^{3}P_{1^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(19883)	19883	1
1^{++}	$\left(1^{3} D_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \right)$	(19877)	19877	1
1++	$ \begin{pmatrix} 1^{3}D_{1^{++}(\bar{66})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}D_{1^{++}(\bar{3}3)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}) \end{pmatrix} $	$\left(\begin{array}{rr} 19907 & -62 \\ -62 & 19856 \end{array}\right)$	$\left(\begin{array}{c}19949\\19814\end{array}\right)$	$\left(\begin{array}{cc} -0.83 & 0.55 \\ 0.56 & 0.83 \end{array}\right)$
	$\begin{pmatrix} 1^5 D_{1^{++}(\bar{3}3)_c(\xi_1,\xi_2)} \\ 15 D_{1^{++}(\bar{3}3)_c(\xi_1,\xi_2)} \end{pmatrix}$	(19876 60 23)	(19889)	$(0.91 \ 0.04 \ 0.4)$
1++	$\begin{bmatrix} 1^{3}D_{1^{++}(\bar{3}3)_{c}}(\xi_{3}) \\ 1^{5}D_{1^{++}(\bar{3}\bar{3})_{c}}(\xi_{3}) \end{bmatrix}$	$\begin{bmatrix} 60 & 19802 & -127 \\ 23 & -127 & 19850 \end{bmatrix}$	19678	$\begin{bmatrix} -0.3 & 0.75 & 0.59 \\ 0.28 & 0.66 & -0.7 \end{bmatrix}$
	$\frac{1^{3}P_{2^{+-}(6\bar{6})}(\xi_{1}\otimes\xi_{2})}{(1^{3}P_{2^{+-}(6\bar{6})}(\xi_{2}\otimes\xi_{2}))}$	(19695 -119)	(19611)	(-0.82 - 0.58)
2+-	$\left(1^{3}P_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}\right)$	(-119 19779)	(19863)	$\begin{pmatrix} -0.58 & 0.82 \end{pmatrix}$
2+-	$\left(1^5 P_{2^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)}\right)$	(19891)	19891	1
2+-	$\left(1^{1}D_{2^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}\right)$	(19807)	19807	1
2+-	$\left(1^{1}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(19895)	19895	1
2+-	$\left(1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(19894)	19894	1
2+-	$\begin{pmatrix} 1^{3}D_{2^{+-}(\bar{3}3)_{c}}(\xi_{3})\\ 1^{3}D_{2^{+-}(\bar{3}3)_{c}}(\xi_{3}) \end{pmatrix}$	$\begin{pmatrix} 19806 & -133 \\ -133 & 19852 \end{pmatrix}$	$\begin{pmatrix} 19694 \\ 19964 \end{pmatrix}$	$\begin{pmatrix} -0.76 & -0.64 \\ -0.64 & 0.76 \end{pmatrix}$
	$\begin{pmatrix} 1 & D_{2^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)} \end{pmatrix}$ $\begin{pmatrix} 1^3 D_{2^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)} \end{pmatrix}$	(19910 68)	(19958)	(-0.81 - 0.58)
2+-	$\left(1^{3} D_{2^{+-}(\bar{3}3)_{c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3})} \right)$	(68 19863)	(19815)	$\left(\begin{array}{cc} 0.58 & -0.81 \end{array}\right)$
2+-	$\left(1^5 D_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}\right)$	(19893)	19893	1

TABLE XIV: Predicted mass spectra for the $bb\bar{b}\bar{b}$ systems up to the 1D-wave states.

$J^{P(C)}$	Configuration	$\langle H \rangle$ (MeV)	Mass (MeV)	Eigenvector
2++	$(1^5 S_{2^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)})$	(19814)	19814	1
2++	$(1^{3}P_{2^{++}(6\bar{6})_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}))$	(19691 129)	(19598)	$(-0.81 \ 0.58)$
2	$\left(1^{3}P_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}\right)$	(129 19777)	(19870)	0.58 0.81
2++	$\left(1^{3}P_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}\right)$	(19891)	19891	1
	$\left(1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}\right)$	(19773 156 29)	(19952)	$(-0.59 - 0.74 \ 0.32)$
2++	$1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{3})}$	156 19770 -133	19758	0.64 -0.2 0.74
	$(1^1 D_{2^{++}(\bar{3}3)_c(\xi_1 \otimes \xi_2)})$	(29 -133 19697)	(19530)	(0.48 -0.64 -0.59)
	$\begin{pmatrix} 1^{1}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{1}D \end{pmatrix}$	$(19881 \ 63 \ 30)$	(19968)	$(0.25 \ 0.67 \ -0.7)$
2++	$1^{1}D_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	63 19806 -135	19669	
	$\begin{pmatrix} 1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \end{pmatrix}$	(30 -135 19848)	(19898)	(0.92 0.06 0.39)
2^{++}	$\left(\begin{array}{c} 1^{3}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \end{array}\right)$	(19881)	19881	1
2++	$\left(\begin{array}{c}1^{3}D_{2^{++}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}\\1^{3}\end{array}\right)$	$\begin{pmatrix} 19910 & -63 \\ 62 & 626 \end{pmatrix}$	(19953)	$\begin{pmatrix} -0.82 & 0.57 \\ 0.57 & 0.57 \end{pmatrix}$
	$\left(\begin{array}{c}1^{3}D_{2^{++}(\bar{3}3)_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}\right)$	(-63 19862)	(19819)	(-0.57 -0.82)
2++	$\begin{pmatrix} 1^{3}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{5}D \end{pmatrix}$	$\begin{pmatrix} 19881 & 61 & 26 \\ (1 & 10007 & 120 \end{pmatrix}$	(19896)	$\begin{pmatrix} 0.92 & 0.06 & 0.39 \\ 0.2 & 0.75 & 0.59 \end{pmatrix}$
2++	$1^{5}D_{2^{++}(\bar{3}3)c}(\xi_{3})$	61 1980/ -129 26 120 10856	19680	$-0.3 \ 0.75 \ 0.59$
	$(1^{5}D_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})})$	(20 -129 19830)	(19908)	(0.23 0.00 -0.7)
3+-	$\begin{pmatrix} 1^{3}P_{3^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})} \end{pmatrix}$	(19902)	19902	I
3+-	$\left(\begin{array}{c}1^{3}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\right)$	(19901)	19901	1
3+-	$\begin{pmatrix} 1^{3}D_{3^{+-}(\bar{3}3)_{c}}(\xi_{3}) \\ 1^{2}D \end{pmatrix}$	$\begin{pmatrix} 19812 & -135 \\ 125 & 10055 \end{pmatrix}$	(19698)	$\begin{pmatrix} 0.76 & 0.65 \\ 0.65 & 0.76 \end{pmatrix}$
	$\left(\frac{1^{3}D_{3^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}}{1^{3}D} \right)$	(-135 19857)	(19971)	(-0.65 0.76)
3+-	$\begin{pmatrix} 1^{3}D_{3^{+-}(6\bar{6})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})\\ 1^{3}D \end{pmatrix}$	(19917 68)	(19965)	$\begin{pmatrix} -0.82 & -0.58 \\ 0.59 & 0.92 \end{pmatrix}$
	$(1^{5}D_{3^{+-}(\bar{3}3)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})))$	(68 19869)	(19821)	(0.58 -0.82)
3+-	$(1^{5}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})})$	(19901)	19901	1
3++	$(1^3 D_{3^{++}(\bar{3}3)_c(\xi_1,\xi_2)})$	(19887)	19887	1
3++	$(1^{3}D_{3^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})})$	(19917 -61)	(19959)	(0.83 - 0.56)
5	$\left(1^{3} D_{3^{++}(\bar{3}3)_{c}(\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3})} \right)$	61 19869	(19827)	(0.56 0.83)
	$\left(\begin{array}{c}1^{5}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\end{array}\right)$	(19887 62 28)	(19904)	(0.92 0.08 0.38)
3++	$1^{5}D_{3^{++}(\bar{3}3)_{c}(\xi_{3})}$	62 19813 -131	19684	-0.31 0.75 0.59
-	$(1^{5}D_{3^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})})$	(28 -131 19864)	(19976)	(-0.24 -0.66 0.71)
4+-	$(1^{5}D_{4^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})})$	(7122)	19908	1
	$\left(\begin{array}{c}1^{5}D_{4^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}\\1^{5}\end{array}\right)$	$(19894 63 \overline{30})$	(19912)	(0.92 0.1 0.37)
4++	$1^{5}D_{4^{++}(\bar{3}3)_{c}(\xi_{3})}$	63 19819 -134	19686	-0.31 0.74 0.59
	$(1^{\circ}D_{4^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})})$	(30 -134 19871)	(19985)	(-0.22 -0.66 0.72)

TABLE XV: Predicted mass spectra for the $bb\bar{b}\bar{b}$ systems up to the 1D-wave states.

TABLE XVI: The average contributions of each part of the Hamiltonian to the $cc\bar{c}\bar{c}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^T \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively.

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
0+-	$\frac{2^1 S_{0^{+-}(6\tilde{\delta})_c(\xi_1,\xi_2)}}{2^1 S_{0^{+-}(\tilde{3}3)_c(\xi_1,\xi_2)}}$	7008 7005	706 776	899 924	-540 -629	10 3		
0++	$\begin{array}{l} 2^1 S_{0^{++}(6\bar{\delta})_c(\xi_1,\xi_2)} \\ 2^1 S_{0^{++}(\bar{3}3)_c(\xi_1,\xi_2)} \\ 2^1 S_{0^{++}(6\bar{\delta})_c(\xi_3)} \\ 2^1 S_{0^{++}(\bar{3}3)_c(\xi_3)} \end{array}$	6954 7000 7183 6930	725 774 757 761	883 919 1010 876	-598 -622 -522 -642	11 -4 7 3		
1+-	$\frac{2^3 S_{1^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}}{2^3 S_{1^{+-}(\bar{3}3)_c(\xi_3)}}$	7009 6934	773 745	925 885	-628 -634	7 6		
1++	${}^{3}S_{1^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	7006	774	920	-622	2		
2+-	$2^5 S_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	7017	762	932	-624	15		
2++	$\frac{2^5 S_{2^{++}(\bar{3}3)_c(\xi_1,\xi_2)}}{2^5 S_{2^{++}(\bar{3}3)_c}(\xi_3)}$	7018 6942	753 741	932 888	-613 -633	14 14		

TABLE XVII: The average contributions of each part of the Hamiltonian to the $cc\bar{c}\bar{c}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^T \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively.

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
0	$\frac{1^{3}P_{0^{}(6\bar{\delta})_{c}(\xi_{1},\xi_{2})}}{1^{3}P_{0^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}}$	6751 6827	716 741	778 811	-686 -651	1.62 0.62	12.92 3.04	-4.31 -9.11
0-+	$ \begin{array}{c} 1^{3}P_{0^{-+}(\bar{6}\bar{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{0^{-+}(\bar{3}3)_{c}(\xi_{3})} \end{array} $	6746 6825 6750	727 745 765	773 808 769	-691 -653 -694	11.59 4.7 4.22	-1.48 -3.07 -6.45	-4.43 -9.22 -19.36
1	$\begin{array}{l} 1^{3}P_{1(6\bar{\delta})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{5}P_{1(\bar{3}3)_{c}(\xi_{3})} \\ 1^{1}P_{1(\bar{3}3)_{c}(\xi_{3})} \\ 1^{1}P_{1(6\bar{\delta})_{c}(\xi_{3})} \end{array}$	6733 6827 6754 6968 6770	743 741 761 714 734	765 811 771 886 784	-699 -651 -692 -578 -679	1.73 0.62 15.62 13.51 -1.38	-6.89 -1.52 -4.47 0 0	-2.3 -4.55 -28.76 0 0
1-+	$ \begin{array}{c} 1^{3}P_{1^{-+}(\bar{66})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{-+}(\bar{33})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{-+}(\bar{33})_{c}(\xi_{3})} \end{array} $	6751 6834 6769	720 732 736	776 815 783	-688 -647 -680	11.45 4.63 4.03	0.73 1.49 3.01	-2.18 -4.46 -9.03
2	$\begin{array}{l} 1^{3}P_{2^{}(\bar{66})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{2^{}(\bar{33})_{c}(\xi_{1},\xi_{2})} \\ 1^{5}P_{2^{}(\bar{33})_{c}(\xi_{3})} \end{array}$	6751 6834 6769	720 732 736	776 815 783	-688 -647 -680	11.45 4.63 4.03	0.73 1.49 3.01	-2.18 -4.46 -9.03
2-+	$\begin{array}{l} 1^{3}P_{2^{-+}(6\tilde{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{2^{-+}(\tilde{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{2^{-+}(\tilde{3}3)_{c}(\xi_{3})} \end{array}$	6754 6841 6783	715 721 715	779 821 794	-685 -642 -670	11.35 4.57 3.89	-0.14 -0.29 -0.57	2.15 4.35 8.59
3	$1^5 P_{3^{}(\bar{3}3)_c(\xi_3)}$	6795	693	803	-663	13.92	-1.12	16.87

TABLE XVIII: The average contributions of each part of the Hamiltonian to the $cc\bar{c}\bar{c}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^T \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively.

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
0	coningulation	1110.55	(1)	(,)	(, /	(,)	(,)	(,)
	$1^{3}P_{0+-(6\bar{6})}$ (5 of 5 of)	6868	732	837	-636	6.18	0	-2.28
0^{+-}	$1^{3}P_{0+-(\bar{2})}$ (* - * * - *)	6948	749	876	-601	-2.66	0	-4.73
0	$1^{5}D_{0}$ (33) _c ($\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}$)	7054	809	924	-572	9.25	-5.91	-43 52
	$D_{0^{+-}(33)_c(\xi_1,\xi_2)}$	7054	007	724	-572	1.25	-5.71	-43.32
	$1^1 S_{a++\sqrt{2}a}$ (5 - 5)	6838	769	818	-657	-24 14	0	0
	$1^{1}S_{0^{++}(\bar{s}_{2})c(\xi_{1}\otimes\xi_{2})}$	6957	788	877	-603	-37.55	Ő	Ő
	$1^{3}P_{0^{++}(\bar{c})}$ (5.25 5.25)	6857	745	830	-642	-2.02	-2.35	-2.35
0^{++}	$1^{3}P_{011(\bar{2}2)}$ (* - * * - *)	6944	754	873	-603	-6.08	-0.96	-4.79
0	$1^{3} P$	7053	775	025	-553	-15 /3	2 /0	-12.47
	$1^{5}D_{0^{++}(66)_{c}(\xi_{1}\otimes\xi_{2})}$	7055	798	927	-555	9.84	-4.46	-12.47
	$1^{5}D_{0+1(\bar{a}_{2}),c(\xi_{1},\xi_{2})}$	6968	783	883	-603	10.84	-4 59	-32.12
	$1^{5}D_{1}$	7013	802	902	-585	9.78	-5.96	-41 73
	$D_{0^{++}(66)_c(\xi_1 \otimes \xi_2)}$	7015	002	702	-505	2.70	-5.70	-41.75
	$1^{3}S_{1^{+-}(6\bar{6})}$ (5.052 5.052)	7002	739	908	-584	7.19	0	0
	$1^{3}S_{1^{+-}(\bar{3}3)}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	7007	743	906	-571	-2.36	0	0
	$1^{3}S_{1+-(6\bar{z})}(z_{1}\otimes z_{3}, z_{2}\otimes z_{3})$	6973	768	888	-595	-20.14	0	0
	$1^{1}P_{1^{+}(\bar{a}_{2})}$ (5, 85)	6871	767	834	-637	-23.89	Õ	0
	$1^{1}P_{1^{+-}(\bar{6}\bar{6})}$ ($\xi_{1} \otimes \xi_{2}$)	7052	776	924	-554	-26.86	0	0
	$1^{3}P_{1^{+-}(6\bar{6})}(\xi_{1}\otimes\xi_{2})$	6867	733	836	-637	6.2	-0.86	-2.58
1+-	$1^{3}P_{1+-(\bar{2}2)}(\xi_{0}\otimes\xi_{0},\xi_{0}\otimes\xi_{0})$	6946	753	874	-603	-2.68	-1.79	-5.37
	$1^{5}P_{1^{+-}(\bar{6}\bar{6})}(\bar{c}_{1}\otimes\bar{c}_{3},\bar{c}_{2}\otimes\bar{c}_{3})$	7069	754	937	-545	7.04	0.6	-16.07
	$1^{3}D_{1+-(\bar{3}3)}(\xi_{1},\xi_{2})$	7070	783	939	-562	-0.47	-0.76	-20.53
	$1^{3}D_{1^{+-}(\bar{3}3)}(\xi_{2})$	6978	767	891	-597	-1.51	1.23	-15.46
	$1^{3}D_{1+-(\bar{e}\bar{e})}(c, ac, c, ac)$	7092	782	953	-555	1.73	-0.06	-19.86
	$1^{3}D_{1+-(\bar{2}2)}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	7026	786	912	-575	-4.9	-2.18	-21.88
	$1^{3}D_{1}$ (33) _c ($\xi_{1} \otimes \xi_{3}, \xi_{2} \otimes \xi_{3}$)	7008	804	901	-586	-18.28	-2.98	-20.89
	$1^{5}D_{1+-(\bar{2}2)}(\xi_{1}\otimes\xi_{2})$	7064	794	933	-566	8.98	-2.86	-35.06
	$1 = 2 + (33)_c(\xi_1,\xi_2)$	/001		200	000	0.70	2.00	22100
	$1^{3}S_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	6991	747	903	-588	-3.32	0	0
	$1^{3}S_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	7003	746	903	-572	-6.56	0	0
	$1^{3}P_{1^{++}(\bar{6}\bar{6})_{a}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{2})}$	6861	739	833	-640	-2	2.03	-2.61
	$1^{3}P_{1^{++}(\bar{3}3)}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{3})$	6944	755	873	-603	-6.09	-0.6	-5.39
	$1^{3}P_{1^{++}(\bar{c})}$ (5.0)	7051	779	923	-555	-15.54	-3.14	-9.43
1^{++}	$1^{3}D_{1^{++}(\bar{3}3)}(\xi_{1},\xi_{2})$	7062	781	937	-570	-1.23	-0.13	-17.01
	$1^{3}D_{1^{++}(6\bar{6})}(\xi_{1}\otimes\xi_{2}\otimes\xi_{3}\otimes\xi_{3})$	7096	777	956	-554	2.85	1.81	-19.64
	$1^{3}D_{1^{++}(\bar{2}2)}$ (5.85, 5.85)	7028	784	913	-574	-4.41	-1.4	-21.78
	$1^{5}D_{1^{++}(\bar{2}2)}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	7059	786	934	-572	9.62	-2.17	-28.72
	$1^{5}D_{1^{++}(\bar{2}2)}^{1}(z_{1})$	6976	772	889	-599	10.6	-2.24	-26.09
	$1^{5}D_{1^{\pm\pm}(6\bar{6})}(\xi, g\xi_{2})$	7022	787	911	-580	9.49	-2.88	-33.63
	$= 1^{10} (00)_c (\xi_1 \otimes \xi_2)$							
	$1^{3}P_{2^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	6873	725	841	-633	6.1	0.17	2.53
	$1^{3}P_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	6959	735	884	-595	-2.57	0.34	5.15
	$1^5 P_{2^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	7072	751	939	-544	6.99	-4.13	-8.86
	$1^{1}D_{2^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6985	727	895	-575	5.62	0	0
	$1^1 D_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	7087	760	953	-553	-4.84	0	0
2^{+-}	$1^{3}D_{2^{+-}(\bar{3}3)c(\xi_{1},\xi_{2})}$	7085	762	952	-554	-0.44	0.72	-6.52
	$1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{3})}$	6985	755	898	-592	-1.48	-1.2	-5.02
	$1^{3}D_{2^{+-}(6\bar{6})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	7106	763	964	-549	1.67	0.06	-6.35
	$1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{2})}$	7045	760	927	-565	-4.63	2.05	-6.87
	$1^{3}D_{2^{+-}(6\bar{6})c(\xi_{1}\otimes\xi_{2})}$	7028	774	917	-575	-17.3	2.8	-6.53
	$1^5 D_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	7082	768	948	-556	8.53	1.16	-19.86
	1 / 2 /							

TABLE XIX: The average contributions of each part of the Hamiltonian to the $cc\bar{c}\bar{c}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^T \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively.

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
	5							
	$1^{3}S_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	7004	731	911	-581	11.30	0	0
	$\Gamma^{3}P_{2^{++}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}$	6864	735	835	-638	-1.99	-0.4	2.58
	$1^{3}P_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	6955	739	882	-597	-5.89	0.12	5.19
	$1^{3}P_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	7073	748	941	-543	-14.59	0.59	8.79
	$\Gamma^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	6955	733	883	-598	5.68	0	0
	$1^{+}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	/0/3	764	947	-303	-0.38	0	0
	$1 D_{2^{++}(6\bar{6})c}(\xi_3)$	6904	744	894	-015	0.45	0	0
2++	$1^{+}D_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	0980	754	899	-591	-7.55	0	0
2**	$\Gamma^{1}D_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}$	6859	769	829	-647	-24.01	0	0
	$1^{2}D_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	7018	181	910	-579	-31.28	0 12	0 5 47
	$1^{3}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	7075	763	947	-549	-1.19	-1.76	-5.47
	${}^{1}D_{2^{++}(66)_c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3)$ ${}^{3}D$	7045	760	027	-545	4.2	-1.70	6.97
	$D_{2^{++}(\bar{3}3)_c}(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3)$	7045	700	927	-505	-4.2	1.55	-0.07
	$1^{5}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	6080	700	940	-304	9.24	0.89	-10.40
	$1 D_{2^{++}(\bar{3}3)c}(\xi_3)$ 15 D	7040	752	900	-591	0.02	0.92	-14.97
	$\Gamma^* D_{2^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	7040	/01	925	-370	9.05	1.17	-19.07
	$1^5 P_{2+-(\bar{c})}$ (t. ot.)	7102	711	964	-529	6.38	1.08	16.13
	$1^{3}D_{2^{+-}(\bar{2}2)}(\xi_{1}\otimes\xi_{2})$	7103	738	967	-545	-0.4	-0.2	12.34
	$1^{3}D_{2^{+-}(\bar{2}2)}(\kappa_{2})$	7002	733	911	-583	-1.43	0.32	9.54
3+-	$1^{3}D_{3+-(6\bar{6})}$ (5.95 (5.95)	7124	739	979	-539	1.6	-0.02	12.01
	$1^{3}D_{2^{+}(\bar{2}2)}(t_{2},$	7062	736	942	-555	-4.4	-0.55	13
	$1^{3}D_{2^{+-}(\bar{c})}$ (5.3) _c ($\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}$)	7043	752	930	-566	-16.57	-0.76	12.43
	$1^5 D_{3^{+-}(\bar{3}3)}(\xi_1,\xi_2)$	7103	740	965	-545	8.04	2.89	0
	5 (55)c(\$1,\$2)							
	$1^{3}D_{3^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	7089	743	960	-555	-1.14	-0.03	10.41
	$1^{3}D_{3^{++}(6\bar{6})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	7126	736	981	-538	2.59	0.47	11.94
	$1^{3}D_{3^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	7063	735	942	-555	-3.99	-0.36	12.97
	$1^5 D_{3^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	7091	742	961	-555	8.81	2.24	0
3++	$1^5 D_{3^{++}(\bar{3}3)_c(\xi_3)}$	7005	730	913	-582	9.74	2.32	0
	$1^5 D_{3^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	7060	734	942	-559	8.52	2.92	0
4+-	$1^5 D_{4^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	7122	715	982	-536	7.62	-1.36	23.36
	$1^5 D_{4^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	7108	720	975	-546	8.42	-1.07	19.74
4++	$1^5 D_{4^{++}(\bar{3}3)_c(\xi_3)}$	7020	710	925	-573	9.34	-1.11	18.09
	$1^5 D_{4^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	7079	710	957	-549	8.09	-1.38	22.5

TABLE XX: The average contributions of each part of the Hamiltonian to the $cc\bar{c}\bar{c}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^T \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively.

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
0+-	$\frac{2^1 S_{0^{+-}(6\tilde{\delta})_c(\xi_1,\xi_2)}}{2^1 S_{0^{+-}(\tilde{3}3)_c(\xi_1,\xi_2)}}$	19840 19790	627 701	529 543	-727 -864	3.99 2.28		
0++	$\begin{array}{c} 2^1 S_{0^{++}(6\bar{\delta})_c(\xi_1,\xi_2)} \\ 2^1 S_{0^{++}(\bar{3}3)_c(\xi_1,\xi_2)} \\ 2^1 S_{0^{++}(6\bar{\delta})_c(\xi_3)} \\ 2^1 S_{0^{++}(33)_c(\xi_3)} \end{array}$	19770 19797 19972 19733	653 690 646 694	515 538 604 510	-810 -837 -688 -881	4.48 -1.21 2.36 1.58		
1+-	$\frac{2^3 S_{1^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}}{2^3 S_{1^{+-}(\bar{3}3)_c(\xi_3)}}$	19792 19735	700 693	543 511	-863 -880	3.81 3.09		
1++	${}^3S_{1^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	19800	690	538	-837	1.14		
2+-	$2^5S_{2^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	19795	692	546	-859	6.83		
2++	$\frac{2^5 S_{2^{++}(\bar{3}3)_c(\xi_1,\xi_2)}}{2^5 S_{2^{++}(\bar{3}3)_c}(\xi_3)}$	19804 19738	671 692	545 512	-826 -880	5.60 6.11		

TABLE XXI: The average contributions of each part of the Hamiltonian to the $cc\bar{c}\bar{c}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^T \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively.

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
0	$\frac{1^{3}P_{0^{}(6\tilde{6})_{c}(\xi_{1},\xi_{2})}}{1^{3}P_{0^{}(\tilde{3}3)_{c}(\xi_{1},\xi_{2})}}$	19579 19662	696 685	438 467	-968 -896	0.69 0.41	5.58 1.21	-1.86 -3.63
0-+	$\begin{array}{c} 1^{3}P_{0^{-+}(\bar{60})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{0^{-+}(\bar{33})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{0^{-+}(\bar{33})_{c}}(\xi_{3}) \end{array}$	19577 19662 19596	701 687 713	437 467 442	-972 -898 -959	5.25 2.19 1.86	-0.63 -1.22 -2.59	-1.89 -3.65 -7.77
1	$\begin{array}{l} 1^{3}P_{1^{}(6\bar{\delta})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{5}P_{1^{}(\bar{3}3)_{c}(\xi_{3})} \\ 1^{1}P_{1^{}(\bar{3}3)_{c}(\xi_{3})} \\ 1^{1}P_{1^{}(6\bar{\delta})_{c}(\xi_{3})} \end{array}$	19571 19662 19598 19789 19604	711 685 711 644 698	434 467 442 517 446	-978 -896 -957 -785 -948	0.72 0.41 6.58 5.48 -0.49	-2.89 -0.61 -1.80 0.00 0.00	-0.96 -1.82 -11.58 0.00 0.00
1-+	$\begin{array}{c} 1^{3}P_{1^{-+}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{1^{-+}(\bar{3}3)_{c}}(\xi_{3}) \end{array}$	19579 19665 19604	698 681 699	438 469 446	-969 -893 -948	5.21 2.16 1.81	0.31 0.60 1.25	-0.93 -1.79 -3.75
2	$\begin{array}{c} 1^{3}P_{2^{}(6\bar{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{2^{}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{5}P_{2^{}(\bar{3}3)_{c}}(\xi_{3}) \end{array}$	19576 19667 19609	701 677 690	437 470 449	-971 -891 -942	0.70 0.41 6.29	0.56 0.12 1.71	0.94 1.78 -3.67
2-+	$\begin{array}{l} 1^{3}P_{2^{-+}(6\tilde{6})_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{2^{-+}(\bar{3}3)_{c}(\xi_{1},\xi_{2})} \\ 1^{3}P_{2^{-+}(\bar{3}3)_{c}}(\xi_{3}) \end{array}$	19580 19668 19609	695 675 688	438 471 449	-967 -890 -941	5.18 2.15 1.77	-0.06 -0.12 -0.24	0.93 1.77 3.64
3	$1^5 P_{3^{}(\bar{3}3)_c(\xi_3)}$	19587	723	466	-1026	7.57	-0.61	9.19

TABLE XXII: The average contributions of each part of the Hamiltonian to the $bb\bar{b}\bar{b}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^T \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}P_{0^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19693	677	482	-876	2.6	0	-0.91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0^{+-}	$1^{3}P_{0^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19775	667	514	-812	-0.98	0	-1.77
$ \begin{array}{c} 1^{1}S_{0}^{++(6)}(3)_{k}(\xi_{1}\otimes_{5}) & 19677 & 697 & 475 & -893 & -9.68 & 0 & 0 \\ 1^{1}S_{0}^{++(6)}(3)_{k}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19796 & 681 & 523 & -801 & -13.94 & 0 & 0 \\ 1^{1}P_{0}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19773 & 670 & 513 & -813 & -2.37 & -0.36 & -1.78 \\ 1^{1}P_{0}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19884 & 655 & 557 & -728 & -553 & 0.86 & -4.3 \\ 1^{1}P_{0}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19873 & 674 & 559 & -757 & 3.56 & -1.53 & -12.13 \\ 1^{5}D_{0}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19800 & 678 & 525 & -803 & 4.05 & -1.64 & -11.46 \\ 1^{5}D_{0}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19812 & 662 & 535 & -796 & 2.97 & 0 & 0 \\ 1^{3}S_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19812 & 662 & 535 & -796 & 2.97 & 0 & 0 \\ 1^{3}S_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19822 & 671 & 526 & -796 & -7.59 & 0 & 0 \\ 1^{3}P_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19823 & 653 & 556 & 7-728 & -9.59 & 0 & 0 \\ 1^{1}P_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19823 & 656 & 557 & -728 & -9.59 & 0 & 0 \\ 1^{1}P_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19692 & 678 & 482 & -877 & 2.61 & -0.34 & -1.02 \\ 1^{5}P_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19974 & 669 & 514 & -813 & -0.98 & -0.67 & -2 \\ 1^{5}P_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19980 & 664 & 565 & -740 & -0.13 & -0.26 & -7.1 \\ 1^{5}P_{1}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19980 & 664 & 565 & -740 & -0.13 & -0.26 & -7.1 \\ 1^{5}D_{1}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19980 & 664 & 565 & -740 & -0.13 & -0.26 & -7.1 \\ 1^{5}D_{1}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19880 & 664 & 565 & -740 & -0.13 & -0.26 & -7.1 \\ 1^{5}D_{1}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19880 & 664 & 565 & -740 & -0.13 & -0.26 & -7.1 \\ 1^{5}D_{1}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19887 & 668 & 563 & -774 & 3.2 & -0.97 & -1.195 \\ 1^{3}D_{1}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19887 & 668 & 563 & -774 & 3.2 & -0.97 & -1.195 \\ 1^{3}D_{1}^{++(3)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19897 & 667 & 533 & -770 & -2.46 & 0 & 0 \\ 1^{3}D_{1}^{++(6)}(\xi_{1}\otimes_{5},\xi_{2}\otimes_{5}) & 19897 & 667 & 553 & 5.77 & -7.48 & 0.07 & 1.01 \\ 1^{3}D_{1}^{++(3)}(\xi_{1}\otimes$		$1^5 D_{0^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	19884	674	561	-746	3.24	-1.98	-14.56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		()0(01/02)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{1}S_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}$	19677	697	475	-893	-9.68	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{1}S_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19796	681	523	-801	-13.94	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}P_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19688	684	480	-881	-0.91	-0.92	-0.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0^{++}	$1^{3}P_{0^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19773	670	513	-813	-2.37	-0.36	-1.78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}P_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19884	655	557	-728	-5.53	0.86	-4.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{5}D_{0^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19873	674	559	-757	3.56	-1.53	-12.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{5}D_{0^{++}(\bar{3}3)_{c}(\xi_{3})}$	19800	678	525	-803	4.05	-1.64	-11.46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{5}D_{0^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19847	676	544	-768	3.49	-2.04	-14.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}S_{1^{+-}(6\bar{6}),(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{2})}$	19812	662	535	-796	2.97	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}S_{1^{+-}(\bar{3}3)}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{3})$	19828	653	536	-768	-0.73	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}S_{1^{+-}(6\bar{6}),(\xi_{1}\otimes\xi_{2})}$	19802	671	526	-796	-7.59	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{1}P_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}$	19711	689	488	-864	-9.56	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{1}P_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19883	656	557	-728	-9.59	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}P_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19692	678	482	-877	2.61	-0.34	-1.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1^{+-}	$1^{3}P_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19774	669	514	-813	-0.98	-0.67	-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^5 P_{1^{+-}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	19890	646	561	-722	2.51	0.21	-5.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{1^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19889	664	565	-740	-0.13	-0.26	-7.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{1^{+-}(\bar{3}3)_{c}(\xi_{3})}$	19803	672	528	-799	-0.63	0.45	-5.64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19906	662	573	-731	0.66	-0.02	-6.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{1^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19856	668	548	-758	-1.73	-0.75	-7.58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{1^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19845	678	543	-769	-6.61	-1.02	-7.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^5 D_{1^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	19887	668	563	-742	3.2	-0.97	-11.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1^{3} S	19807	667	533	_799	-1 48	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}S^{-1}(66)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	10827	655	535	-770	-1.40	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3} \mathbf{p}$ $1^{3} \mathbf{p}$	19627	681	781	870	-2.40	08	1.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{1}{1^3 P} \frac{1}{1^{++}(66)_c} \left(\xi_1 \otimes \xi_3, \xi_2 \otimes \xi_3\right)$	19090	670	512	-079	-0.91	0.8	-1.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{1}{13} \frac{\Gamma}{D} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{13} \frac{1}{1$	19773	657	556	-015	-2.37	-0.22	-2.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1++	$1^{2}P_{1^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$ $1^{3}D_{-}$	19803	667	562	-728	-3.33	-1.08	-5.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$1^{3}D_{1^{++}(33)c(\xi_{1},\xi_{2})}$	190/7	660	574	-730	-0.44	-0.04	-6.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{1^{++}(66)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	19856	667	548	-757	-1.6	-0.49	-7 57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{5}D_{1^{++}(33)_{c}}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	10876	669	561	-754	3 52	-0.75	_0.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{5}D_{1^{++}(33)_{c}(\xi_{1},\xi_{2})}$	19802	673	527	-800	3.32 4.01	-0.75	-9.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{5}D_{1++(33)c}(\xi_{3})$	19850	670	546	-765	3 44	-1	-11 69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$D_{1^{++}(66)c}(\xi_1 \otimes \xi_2)$	17050	070	510	105	5.11	1	11.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}P_{2^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{3})}$	19695	674	483	-874	2.58	0.07	1.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}P_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{2})}$	19779	660	517	-807	-0.96	0.13	1.96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^5 P_{2^{+-}(6\bar{6}),(\xi_1\otimes\xi_2)}$	19891	645	561	-721	2.5	-1.46	-3.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{1}D_{2^{+-}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	19807	648	525	-777	2.21	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{1}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19895	654	569	-734	-1.73	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2+-	$1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19894	655	568	-735	-0.12	0.26	-2.31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{2^{+-}(\bar{3}3)c(\xi_{3})}$	19806	667	529	-796	-0.62	-0.44	-1.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{2^{+-}(6\bar{6})_{c}\left(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3}\right)}$	19910	654	576	-727	0.65	0.02	-2.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$1^{3}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19863	657	552	-751	-1.69	0.73	-2.46
$1^{5}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$ 19893 657 567 -736 3.12 0.41 -6.98		$1^{3}D_{2^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19852	666	548	-763	-6.44	0.99	-2.31
		$1^{\circ}D_{2^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19893	657	567	-736	3.12	0.41	-6.98

TABLE XXIII: The average contributions of each part of the Hamiltonian to the $bb\bar{b}\bar{b}$ configurations. $\langle T \rangle$ stands for the contribution of the kinetic energy term. $\langle V^{Lin} \rangle$ and $\langle V^{Coul} \rangle$ stand for the contributions from the linear confinement potential and Coulomb type potential, respectively. $\langle V^{SS} \rangle$, $\langle V^{T} \rangle$, and $\langle V^{LS} \rangle$ stand for the contributions from the spin-spin interaction term, the tensor potential term, and the spin-orbit interaction term, respectively. $\frac{1}{\sqrt{P^{(C)} Configuration}} \frac{Mass}{\sqrt{T} - \sqrt{V^{Lin}} - \sqrt{V^{Coul}} - \sqrt{V^{LS}}}$

$J^{P(C)}$	Configuration	Mass	$\langle T \rangle$	$\langle V^{Lin} \rangle$	$\langle V^{Coul} \rangle$	$\langle V^{SS} \rangle$	$\langle V^T \rangle$	$\langle V^{LS} \rangle$
	$1^{5}S_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19814	653	534	-785	4.39	0	0
	$1^{3}P_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})}$	19691	679	481	-878	-0.9	-0.16	1.03
	$1^{3}P_{2^{++}(\bar{3}3)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	19777	662	516	-809	-2.33	0.04	1.97
	$1^{3}P_{2^{++}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2})}$	19891	644	562	-721	-5.38	0.21	3.13
	$1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{1},\xi_{2})}$	19773	661	515	-814	2.27	0	0
	$1^{1}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19881	660	564	-749	-2.37	0	0
	$1^{1}D_{2^{++}(6\bar{6})_{c}(\xi_{3})}$	19770	674	521	-835	2.53	0	0
	$1^{1}D_{2^{++}(\bar{3}3)c}(\xi_{3})$	19806	666	530	-796	-2.9	0	0
2++	$1^{1}D_{2^{++}(\bar{3}3)_{c}(\xi_{1}\otimes\xi_{2})}$	19697	695	484	-880	-9.67	0	0
	$1^1 D_{2^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	19848	672	546	-766	-11.5	0	0
	$1^{3}D_{2^{++}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19881	660	564	-749	-0.43	0.04	-1.95
	$1^{3}D_{2^{++}(6\bar{6})c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	19910	654	576	-727	0.96	-0.62	-2.24
	$1^{3}D_{2^{++}(\bar{3}3)c}(\xi_{1}\otimes\xi_{3},\xi_{2}\otimes\xi_{3})$	19862	657	552	-751	-1.56	0.47	-2.46
	$1^5 D_{2^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	19881	660	564	-749	3.45	0.32	-5.86
	$1^{5}D_{2^{++}(\bar{3}3)_{c}(\xi_{3})}$	19807	665	530	-795	3.93	0.34	-5.54
	$1^5 D_{2^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	19856	659	550	-759	3.36	0.42	-6.83
	$1^5 P_{3^{+-}(6\bar{6})_c(\bar{\epsilon}_1 \otimes \bar{\epsilon}_2)}$	19902	627	569	-711	2.39	0.4	5.98
	$1^{3}D_{3^{+-}(\bar{3}3)_{c}(\xi_{1},\xi_{2})}$	19901	644	573	-729	-0.12	-0.07	4.5
	$1^{3}D_{3^{+-}(\bar{3}3)_{c}(\xi_{3})}$	19812	657	533	-789	-0.61	0.12	3.62
3+-	$1^{3}D_{3^{+-}(6\bar{6})_{c}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{3})}$	19917	643	581	-720	0.64	-0.01	4.36
	$1^{3}D_{3^{+-}(\bar{3}3)c(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{3})}$	19869	647	557	-745	-1.64	-0.2	4.78
	$1^{3}D_{3^{+-}(6\bar{6})_{a}(\xi_{1}\otimes\xi_{2})}$	19857	657	552	-757	-6.3	-0.28	4.52
	$1^5 D_{3^{+-}(\bar{3}3)c(\xi_1,\xi_2)}^{(30)c(\xi_1,\xi_2)}$	19901	645	573	-729	3.03	1.05	0
	$1^{3}D_{3^{++}(\bar{3}3)_{2}(\xi_{1},\xi_{2})}$	19887	651	568	-744	-0.42	-0.01	3.81
	$1^{3}D_{3^{++}(6\bar{6})_{2}(\xi_{1}\otimes\xi_{2},\xi_{2}\otimes\xi_{2})}$	19917	642	581	-720	0.93	0.17	4.35
	$1^{3}D_{3^{++}(\bar{3}3)}(\xi_{1}\otimes\xi_{2},\xi_{3}\otimes\xi_{3})$	19869	646	557	-745	-1.52	-0.13	4.78
	$1^5 D_{3^{++}(\bar{3}3)}(\xi_1,\xi_2)$	19887	650	569	-743	3.37	0.82	0
3++	$1^5 D_{3^{++}(\bar{3}3)}(\xi_2)$	19813	655	534	-788	3.83	0.88	0
	$1^5 D_{3^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	19864	647	555	-751	3.26	1.08	0
4+-	$1^5 D_{4^{+-}(\bar{3}3)_c(\xi_1,\xi_2)}$	19908	634	578	-722	2.94	-0.51	8.74
	$1^5 D_{4^{++}(\bar{3}3)_c(\xi_1,\xi_2)}$	19894	640	573	-737	3.29	-0.4	7.41
4++	$1^5 D_{4^{++}(\bar{3}3)_c(\xi_3)}$	19819	645	538	-782	3.75	-0.43	7.02
	$1^5 D_{4^{++}(6\bar{6})_c(\xi_1 \otimes \xi_2)}$	19871	636	560	-744	3.17	-0.52	8.56